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Context: What is a Vertex-Program?

instance #1

-
-
-
-
-
-

instance #2

Related research:

Pregel, Parallel BGL, Piccolo, Graphlab, Kineograph,

GraphChi




Context: What is a Natural Graph?

Natural graphs have a skewed power-law degree distribution. Vertex-program problems:
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Figure 1: The in and out degree distributions of the Twitter
follower network plotted in log-log scale.
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The GAS Model

commutative, associative

1. Gather /
2 @D g(DuDuy:D))
vENDbr|u|
2. Apply

D" < a(Dy,X)

3. Scatter
Vv € Nbr[u] : (D(u,v)) —S (DZGW,D(M’V) ,Dv)




Distributed Graph Placement:
-dge-Cuts vs Vertex-Cuts
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Figure 4: (a) An edge-cut and (b) vertex-cut of a graph into
three parts. Shaded vertices are ghosts and mirrors respectively.




Distributed Graph Placement:
Vertex-Cuts
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Figure 5: The communication pattern of the PowerGraph ab-
straction when using a vertex-cut. Gather function runs locally
on each machine and then one accumulators is sent from each
mirror to the master. The master runs the apply function and
then sends the updated vertex data to all mirrors. Finally the
scatter phase is run in parallel on mirrors.
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Figure 11: Synchronous Experiments (a,b) Synchronous PageRank Scaling on Twitter graph. (¢) The PageRank per iteration
runtime on the Twitter graph with and without delta caching. (d) Weak scaling of SSSP on synthetic graphs.
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(c) Coloring Weak Scaling
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Figure 12: Asynchronous Experiments (a) Number of user operations (gather/apply/scatter) issued per second by Dynamic
PageRank as # machines is increased. (b) Total number of user ops with and without caching plotted against time. (¢) Weak scaling
of the graph coloring task using the Async engine and the Async+S engine (d) Proportion of non-conflicting edges across time on a 8
machine, 40M vertex instance of the problem. The green line is the rate of conflicting edges introduced by the lack of consistency
(peak 236K edges per second) in the Async engine. When the Async+S engine is used no conflicting edges are ever introduced.



Comparison to Pregel (Piccolo) and
Graphlab
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Comparisons are only run
on synthetic graphs.
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Figure 10: Synthetic Experiments Runtime. (a, b) Per itera-
tion runtime of each abstraction on synthetic power-law graphs.




PageRank, Triangle Count, LDA

PageRank Runtime | |V| | |E| | System
Hadoop [22] 198s - 1.1B | 50x8
Spark [37] 97.4s 40M | 1.5B| 50x2
Twister [15] 36s 50M | 1.4B | 64x4
PowerGraph (Sync) | 3.6s 40M | 1.5B | 64x8
Triangle Count Runtime | [V| | |E| | System
Hadoop [36] 423m 40M | 1.4B | 1636x?
PowerGraph (Sync) | 1.5m 40M | 1.4B| 64x16
LDA Tok/sec Topics System
Smola et al. [34] 150M 1000 100x8
PowerGraph (Async) | 110M 1000 64x16

Table 2: Relative performance of PageRank, triangle counting,
and LDA on similar graphs. PageRank runtime is measured per
iteration. Both PageRank and triangle counting were run on the
Twitter follower network and LDA was run on Wikipedia. The
systems are reported as number of nodes by number of cores.




Conclusions

KEY TAKEAWAYS IMPACT

* GAS model allows for vertex-cut distribution > 1100 citations

of graphs across machines , ,
* PowerGraph was integrated into Graphlab,

* This can improve performance and scalability  sold for $200M to Apple in 2016

of distributed graph processin
srapnp & * Lead author moved on to GraphX, built on top

of Spark



interface GASVertexProgram(u) {
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// Run on gather_nbrs (u)
gather(Du, D(“,V}’ Dv) — Accum
10% ] sum (Accum left, Accum right) — Accum

g apply (D, Accum) — Dp°¥ w] @@’ @] [}
%104 =2 | // Run on scatter_nbrs (u) et 3
5 scatter (D, Dy Dv) - = (D), Accum) (a) Edge-Cut (b) Vertex-Cut
Z 0
0 - (1) Gather
10 0 2 - 6 8
10 0 e © 10 Accumulator
Gather = (Partial Sum)
1 ? Scatter, § 3) Apply
Questions: Updated
’ Vertex Data
” | | . Machine 1 (5) Scatter Machine 2
w P | (Piccol b Synchronous(Random)
'§25. regel (Plccolo) ‘33{] ,~~ Synchronous(Oblivious)
2 0l Graphlab So5f Synchronous(Coord.) PageRank Runtime | V| | [E| | System
° F’O;QFGzph LR?dOfg) & 20 . Hadoop [22] 198s - 1.1B | 50x8
18 owerGraph (Coord.); £ & o Spark [37] 074s | 40M | 1.5B | 50x2
5 10t gw Twister [15] 36s 50M| 1.4B | 64x4
> 5l o g PowerGraph (Sync) | 3.6s 40M | 1.5B | 64x8
5 . » , o
?8 1.9 g 2.1 2.2 16 Numbgr2of Machiﬁgs 64 Reference: Gonzalez, Joseph E and Low, Yuchengand Gu, Haijie and Bickson,

Dannyand Guestrin, Carlos: Powergraph: Distributed graph-parallel computation
on natural graphs. Presented as partof the 10th USENIX Symposiumon Operating
Systems Design and Implementation (OSDI 12), 2012.

(b) Power-law Fan-Out Runtime (a) Twitter PageRank Runtime




