
Naiad: A Timely

Dataflow System
Derek G. Murray, Frank McSherry, Rebecca Isaacs,

Michael Isard, Paul Barham, Martin Abadi

Presented by Stefan Ivanov for

R244: Large-Scale Data Processing and Optimization

Summary

The Context – Overall ideas

The Problem – Main contributions

Opinions – How good is the paper?

Conclusion

The Context

Distributed computation model

Source: [4]

Motivation for

Naiad

 Data processing tasks are

quite varied in terms of

workload

 Architectural difficulty

combining the various processing

approaches

Source: [1]

What is Naiad?

A low-latency and high-throughput system for

executing data parallel, cyclic dataflow

programs.

A note on naming

An application written for Dryad is modeled as a directed
acyclic graph (DAG) and Dryad is the "tree nymph" in
Greek mythology. Naiad is a stream processing platform
and Naiad is the "stream nymph" in Greek mythology.\

Authors: Who, where, when?

 Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard,

Paul Barham, Martin Abadi

→ Worked for Microsoft Research Silicon Valley while writing the

paper

→ Everyone (but Frank McSherry) moved to Google

 Further research on timely data flow → mostly refinements on

their ideas

 Frank McSherry → also continued research on dataflow

computations

Environment: Other frameworks

 Batch processing:

 Dryad

 MapReduce

 Spark

 Stream processing:

 Storm

 MillWheel

 Graph processing:

 Pregel

 GraphLab

 Giraffee

Environment: Authors’ previous work

 Composable Incremental and Iterative Data-Parallel

Computation with Naiad [2]

 Verification of mathematical model and introduction to partially

order relations (found in the discussed paper)

 Precursor paper, developed from a focus on differential data

flow to a more general framework

The Problem

Arbitrary Graph

Execution Model

 Structured loops

 Stateful dataflow

 Notifications

Source: [1]

Generalization for
dataflow programming

 Runtime, graph

construction and the

timely dataflow modules

are completely

separate.

 Enables, a “mix-a-

match” concentrated

Source: [1]

Timely dataflow:

Timestamps

 Partial order based on

lexicographical

comparison

 Optimization

opportunities due to

formal verification of

out the progress tracking

code [3]

Source: [1]

Timely dataflow: Loop Contexts

 Necessary to impose a partial order of the notes

 Fundamental for any iterative algorithm

 Could-result-in metric

Source

Timely dataflow: Callback model

 Based on event passing (callbacks etc.)

 Interface methods

 v.ONRECV(e : Edge, m : Message, t : Timestamp)\

 v.ONNOTIFY(t : Timestamp)

 this.SENDBY(e : Edge, m : Message, t : Timestamp)

 this.NOTIFYAT(t : Timestamp).

Timely dataflow: Callback model

Source: [4]

Timely dataflow: Callback model

Source: [4]

Distributed implementation: Runtime

 Naiad “Core” → about 22700 lines of code

 Controls the “physical graph” (what runs where)

 Use of intrinsic for common operations with

known semantics (i.e. join, select, count)

 Workers communicate through message queues

Distributed
implementation: Low-
level API

 The C# interface

discussed before

 Relatively simple to use,

yet verbose and error

prone

 High performance

applications can drop to

this level if necessary

Source: [1]

MapReduce Implementation

Distributed implementation:

High-level programming models

 Typical usage of

Naiad is through

other

computational

models and

libraries build upon

the low-level API

Mathematical formalization and

optimizations

 In a separate paper [3]

“Formal analysis of a distributed algorithm for tracking

progress. In Proceedings of the IFIP Joint International

Conference on Formal Techniques for Distributed Systems,

June 2013”

 The previous Naiad paper [2] also contains mathematical

formalism but for differential dataflow

Results: Microbenchmark results

Source: [1]

Results: Real world applications

Source: [1]

Fault tolerance

 Not a primary concern of Naiad

 Implemented through a Checkpoint and Restore

mechanic

 Using continuous checkpoints reduces

performance significantly

Opinions

Agreement and disagreements

 Agreements

 The API is cleaner and

more extensible

 Generic API allowing for

various parallel models

 Flexible execution model

 Disagreements

 Choice of implementation

language

 Little focus on optimizations

among subset of workers

Strengths and weaknesses

 Strengths

 Easy to implement a

relatively performant

distributed system in no

time

 Consistency algorithms

and the communication

protocol is verified

explicitly

 Weaknesses

 (Personal opinion) Not

quite trivial to set up

 High memory usage which

limits general

applicability

 Naiad as a system is not as

popular as I would expect

Key takeaways

 Timely dataflow is a unique model with

convenient properties enabling high throughput

and low latency

 Decoupling high-level programming model from

the implementation detail of the runtime

 Providing an efficient base for complex systems

enables requiring batch, stream and graph

processing techniques

Impact

 Best paper of Symposium on Operating Systems

Principles (SOSP) 2013

 More than 100 citations (after a quick research)

 Affected distributed data flow programming

systems

 Timely dataflow programming is still in

development

References

[1] Murray, McSherry, et al., Naiad: A Timely Dataflow System

[2] McSherry, Isaacs, et al., Composable Incremental and Iterative Data-

Parallel Computation with Naiad

[3] Abadi, McSherry, et al., Formal Analysis of a Distributed Algorithm for

Tracking Progress

[4] Naiad: A Timely Dataflow System:

https://www.youtube.com/watch?v=yyhMI9r0A9E

https://www.youtube.com/watch?v=yyhMI9r0A9E

Q&A

Thank you for your attention

