Naiad: A Timely
Dataflow System

Derek G. Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, Martin Abadi

Presented by Stefan Ivanov for
R244: Large-Scale Data Processing and Optimization

Summary

» The Context - Overall ideas

» The Problem - Main contributions
» Opinions - How good is the paper?
» Conclusion

The Context

Distributed computation model

Batch Stream
processing | processing

Graph
processing

Timely dataflow

Source: [4]

Motivation for
Naiad

» Data processing tasks are
quite varied in terms of
workload

Architectural difficulty
combining the various processing
approaches

Source: [1]

Low-latency query

.
User queries
are received

responses are delivered |

(Queries are
joined with
_ processed data

Complex processing
incrementally re-
----------- 1 executes to reflect
\ changed data)

L Updates to J

data arrive
. ik

J

What is Naiad?

A low-latency and high-throughput system for
executing data parallel, cyclic dataflow
programs.

A note on naming

An application written for Dryad is modeled as a directed
acyclic graph (DAG) and Dryad is the "tree nymph" in
Greek mythology. Naiad is a stream processing platform
and Naiad is the "stream nymph" in Greek mythology.\

Authors: Who, where, when?

» Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard,
Paul Barham, Martin Abadi

- Worked for Microsoft Research Silicon Valley while writing the
paper
- Everyone (but Frank McSherry) moved to Google

» Further research on timely data flow - mostly refinements on
their ideas

» Frank McSherry - also continued research on dataflow
computations

Environment: Other frameworks

» Batch processing:
» Dryad
» MapReduce
» Spark

» Stream processing:
» Storm
» MillWheel

» Graph processing:
» Pregel
» GraphlLab
» Giraffee

Environment: Authors’ previous work

» Composable Incremental and Iterative Data-Parallel
Computation with Naiad [2]

» Verification of mathematical model and introduction to partially
order relations (found in the discussed paper)

» Precursor paper, developed from a focus on differential data
flow to a more general framework

The Problem

Arbitrary Graph
Execution Model

» Structured loops
» Stateful dataflow
» Notifications

Vertex Input timestamp Output timestamp

Ingress (e;{c1,---5¢x)) (e,(c1;,---,¢x,0))
Egress (e,{c1,-- - crcnv1)) (e,{ct;---5ck))
Feedback (e, (c1,...,cx)) (e;{c1,..- e +1))

Streaming context]

Loop context

Source: [1]

Generalization for
dataflow programming

» Runtime, graph
construction and the
timely dataflow modules
are completely
separate.

» Enables, a “mix-a-
match” concentrated

Source: [1]

DSLs Applications

Libraries (Sec 6)

Graph assembly (Sec 4)

Timely Dataflow (Sec 2)

Distributed Runtime (Sec 3)

Timely dataflow:
Timestamps

» Partial order based on
lexicographical
comparison

» Optimization
opportunities due to
formal verification of
out the progress tracking
code [3]

Source: [1]

epoch loop counters

NN — —
Timestamp : (e € N, (c1,...,cx) € NF)

Timely dataflow: Loop Contexts

» Necessary to impose a partial order of the notes
» Fundamental for any iterative algorithm
» Could-result-in metric

Vertex Input timestamp Output timestamp
Ingress (e,{(c1,---,ck)) (e,{c1,---,ck,0))
Egress (e,{(c1,.-- crcre1)) (e, {ct,.--,ck))
Feedback (e, {(cy,...,ck)) (e,{(c1,-..,ck+ 1))

Source

Timely dataflow: Callback model

» Based on event passing (callbacks etc.)

» Interface methods
» V.ONRECV(e : Edge, m : Message, t : Timestamp)\
» V.ONNOTIFY(t : Timestamp)
» this.SENDBY (e : Edge, m : Message, t : Timestamp)
» this.NOTIFYAT (t : Timestamp).

Timely dataflow: Callback model

B.SENDBY(edge, message,]
[time)
7 4

-~
-

4 "C.ONR‘E\C\V(édg'e',’rﬁéééa_g'é,_ B

Messages are delivered
asynchronously

Source: [4]

Timely dataflow: Callback model

C.SENDBY(_, _, @jﬁ\(m(tlm]
[time)])

i

" D.ONRECV(_, ,

Source: [4]

Distributed implementation: Runtime

» Naiad “Core” - about 22700 lines of code
» Controls the “physical graph” (what runs where)

» Use of intrinsic for common operations with
known semantics (i.e. join, select, count)

» Workers communicate through message queues

Distributed
implementation: Low-
level API

» The C# interface
discussed before

» Relatively simple to use,
yet verbose and error
prone

» High performance
applications can drop to
this level if necessary

Source: [1]

MapReduce Implementation

// la. Define input stages for the dataflow.
var input = controller.NewInput<string>();

// 1lb. Define the timely dataflow graph.
// Here, we use LINQ to implement MapReduce.

var result = input.SelectMany(y => map(y))
.GroupBy (y => key(y),
(k, vs) => reduce(k, vs));

// lc. Define output callbacks for each epoch
result.Subscribe (result => { ... });

// 2. Supply input data to the query.
input.OnNext (/+» 1lst epoch data */);
input.OnNext (/* 2nd epoch data */);
input.OnNext (/* 3rd epoch data */);
input .OnCompleted() ;

Distributed implementation:
High-level programming models

LINQ CraphLINQ gl ooMm
AllReduc Frameworks
e Differential dataflo@SP (Pregel)

Timely dataflow API

» Typical usage of

Distributed runtime

Naiad is through
other
computational
models and
libraries build upon
the low-level API

Mathematical formalization and
optimizations

» In a separate paper [3]

“Formal analysis of a distributed algorithm for tracking
progress. In Proceedings of the IFIP Joint International

Conference on Formal Techniques for Distributed Systems,
June 2013”

» The previous Naiad paper [2] also contains mathematical
formalism but for differential dataflow

70 | I 1

60 Ideal - - - -

50 - NET Socket — » -
Naiad

Aggregate throughput (Gbps)

Number of computers

(a) All-to-all exchange throughput (§5.1)

Results: Microbenchmark results

Source: [1]

Speedup vs. single computer

RNMNWWaE RO
cooUmmo oo

—_
oo,

Number of computers

(d) Strong scaling (§5.4)

L
~ WordCount ---a--- i 5
B WCC —_ - - _..I’ _ i
i S
B i i
- ']""" |

Rad

B y3 _
- l_,(-' |
| -.- |
f" | | l I I |
0 10 20 30 40 50 60

Time per iteration (s)

(a) PageRank on Twitter follower graph (§6.1)

100

10 |

R
Tog-4-3-

Naiad Pregel — » - -
Naiad Vertex ---=---
PowerGraph - -e- -

Naiad Edge ——

Source: [1]

20 30 40 50 60

Number of computers

Results: Real world applications

Speedup vs. single VW

O=MNWhrUOO~NOOO

0 10 20 30 40 50
Number of computers

70

(b) Logistic regression speedup (§6.2)

Fraction of responses

None ...
0.8 Checkpoint .
Logging — - -
el , Logaing]
T IIIIIIII'J-C'_II ™
. n
0.4 - 7 17
0.2 ' -
- B | ST BT n
0.950_1 10
0 e Tl TR R | T
0.01 0.1 1 10

Response latency (s)

(c) k-Exposure response time (§6.3)

Fault tolerance

» Not a primary concern of Naiad

» Implemented through a Checkpoint and Restore
mechanic

» Using continuous checkpoints reduces
performance significantly

Opinions

Agreement and disagreements

» Agreements » Disagreements

» The APl is cleaner and » Choice of implementation
more extensible language

» Generic API allowing for » Little focus on optimizations
various parallel models among subset of workers

» Flexible execution model

Strengths and weaknesses

» Strengths » Weaknesses

» Easy to implement a » (Personal opinion) Not
relatively performant quite trivial to set up
distributed system in no » High memory usage which

time limits general

» Consistency algorithms applicability
and the communication
protocol is verified
explicitly

» Naiad as a system is not as
popular as | would expect

Key takeaways

» Timely dataflow is a unique model with
convenient properties enabling high throughput
and low latency

» Decoupling high-level programming model from
the implementation detail of the runtime

» Providing an efficient base for complex systems
enables requiring batch, stream and graph
processing techniques

Impact

» Best paper of Symposium on Operating Systems
Principles (SOSP) 2013

» More than 100 citations (after a quick research)

» Affected distributed data flow programming
systems

» Timely dataflow programming is still in
development

References

[1] Murray, McSherry, et al., Naiad: A Timely Dataflow System

[2] McSherry, Isaacs, et al., Composable Incremental and Iterative Data-
Parallel Computation with Naiad

[3] Abadi, McSherry, et al., Formal Analysis of a Distributed Algorithm for
Tracking Progress

[4] Naiad: A Timely Dataflow System:
https://www.youtube.com/watch?v=yyhMI9rOA9E

https://www.youtube.com/watch?v=yyhMI9r0A9E

Thank you for your attention

