
Naiad: A Timely

Dataflow System
Derek G. Murray, Frank McSherry, Rebecca Isaacs,

Michael Isard, Paul Barham, Martin Abadi

Presented by Stefan Ivanov for

R244: Large-Scale Data Processing and Optimization

Summary

The Context – Overall ideas

The Problem – Main contributions

Opinions – How good is the paper?

Conclusion

The Context

Distributed computation model

Source: [4]

Motivation for

Naiad

 Data processing tasks are

quite varied in terms of

workload

 Architectural difficulty

combining the various processing

approaches

Source: [1]

What is Naiad?

A low-latency and high-throughput system for

executing data parallel, cyclic dataflow

programs.

A note on naming

An application written for Dryad is modeled as a directed
acyclic graph (DAG) and Dryad is the "tree nymph" in
Greek mythology. Naiad is a stream processing platform
and Naiad is the "stream nymph" in Greek mythology.\

Authors: Who, where, when?

 Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard,

Paul Barham, Martin Abadi

→ Worked for Microsoft Research Silicon Valley while writing the

paper

→ Everyone (but Frank McSherry) moved to Google

 Further research on timely data flow → mostly refinements on

their ideas

 Frank McSherry → also continued research on dataflow

computations

Environment: Other frameworks

 Batch processing:

 Dryad

 MapReduce

 Spark

 Stream processing:

 Storm

 MillWheel

 Graph processing:

 Pregel

 GraphLab

 Giraffee

Environment: Authors’ previous work

 Composable Incremental and Iterative Data-Parallel

Computation with Naiad [2]

 Verification of mathematical model and introduction to partially

order relations (found in the discussed paper)

 Precursor paper, developed from a focus on differential data

flow to a more general framework

The Problem

Arbitrary Graph

Execution Model

 Structured loops

 Stateful dataflow

 Notifications

Source: [1]

Generalization for
dataflow programming

 Runtime, graph

construction and the

timely dataflow modules

are completely

separate.

 Enables, a “mix-a-

match” concentrated

Source: [1]

Timely dataflow:

Timestamps

 Partial order based on

lexicographical

comparison

 Optimization

opportunities due to

formal verification of

out the progress tracking

code [3]

Source: [1]

Timely dataflow: Loop Contexts

 Necessary to impose a partial order of the notes

 Fundamental for any iterative algorithm

 Could-result-in metric

Source

Timely dataflow: Callback model

 Based on event passing (callbacks etc.)

 Interface methods

 v.ONRECV(e : Edge, m : Message, t : Timestamp)\

 v.ONNOTIFY(t : Timestamp)

 this.SENDBY(e : Edge, m : Message, t : Timestamp)

 this.NOTIFYAT(t : Timestamp).

Timely dataflow: Callback model

Source: [4]

Timely dataflow: Callback model

Source: [4]

Distributed implementation: Runtime

 Naiad “Core” → about 22700 lines of code

 Controls the “physical graph” (what runs where)

 Use of intrinsic for common operations with

known semantics (i.e. join, select, count)

 Workers communicate through message queues

Distributed
implementation: Low-
level API

 The C# interface

discussed before

 Relatively simple to use,

yet verbose and error

prone

 High performance

applications can drop to

this level if necessary

Source: [1]

MapReduce Implementation

Distributed implementation:

High-level programming models

 Typical usage of

Naiad is through

other

computational

models and

libraries build upon

the low-level API

Mathematical formalization and

optimizations

 In a separate paper [3]

“Formal analysis of a distributed algorithm for tracking

progress. In Proceedings of the IFIP Joint International

Conference on Formal Techniques for Distributed Systems,

June 2013”

 The previous Naiad paper [2] also contains mathematical

formalism but for differential dataflow

Results: Microbenchmark results

Source: [1]

Results: Real world applications

Source: [1]

Fault tolerance

 Not a primary concern of Naiad

 Implemented through a Checkpoint and Restore

mechanic

 Using continuous checkpoints reduces

performance significantly

Opinions

Agreement and disagreements

 Agreements

 The API is cleaner and

more extensible

 Generic API allowing for

various parallel models

 Flexible execution model

 Disagreements

 Choice of implementation

language

 Little focus on optimizations

among subset of workers

Strengths and weaknesses

 Strengths

 Easy to implement a

relatively performant

distributed system in no

time

 Consistency algorithms

and the communication

protocol is verified

explicitly

 Weaknesses

 (Personal opinion) Not

quite trivial to set up

 High memory usage which

limits general

applicability

 Naiad as a system is not as

popular as I would expect

Key takeaways

 Timely dataflow is a unique model with

convenient properties enabling high throughput

and low latency

 Decoupling high-level programming model from

the implementation detail of the runtime

 Providing an efficient base for complex systems

enables requiring batch, stream and graph

processing techniques

Impact

 Best paper of Symposium on Operating Systems

Principles (SOSP) 2013

 More than 100 citations (after a quick research)

 Affected distributed data flow programming

systems

 Timely dataflow programming is still in

development

References

[1] Murray, McSherry, et al., Naiad: A Timely Dataflow System

[2] McSherry, Isaacs, et al., Composable Incremental and Iterative Data-

Parallel Computation with Naiad

[3] Abadi, McSherry, et al., Formal Analysis of a Distributed Algorithm for

Tracking Progress

[4] Naiad: A Timely Dataflow System:

https://www.youtube.com/watch?v=yyhMI9r0A9E

https://www.youtube.com/watch?v=yyhMI9r0A9E

Q&A

Thank you for your attention

