Noria: Partially
Stateful Data-flow

for Read Heavy Web
Applications

Jon Gjengset Malte Schwarzkopf Jonathan Behrens Lara
Timbo Ara Martin Ek Eddie Kohler M. Frans Kaashoek Robert
Morris

Write ——

stories votes users

stories

votes Uusers

Invalidate

@ cache

Query on
read miss

cache

N

Challenges of Read Heavy Web
Apps

Repeat reads for complex queries

- De-normalise a relational database: complicates writes,

hard to maintain

- In-memory key-value cache (e.g. memcached), difficult to
get efficient writes

- Stream processing system (e.g. Twitter’s Heron) not
general, hard to reconfigure

Noria’s Solution

- Data-flow model with DAG composed of relational
operators
- Noriaintroduces three innovations:

A ‘partially stateful’ dataflow model

Automatic merge and reuse of data-flow subgraphs
over multiple queries

Fast, dynamic transitions for data-flow graphs in the
presence of new queries and schema changes

Dataflow Design

- Roots of the DAG are base tables
i - External views are at the leaves
— — - Internal views are represented by relational operators

® Stream - Updates are first applied to the base table and then

e ol propagate through the data-flow graph as deltas

- Join operators use an upquery to process updates - better
than just keeping windowed state

- Some operators (e.g. projection, filter) are stateless, while
some (e.g. count, min/max) are stateful to avoid

redundant recomputation

@ Update view

StoryWithVC D
Read

Partial State: Challenges and
Opportunltles

Problem with stateful operators: leads to potentially
unbounded state

- Partial state, based around partially materialised views in
databases allow operators to only contain a subset of
their overall state

- Introduces a new dataflow message: eviction notices

Partial State: Challenges and
Opportunities

- If an operator is missing state, it will issue a recursive

Z SUM k|l x|7
GO wawer
(@recursive | - Recursive upqgueries introduce challenges around

1| uery

m‘};‘SCS; concurrency and correctness

e A KL | - Start with empty state, lazily issue upqueries
(Mread - Only have partial state if can do index lookups

misses
- = = = =p [KIE

Dynamically Transitioning
Dataflow

- Common for web applications to change query set
overtime

- First stage of dataflow transition: plan what needs to be
added to the dataflow graph, sharing and reusing
operators wherever possible

- Then add operators into the graph to support new

queries:
Stateless
Partially stateful
Fully stateful

Implementation

- 45k lines of Rust, RocksDB for persistent base tables

- Sharding on hash partition on key, TCP interconnect

- Two pools of worker threads: some to process updates,
some to serve external views

- MySQL adapter

95%-ile latency [ms]

MariaDB (hand-opt.)
System Z
MariaDB+memcached
memcached-only
Noria (4 shards)

iM 6M 8SM

Offered load [requests/sec]

95%-ile latency [ms]

2

W
(@)

o

10M

12M

g 100 + —#— MariaDB (hand-opt.)
: —+— System Z
% —>&— MariaDB+memcached
s 504 —— memcached-only
2 1 —E— Noria (4 shards)
‘Q\IQ uj
"
T = 0 ""T 1 T T I T T
14M 0 2M 4M 6M 8M 10M 12M 14M

Offered load [requests/sec]

1

o

—#&— MariaDB (hand-opt.)
—+— System Z

~>¢— MariaDB+memcached
—%— memcached-only
—&— Noria (4 shards)

M

4M 6M 8M 10M 12M 14M
Offered load [requests/sec]

I Total write throughput

% fast reads from new view

100%

=

& 300K vy

200K £ e er o]
= 0F E
—~ I 1 1 |

0%

(a) With partial materialization and reuse (Zipfian).

lllllL‘h“Ill

100%

Throughput

0%

(b) With partial materialization and reuse (uniform).

100%

0%

=
& 300K franmnnd 3
2 TO0K E — ;
20 ~ -
e | | I |

= 30 60

Time after transition start [sec]

(c¢) No reuse or partial materialization (Zipfian).

Pros and Cons of the System

- Seems very easy to integrate with existing web apps

- Read performance very good for non-uniform

- See biggest performance benefits with Zipfian
distributions: how representative is this of other
applications?

- Recursive upqueries limit concurrency and complicate
design

Questions

