
Noria: Partially
Stateful Data-flow
for Read Heavy Web
Applications
Jon Gjengset Malte Schwarzkopf Jonathan Behrens Lara
Timbo Ara Martin Ek Eddie Kohler M. Frans Kaashoek Robert
Morris

Challenges of Read Heavy Web
Apps

- Repeat reads for complex queries
- De-normalise a relational database: complicates writes,

hard to maintain
- In-memory key-value cache (e.g. memcached), difficult to

get efficient writes
- Stream processing system (e.g. Twitter’s Heron) not

general, hard to reconfigure

Noria’s Solution
- Data-flow model with DAG composed of relational

operators
- Noria introduces three innovations:

A ‘partially stateful’ dataflow model

Automatic merge and reuse of data-flow subgraphs
over multiple queries

Fast, dynamic transitions for data-flow graphs in the
presence of new queries and schema changes

Dataflow Design
- Roots of the DAG are base tables
- External views are at the leaves
- Internal views are represented by relational operators
- Updates are first applied to the base table and then

propagate through the data-flow graph as deltas
- Join operators use an upquery to process updates - better

than just keeping windowed state
- Some operators (e.g. projection, filter) are stateless, while

some (e.g. count, min/max) are stateful to avoid
redundant recomputation

Partial State: Challenges and
Opportunities

- Problem with stateful operators: leads to potentially
unbounded state

- Partial state, based around partially materialised views in
databases allow operators to only contain a subset of
their overall state

- Introduces a new dataflow message: eviction notices

Partial State: Challenges and
Opportunities

- If an operator is missing state, it will issue a recursive
upquery

- Recursive upqueries introduce challenges around
concurrency and correctness

- Start with empty state, lazily issue upqueries
- Only have partial state if can do index lookups

Dynamically Transitioning
Dataflow

- Common for web applications to change query set
overtime

- First stage of dataflow transition: plan what needs to be
added to the dataflow graph, sharing and reusing
operators wherever possible

- Then add operators into the graph to support new
queries:

- Stateless

- Partially stateful

- Fully stateful

Implementation

- 45k lines of Rust, RocksDB for persistent base tables
- Sharding on hash partition on key, TCP interconnect
- Two pools of worker threads: some to process updates,

some to serve external views
- MySQL adapter

Performance

Pros and Cons of the System
- Seems very easy to integrate with existing web apps
- Read performance very good for non-uniform
- See biggest performance benefits with Zipfian

distributions: how representative is this of other
applications?

- Recursive upqueries limit concurrency and complicate
design

Questions

