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Challenges of Read Heavy Web
Apps

Repeat reads for complex queries

- De-normalise a relational database: complicates writes,

hard to maintain

- In-memory key-value cache (e.g. memcached), difficult to
get efficient writes

- Stream processing system (e.g. Twitter’s Heron) not
general, hard to reconfigure




Noria’s Solution

- Data-flow model with DAG composed of relational
operators
- Noriaintroduces three innovations:

A ‘partially stateful’ dataflow model

Automatic merge and reuse of data-flow subgraphs
over multiple queries

Fast, dynamic transitions for data-flow graphs in the
presence of new queries and schema changes




Dataflow Design

- Roots of the DAG are base tables
i - External views are at the leaves
— — - Internal views are represented by relational operators

® Stream - Updates are first applied to the base table and then

e ol propagate through the data-flow graph as deltas

- Join operators use an upquery to process updates - better
than just keeping windowed state

- Some operators (e.g. projection, filter) are stateless, while
some (e.g. count, min/max) are stateful to avoid

redundant recomputation
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Partial State: Challenges and
Opportunltles

Problem with stateful operators: leads to potentially
unbounded state

- Partial state, based around partially materialised views in
databases allow operators to only contain a subset of
their overall state

- Introduces a new dataflow message: eviction notices




Partial State: Challenges and
Opportunities

- If an operator is missing state, it will issue a recursive

Z SUM k|l x|7
GO wawer
(@recursive | - Recursive upqgueries introduce challenges around

1| uery

m‘};‘SCS; concurrency and correctness

e A KL | - Start with empty state, lazily issue upqueries
(Mread - Only have partial state if can do index lookups

misses
- = = = =p [KIE




Dynamically Transitioning
Dataflow

- Common for web applications to change query set
overtime

- First stage of dataflow transition: plan what needs to be
added to the dataflow graph, sharing and reusing
operators wherever possible

- Then add operators into the graph to support new

queries:
Stateless
Partially stateful
Fully stateful




Implementation

- 45k lines of Rust, RocksDB for persistent base tables

- Sharding on hash partition on key, TCP interconnect

- Two pools of worker threads: some to process updates,
some to serve external views

- MySQL adapter
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Pros and Cons of the System

- Seems very easy to integrate with existing web apps

- Read performance very good for non-uniform

- See biggest performance benefits with Zipfian
distributions: how representative is this of other
applications?

- Recursive upqueries limit concurrency and complicate
design




Questions




