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Reinforcement Learning: Agents

Figure: A traditional RL simiulation loop.
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Reinforcement Learning: Policy Training

Figure: Simplified RL policy training pseudocode.
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Requirement Statement

A system optimised for real-time Reinforcement Learning must;

Support heterogeneous tasks...
... within dynamically changing computation graphs...
... at a scale of more than a million tasks per second...
... with sub millisecond level latencies.
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Ray: Overview

Distributed RL computation framework for Python, offering;
1 A dynamic, highly concurrent, task graph.
2 Low latency distributed task scheduling.
3 Heterogeneous computations.
4 Supports both the task-parallel and actor programming

models.
5 Horizontal scalability (scale-out).
6 Transparent fault tolerance to aid debugging.
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Computation Graph

Key takeaway points;
Dynamic graphs can’t be properly batched.
Enables nested remote functions.
Requires a number of world states to maintained
simultaneously.
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Architecture
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Architecture: Overview

Application Layer
Consisting of; Drivers; Workers; and Actors.

System Layer
1 Global Control Store (GCS)
2 Distributed Scheduler
3 Apache Arrow [1], an in-memory object store
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Architecture: Global Control Store (GCS)

Repository for all shared system state, results, and metadata.
1 Every task specification.
2 The code for every remote function.
3 The current computation graph.
4 The current locations of all copies of objects.
5 Every scheduling event.

Powerful as this allows the rest of the system to be stateless.
Scales via sharding (cf. Redis Cluster Sharding [2]).
Important to note the separation of the data (GCS) and
control plane (distributed scheduler).
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Architecture: Schedulers

Described as a bottom-up decentralised scheduling system in two
parts; the global scheduler and per-node local schedulers.

Tasks are submitted to their node’s local scheduler first, but
passed on to the global scheduler if;

The node is overloaded.
The task inputs are not held locally.
The node can’t satisfy the resource requirements.
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Aside: Stateful 3rd Party Libraries in a Stateless System

Alongside typical task-parallel execution, Ray supports the Erlang
Actor model.

Wrap each stateful process in an Actor object.
Use additional stateful edges in the computation graph to
track changes.
This makes task replay deterministic as the versions of state
are tracked and accounted for.
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Architecture: Diagram

Figure: Ray’s high-level system design.
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Architecture: Example

Figure: A stepped through example of executing a remote function in Ray.
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System Evaluation
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Performance

Demonstrably linear scaling as number of nodes increases.
Up to 1.8 million tasks per seconds.

Peak object store throughput > 15 GB/s.
Peak IOPS 18k, giving ∼ 56µs/operation.

Tests against real-world RL workloads extremely positive.
Ray scales much better than other solutions.
In one test, Ray beats the previous industry best time by a
factor of 3.
Highly granular optimisation has a large impact; the scheduler
allocates resources, such as GPUs, in a more efficient manner.
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Fault Tolerance

Figure: Ray recovering from node failures. Throughput remains maximal
throughout, and using task replay the computation still completed
successfully.
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Related Work and Discussion Points
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Related Works

MapReduce [3], Spark [4]
Centralised scheduler on a master node.
BSP execution model, without the abstraction of Actors.

Dask [5], Ciel [6]
Centralised scheduling.
Dynamic task graphs.
Lacks the Actor abstraction.

OpenMPI [7]
Comparatively hard to program.
Requires explicit coordination for dynamic, heterogeneous task
graphs.
No fault tolerance by default.
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Discussion Points / Critique

Claims, but does not show, it is designed for ‘emergent’ and
‘next generation’ AI applications – just good at RL.
Trusts the user to make important allocation decisions.
@ray.remote(num_gpus=2)
Ignore issues around decentralising the data plane. Is it
susceptible to split-brain failures when the network fails?
Appear to be vulnerable to straggler nodes (cf.
MapReduce [3]). There is no mechanism for detecting or
handling this.
No mention of how the system identifies what resources it
has, and how the global scheduler interfaces with the
infrastructure. Essential to the quoted performance metrics.

Ray: A Distributed Framework for Emerging AI Applications R. Nishihara, R. Moritz, et al.



Bibliography I

Apache Arrow. https://arrow.apache.org/. Accessed: 2019-10-20.

Redis Cluster Sharding. https://redis.io/topics/partitioning.
Accessed: 2019-10-20.
Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data
Processing on Large Clusters”. In: OSDI’04: Sixth Symposium on
Operating System Design and Implementation. San Francisco, CA, 2004,
pp. 137–150.

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker,
and Ion Stoica. “Spark: Cluster Computing with Working Sets”. In:
Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud
Computing. HotCloud’10. Boston, MA: USENIX Association, 2010,
pp. 10–10. url:
http://dl.acm.org/citation.cfm?id=1863103.1863113.

Dask Development Team. Dask: Library for dynamic task scheduling.
2016. url: https://dask.org.

Ray: A Distributed Framework for Emerging AI Applications R. Nishihara, R. Moritz, et al.

https://arrow.apache.org/
https://redis.io/topics/partitioning
http://dl.acm.org/citation.cfm?id=1863103.1863113
https://dask.org


Bibliography II

Derek Gordon Murray, Malte Schwarzkopf, Christopher Smowton,
Steven Smith, Anil Madhavapeddy, and Steven Hand. “CIEL: A Universal
Execution Engine for Distributed Data-Flow Computing”. In: NSDI. 2011.

Richard L. Graham, Timothy S. Woodall, and Jeffrey M. Squyres. “Open
MPI: A Flexible High Performance MPI”. In: Proceedings of the 6th
International Conference on Parallel Processing and Applied
Mathematics. PPAM’05. Pozna&#324;, Poland: Springer-Verlag, 2006,
pp. 228–239. isbn: 3-540-34141-2, 978-3-540-34141-3. doi:
10.1007/11752578_29. url:
http://dx.doi.org/10.1007/11752578_29.

Ray: A Distributed Framework for Emerging AI Applications R. Nishihara, R. Moritz, et al.

https://doi.org/10.1007/11752578_29
http://dx.doi.org/10.1007/11752578_29

	Architecture
	System Evaluation
	Related Work and Discussion Points

