RLgraph: Flexible Computation
Graphs for
Deep Reinforcement Learning

MICHAEL SCHAARSCHMIDT | SVEN MIKA | KAI FRICKE | EIKO YONEKI
PRESENTATION BY GRZEGORZ WILK

Background

Standardization of high-level graph frameworks is a big driving force behind the
success of ML.

Yet, it is happening very slowly for reinforcement learning settings.

Examples include:
»OpenAl

> TensorForce
»Ray RLlib

What is reinforcement learning?

Instead of a supervised setting, where all the training data is available in advance,

Reinforcement learning revolves around defining a reward system for an agent and

letting it freely produce strategies.

Separation of Concerns

»Managing trial runs in the testing environment

» Managing execution environment
» Distributed coordination
» Device strategies e.g. GPU utilization
»Driving the learning models

» Logical component composition

» Backend graph definition for specific frameworks

What does separation of logic
achieve?

»Encourage code reuse
»Speed up iterative development
» Allow for sub-component testing

» Allow for a higher-level reasoning about the components

» Allow for identification of optimizations

-y

Tms-prop-optimizer

@
N5

3

° ° ° 3 I
ajor contribution o |
impala-loss-func g shared
Meta-graph. | |
i policy
. ° ° L ;cbpreprocesso A;‘ | g
This provides an abstraction that allows to compose “r J
various components of the reinforcement learning (staging-area)
b\e“sots ‘% Oxs)

~

procedure and re-compose them in different ways. e) (el

‘o, oV

Slosue s A
_ fifo-queue

[shalcd~l:|'lo-queuej

Figure 9. TensorBoard visualization of RLgraph’s IMPALA
learner. As all operations and variables are organized in com-
ponents under separate scopes, dataflow between components is
clear.

How is the meta graph created?

Three stages:

PrioritizedReplay
. Scope/name: prioritizedrepla
» Composing the components Deve: U
Backend: TensorFlow
»Traversing all the call paths to provide a skeleton of the meta- Seguenttres | [ariables: =
:qraph_fnl APT l
graph [graph_fn J_} insert_records (f—
. . oo . ° . ’I‘ensor!.“low (APT)
»Building the backend-specific implementation, by allocating >
. e o ° [graph_fn] Iget_recards {API)I
required data-structures and defining operations

[graph_fn] ’ update (API) I

Figure 2. Example memory component with three API methods.

»* The framework also supports a define-by-run execution mode,
where the third phase isn’t pre-build, instead dynamically
created according to the shape of data passed around.

Conveniences provided

» Ability to test only parts of the meta-graph

» Convenient nesting, merging, splitting and folding of data passed around

» Shape and type checking

Backend independence

General purpose API: get_action, update, export,..

Agent API
RLgraph g
local Graph Graph
execution executor/ Builder
layer i | devices/ ‘
i profiling OP registry
Local backends
Distributed

coordination [Distributed TF/PS]
layer / \

Ray [Ray TF TF
Worker 1) =~ |Worker n Worker 1) = |Worker n
Vectorized Local Graph executor
sample RLgraph syncs variables to PS,
collection agent manages plugins (Horovod)

Figure 3. RLgraph execution stack.

Benchmarks

1s of build overhead. Performance wasn’t sacrificed in maintaining abstraction.
1.00 1750001
TF meta B RLLib
TF build 1500001 mmmm Rigraph
0.75 @
0 B PT meta] g 1250001
v BN PT build i g
£ 0.501 ! - 100000) BB Deepmind IMPALA
E l 2 000, 520000 e RI graph IMPALA
5 =
0.251 E 500001 £ 15000
w 1=
0g0 Lo sy T L 25000 - 10000}
rioritized replay 'DQN e " " o8 o € 5000
Architecture Number of workers -
0_
(a) Build overheads. Figure 5. Distributed sample throughput on Pong. o 3i|umber?§c worker1528 20

Figure 8. IMPALA throughput comparison on seekavoid_arena_01

Critique

» Misleading to advertise a 180% speed-up on the front page compared to RLIib that is an optimization that
could be incorporated into RLlib too.

»No comparison to other frameworks when driving multiple GPUs.

»No data to back up the claim that “overhead [in excessive call graph traversal while using PyTorch] becomes
negligible as batch size increases and runtime is dominated by the network forward passes”.

»Nor is there any data presented on the “edge-contractions” which is the proposed mitigation of said issue.

