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Background

Standardization of high-level graph frameworks is a big driving force behind the 

success of ML. 

Yet, it is happening very slowly for reinforcement learning settings.

Examples include:

OpenAI

TensorForce

Ray RLlib



What is reinforcement learning?

Instead of a supervised setting, where all the training data is available in advance,

Reinforcement learning revolves around defining a reward system for an agent and 

letting it freely produce strategies.



Separation of Concerns

Managing trial runs in the testing environment

Managing execution environment

Distributed coordination

Device strategies e.g. GPU utilization

Driving the learning models

Logical component composition

Backend graph definition for specific frameworks



What does separation of logic 
achieve?

Encourage code reuse

Speed up iterative development

Allow for sub-component testing

Allow for a higher-level reasoning about the components

Allow for identification of optimizations



Major contribution

Meta-graph.

This provides an abstraction that allows to compose 

various components of the reinforcement learning 

procedure and re-compose them in different ways.



How is the meta graph created?

Three stages:

Composing the components

Traversing all the call paths to provide a skeleton of the meta-
graph

Building the backend-specific implementation, by allocating 
required data-structures and defining operations

* The framework also supports a define-by-run execution mode, 
where the third phase isn’t pre-build, instead dynamically 
created according to the shape of data passed around.



Conveniences provided

Ability to test only parts of the meta-graph

Convenient nesting, merging, splitting and folding of data passed around

Shape and type checking



Backend independence



Benchmarks

1s of build overhead. Performance wasn’t sacrificed in maintaining abstraction.



Critique

Misleading to advertise a 180% speed-up on the front page compared to RLlib that is an optimization that 
could be incorporated into RLlib too. 

No comparison to other frameworks when driving multiple GPUs.

No data to back up the claim that “overhead [in excessive call graph traversal while using PyTorch] becomes 
negligible as batch size increases and runtime is dominated by the network forward passes”. 

Nor is there any data presented on the “edge-contractions” which is the proposed mitigation of said issue.
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