
RLgraph: Flexible Computation
Graphs for
Deep Reinforcement Learning

MICHAEL SCHAARSCHMIDT | SVEN MIKA | KAI FRICKE | EIKO YONEKI

PRESENTATION BY GRZEGORZ WILK

Background

Standardization of high-level graph frameworks is a big driving force behind the

success of ML.

Yet, it is happening very slowly for reinforcement learning settings.

Examples include:

OpenAI

TensorForce

Ray RLlib

What is reinforcement learning?

Instead of a supervised setting, where all the training data is available in advance,

Reinforcement learning revolves around defining a reward system for an agent and

letting it freely produce strategies.

Separation of Concerns

Managing trial runs in the testing environment

Managing execution environment

Distributed coordination

Device strategies e.g. GPU utilization

Driving the learning models

Logical component composition

Backend graph definition for specific frameworks

What does separation of logic
achieve?

Encourage code reuse

Speed up iterative development

Allow for sub-component testing

Allow for a higher-level reasoning about the components

Allow for identification of optimizations

Major contribution

Meta-graph.

This provides an abstraction that allows to compose

various components of the reinforcement learning

procedure and re-compose them in different ways.

How is the meta graph created?

Three stages:

Composing the components

Traversing all the call paths to provide a skeleton of the meta-
graph

Building the backend-specific implementation, by allocating
required data-structures and defining operations

* The framework also supports a define-by-run execution mode,
where the third phase isn’t pre-build, instead dynamically
created according to the shape of data passed around.

Conveniences provided

Ability to test only parts of the meta-graph

Convenient nesting, merging, splitting and folding of data passed around

Shape and type checking

Backend independence

Benchmarks

1s of build overhead. Performance wasn’t sacrificed in maintaining abstraction.

Critique

Misleading to advertise a 180% speed-up on the front page compared to RLlib that is an optimization that
could be incorporated into RLlib too.

No comparison to other frameworks when driving multiple GPUs.

No data to back up the claim that “overhead [in excessive call graph traversal while using PyTorch] becomes
negligible as batch size increases and runtime is dominated by the network forward passes”.

Nor is there any data presented on the “edge-contractions” which is the proposed mitigation of said issue.

fin

