
RLgraph: Flexible Computation
Graphs for
Deep Reinforcement Learning

MICHAEL SCHAARSCHMIDT | SVEN MIKA | KAI FRICKE | EIKO YONEKI

PRESENTATION BY GRZEGORZ WILK

Background

Standardization of high-level graph frameworks is a big driving force behind the

success of ML.

Yet, it is happening very slowly for reinforcement learning settings.

Examples include:

OpenAI

TensorForce

Ray RLlib

What is reinforcement learning?

Instead of a supervised setting, where all the training data is available in advance,

Reinforcement learning revolves around defining a reward system for an agent and

letting it freely produce strategies.

Separation of Concerns

Managing trial runs in the testing environment

Managing execution environment

Distributed coordination

Device strategies e.g. GPU utilization

Driving the learning models

Logical component composition

Backend graph definition for specific frameworks

What does separation of logic
achieve?

Encourage code reuse

Speed up iterative development

Allow for sub-component testing

Allow for a higher-level reasoning about the components

Allow for identification of optimizations

Major contribution

Meta-graph.

This provides an abstraction that allows to compose

various components of the reinforcement learning

procedure and re-compose them in different ways.

How is the meta graph created?

Three stages:

Composing the components

Traversing all the call paths to provide a skeleton of the meta-
graph

Building the backend-specific implementation, by allocating
required data-structures and defining operations

* The framework also supports a define-by-run execution mode,
where the third phase isn’t pre-build, instead dynamically
created according to the shape of data passed around.

Conveniences provided

Ability to test only parts of the meta-graph

Convenient nesting, merging, splitting and folding of data passed around

Shape and type checking

Backend independence

Benchmarks

1s of build overhead. Performance wasn’t sacrificed in maintaining abstraction.

Critique

Misleading to advertise a 180% speed-up on the front page compared to RLlib that is an optimization that
could be incorporated into RLlib too.

No comparison to other frameworks when driving multiple GPUs.

No data to back up the claim that “overhead [in excessive call graph traversal while using PyTorch] becomes
negligible as batch size increases and runtime is dominated by the network forward passes”.

Nor is there any data presented on the “edge-contractions” which is the proposed mitigation of said issue.

fin

