
CIEL: a universal execution engine
for distributed data-flow computing
Derek G. Murray, Malte Schwarzkopf, Christopher Smowton,
Steven Smith, Anil Madhavapeddy, Steven Hand
University of Cambridge Computer Laboratory

Presented by Claire Coffey for R244

Motivations

- Other distributed execution engines (MapReduce, Dryad) built for processing
large datasets

- Did not perform well for iterative algorithms
- Poor performance due to design: maximise throughput, not minimise job

latency
- Latency increases when jobs are chained
- CIEL uses data-dependent control flow approach to combat
- Work created dynamically based on results of previous computations

Other Research Going On

- Also data-dependent control flow:
- Google’s Pregel: executing graph algorithms, but only operates on single

data set
- Solving iterative algorithm difficulties:

- CGL-MapReduce: implementation of MapReduce, caches data across
jobs

- HaLoop: Hadoop extended
- Piccolo: programming model for data-parallel programming

- Replaces reduce phase of MapReduce with partitioned
key-value table

What’s Changed Since

- Techniques to aid in flexibility and performance:
- Resilient Distributed Datasets

- Distributed memory abstraction
- Fault-tolerance in in-memory computations
- Addresses inefficiencies in iterative algorithms and interactive data mining

tools
- Naiad

- Distributed system, focuses on cyclic dataflow programs

What’s Changed Since

- Developments using similar techniques, applied to machine learning:
- TensorFlow

- Also built to execute data flow graphs across cluster
- Dataflow scheduler uses similar algorithm to CIEL
- Interface and implementation for machine learning problems

- RLGraph
- Distributed execution for deep reinforcement learning problems

Problem to Solve

- MapReduce, Dryad, etc..., only perform well on some algorithms
- Struggle with iterative algorithms
- Iterative algorithms require more powerful execution engine
- Applications in machine learning and optimisation

Key Ideas: Dynamic Task Graph

- Executes programs
- Arbitrary data-dependent control flow
- CIEL job represented as Dynamic Task Graph (DTG)

- 3 key primitives interact to form DTG:
- Objects
- References
- Tasks

- Execution data-centric, each job produces 1+ objects
- DTG stores relations between tasks and objects

Key Ideas: Dynamic Task Graph

Source: D. Murray et al.: CIEL: a universal execution engine for distributed data-flow computing

Example DTG with
corresponding task
and object tables

Key Ideas: Skywriting

- Language runs on top of CIEL, designed for data-centric computations
- Expresses arbitrary data-dependent control flow with loops and recursive

functions, can create tasks
- Key features:

- ref(url)
- spawn(f, [arg,...])
- exec(executor, args, n)
- spawn exec(executor, args, n)
- Dereference operator (-*)

Key Ideas: Skywriting

Example iterative computation in
Skywriting

input _data - list of n input chunks

curr - initialised to list of n partial
results

Source: D. Murray et al.: CIEL: a universal execution engine for
distributed data-flow computing

What They Did: Implementation

- Implemented CIEL distributed execution engine and Skywriting
language

- Goal of development to support a more powerful computation model
than existing distributed execution engines

- Important not to sacrifice performance

What They Did: Evaluation
- Evaluated success by:

- Comparison to Hadoop (popular MapReduce system)
- Benefits when executing iterative algorithms
- Overheads on compute intensive tasks
- Effect of master failure on performance

- Multiple experiments:
- Grep search compared to Hadoop
- K-means clustering compared to Hadoop
- Binomial Options Pricing: dynamic programming algorithm, difficult to parallelise
- Smith-Waterman sequence alignment algorithm: dynamic

programming algorithm, difficult to parallelise
- Fault Tolerance: master fail-over induced during iterative

computation

Evaluation Results

- Grep: averaged across runs, CIEL outperforms Hadoop by 35%
- K-means:

- CIEL faster than Hadoop on all job sizes
- Task duration: Hadoop distribution bimodal; 64% “fast” tasks, 36% “slow”

tasks; all CIEL tasks “fast” K-Means results
Source: D. Murray et al.: CIEL: a universal execution engine for distributed data-flow computingGrep results

Source: D. Murray et al.: CIEL: a universal execution engine for
distributed data-flow computing

Evaluation Results
- Smith-Waterman:

- Does not perform well overall
- Matrix size 30x30 results satisfactory
- Otherwise cannot achieve full utilisation (smaller and larger sizes)

- Binomial Options Pricing:
- Maximum speedup increases as problem size grows - amount of independent work in

each task grows
- After maximum, speedup decreases - small tasks suffer from constant per-task overhead

- Fault tolerance:
- Between failure of master and resumption, 7.7 seconds elapse
- Utilisation during second iteration worse - tasks must be replayed
- Back to full utilisation by 3rd iteration
- Overall job execution time increases

Strengths and Agreements

- Good solution for iterative algorithm execution
- Alternative engines couldn’t handle this
- Useful in machine learning and optimisation
- Real problem

- Skywriting - easy expression of algorithms
- Evaluation looks at results in-depth for algorithm comparisons

- e.g. k-means looks at the iteration length, cluster utilisation and map task
distribution

Weaknesses and Disagreements
- No control over data caching

- If configurable could exploit data for faster performance
- Programs must be rewritten in Skywriting - only Skywriting programs can

create new tasks
- Annoying, puts pressure on runtime for interpreted code

- Scaling challenges
- Multiple cores not used effectively - each executor has full

use of machine, limiting efficiency if program is
sequential and multiple cores available

- Fault tolerance slow
- For dynamic programming algorithms, no comparison to

alternative engines

Key Takeaways

- Satisfies same features as existing distributed execution engines
- Additionally, efficient execution of iterative algorithms
- Skywriting provides simple way to express iterative algorithms in imperative

way, fault tolerant
- CIEL performs well in comparison to Hadoop on iterative algorithms
- Fault tolerance successful, quite slow
- Mixed success on dynamic programming algorithms, but no comparison to

alternatives

Impact

- Well-received, 287 citations
- Good/relevant/interesting

- Authors did not publish more on CIEL
- Suggests not built upon by authors

- Most cite as related and relevant system. Propose either:
- Similar system for different problem, e.g Naiad - cyclic data flows
- Or applied to specific problem, e.g. TensorFlow - similar scheduling algorithm

applied to machine learning

Questions?

