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Motivations

- Other distributed execution engines (MapReduce, Dryad) built for processing
large datasets

- Did not perform well for iterative algorithms

- Poor performance due to design: maximise throughput, not minimise job
latency

- Latency increases when jobs are chained

- CIEL uses data-dependent control flow approach to combat

- Work created dynamically based on results of previous computations




Other Research Going On

- Also data-dependent control flow:
- Google’s Pregel: executing graph algorithms, but only operates on single
data set
- Solving iterative algorithm difficulties:
- CGL-MapReduce: implementation of MapReduce, caches data across
jobs
- HalLoop: Hadoop extended
- Piccolo: programming model for data-parallel programming
- Replaces reduce phase of MapReduce with partitioned
key-value table




What's Changed Since

- Techniques to aid in flexibility and performance:

- Resilient Distributed Datasets
- Distributed memory abstraction
- Fault-tolerance in in-memory computations
- Addresses inefficiencies in iterative algorithms and interactive data mining
tools
- Naiad
- Distributed system, focuses on cyclic dataflow programs




What's Changed Since

- Developments using similar techniques, applied to machine learning:

- TensorFlow
- Also built to execute data flow graphs across cluster
- Dataflow scheduler uses similar algorithm to CIEL
- Interface and implementation for machine learning problems

- RLGraph
- Distributed execution for deep reinforcement learning problems




Problem to Solve

- MapReduce, Dryad, etc..., only perform well on some algorithms
- Struggle with iterative algorithms

- Iterative algorithms require more powerful execution engine

- Applications in machine learning and optimisation




Key ldeas: Dynamic Task Graph

- Executes programs
- Arbitrary data-dependent control flow
- CIEL job represented as Dynamic Task Graph (DTG)
3 key primitives interact to form DTG:
Objects

References
Tasks

- Execution data-centric, each job produces 1+ objects
- DTG stores relations between tasks and objects




Key ldeas: Dynamic Task Graph

Task ID | Dependencies Expected outputs Exam ple DTG Wlth
A {u} ¢ i
. vl F corresponding task
C {w} y and object tables
D {x,y} z

Object ID | Produced by Locations
u - {host19,host85}
v - {host21,host23}
w = {host22,host57 }
X B 0
y C 1]
z X D 0

(a) Dynamic task graph (b) Task and object tables

Figure 2: A CIEL job is represented by a dynamic task graph, which contains tasks and objects (§3.1). In this example,
root task A spawns tasks B, C and D, and delegates the production of its result to D. Internally, CIEL uses task and
object tables to represent the graph (§3.3).

Source: D. Murray et al.: CIEL: a universal execution engine for distributed data-flow computing



Key Ideas: Skywriting

- Language runs on top of CIEL, designed for data-centric computations
- Expresses arbitrary data-dependent control flow with loops and recursive
functions, can create tasks
- Key features:
- ref(url)
- spawn(f, [arg,...])
- exec(executor, args, n)

- spawn exec(executor, args, n)
- Dereference operator (-*)




function process_chunk (chunk, prev_result) ({
// Execute native code for chunk processing.
// Returns a reference to a partial result.

Key IdeaS: Skywrltlng return spawn_exec(...);

}

function is_converged(curr_result, prev_result) {

Example iterative computation in // Execute native code for convergence test.
. // Returns a reference to a boolean.
Skywrltlng return spawn_exec(...) [0];
}
input _data - list of n input chunks input_data = [ref("ciel://host137/chunk0"),
ref ("ciel://host223/chunkl"),
_ . oy e . . . s ] ;
curr - initialised to list of n partial Ry . FCROR——
results
do {
prev = curr;
curr = [];

for (chunk in input_data) {
curr += process_chunk (chunk, prev);

}
} while (!=*xis_converged(curr, prev));
Source: D. Murray et al.: CIEL: a universal execution engine for

distributed data-flow computing ——- e
14



What They Did: Implementation

- Implemented CIEL distributed execution engine and Skywriting
language

- Goal of development to support a more powerful computation model
than existing distributed execution engines

- Important not to sacrifice performance




What They Did: Evaluation

- Evaluated success by:

- Comparison to Hadoop (popular MapReduce system)

- Benefits when executing iterative algorithms

- Overheads on compute intensive tasks

- Effect of master failure on performance
- Multiple experiments:

- Grep search compared to Hadoop

- K-means clustering compared to Hadoop

- Binomial Options Pricing: dynamic programming algorithm, difficult to parallelise

- Smith-Waterman sequence alignment algorithm: dynamic

programming algorithm, difficult to parallelise

- Fault Tolerance: master fail-over induced during iterative

computation




Evaluation Results

- Grep: averaged across runs, CIEL outperforms Hadoop by 35%
- K-means:
- CIEL faster than Hadoop on all job sizes
- Task duration: Hadoop distribution bimodal; 64% “fast” tasks, 36% “slow”
tasks; all CIEL tasks “fast”

K-Means results

Grep results Source: D. Murray et al.: CIEL: a universal execution engine for distributed data-flow computing
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Evaluation Results

- Smith-Waterman:
- Does not perform well overall
- Matrix size 30x30 results satisfactory
- Otherwise cannot achieve full utilisation (smaller and larger sizes)
- Binomial Options Pricing:
- Maximum speedup increases as problem size grows - amount of independent work in
each task grows
- After maximum, speedup decreases - small tasks suffer from constant per-task overhead
- Fault tolerance:
- Between failure of master and resumption, 7.7 seconds elapse
- Utilisation during second iteration worse - tasks must be replayed
- Back to full utilisation by 3rd iteration
Overall job execution time increases




Strengths and Agreements

- Good solution for iterative algorithm execution
- Alternative engines couldn’t handle this
- Useful in machine learning and optimisation
- Real problem

- Skywriting - easy expression of algorithms

- Evaluation looks at results in-depth for algorithm comparisons
- e.g. k-means looks at the iteration length, cluster utilisation and map task
distribution




Weaknesses and Disagreements

- No control over data caching
- If configurable could exploit data for faster performance
- Programs must be rewritten in Skywriting - only Skywriting programs can
create new tasks
- Annoying, puts pressure on runtime for interpreted code
- Scaling challenges
- Multiple cores not used effectively - each executor has full
use of machine, limiting efficiency if program is
sequential and multiple cores available
- Fault tolerance slow
- For dynamic programming algorithms, no comparison to

alternative engines




Key Takeaways

- Satisfies same features as existing distributed execution engines

- Additionally, efficient execution of iterative algorithms

- Skywriting provides simple way to express iterative algorithms in imperative
way, fault tolerant

- CIEL performs well in comparison to Hadoop on iterative algorithms

- Fault tolerance successful, quite slow

- Mixed success on dynamic programming algorithms, but no comparison to
alternatives




Impact

- Well-received, 287 citations
- Good/relevant/interesting
- Authors did not publish more on CIEL
- Suggests not built upon by authors
- Most cite as related and relevant system. Propose either:
- Similar system for different problem, e.g Naiad - cyclic data flows
- Or applied to specific problem, e.g. TensorFlow - similar scheduling algorithm
applied to machine learning




Questions?

BN



