
ACCELERATING DEEP CONVOLUTIONAL NETWORKS USING LOW-PRECISION AND
SPARSITY

Ganesh Venkatesh, Eriko Nurvitadhi, Debbie Marr

Accelerator Architecture Lab, Intel Corporation

ABSTRACT

We explore techniques to significantly improve the compute
efficiency and performance of Deep Convolution Networks
without impacting their accuracy. To improve the compute ef-
ficiency, we focus on achieving high accuracy with extremely
low-precision (2-bit) weight networks, and to accelerate the
execution time, we aggressively skip operations on zero-
values. We achieve the highest reported accuracy of 76.6%
Top-1/93% Top-5 on the Imagenet object classification chal-
lenge with low-precision network while reducing the compute
requirement by ∼3× compared to a full-precision network
that achieves similar accuracy. Furthermore, to fully exploit
the benefits of our low-precision networks, we build a deep
learning accelerator core, DLAC, that can achieve up to 1
TFLOP/mm2 equivalent for single-precision floating-point
operations (∼2 TFLOP/mm2 for half-precision), which is
∼5× better than Linear Algebra Core [16] and ∼4× better
than previous deep learning accelerator proposal [8].

Index Terms— Deep Neural Networks, Ternary-weight
Convolutions, Accelerator

1. INTRODUCTION

Deep Convolutional Neural Networks (DNNs) provide state-
of-the-art accuracy for many computer vision and image anal-
ysis tasks [13]. The accuracy of DNNs is rapidly improving
(for example, Top-5 error for Imagenet object classification
challenge [9] improved by >6× in 5 years) and is close to
human-level accuracy in some cases [12].

DNNs achieve higher accuracy by building more power-
ful models consisting of greater number of layers (network
depth). However, this increase in network depth incurs a steep
increase in compute and memory requirements. As a result,
these networks are taking longer to train; multiple week train-
ing times are common even when using multiple GPU cards.
Also, the greater compute requirements make DNNs harder
to deploy, which has led to a lot of interest recently in spe-
cialized hardware solutions, both commercially [3, 5] and in
academia [10, 6, 8].

In this paper, we build on recently proposed low-precision
convolution networks [17, 15, 14] to reduce compute require-
ments of these networks. While previous efforts compro-
mise accuracy to gain compute efficiency, we aim to achieve

similar (or slightly better) accuracy at a lower compute com-
plexity. In particular, we train a low-precision variant of
a 34-layer deep residual network (Resnet [13]) that attains
higher accuracy than the vanilla 18-layer deep resnet while
requiring fewer floating-point operations (∼3× lower) and
having a smaller model size (7× smaller). Furthermore, to
fully leverage the benefits of this low-precision network, we
propose and evaluate a Deep Learning Accelerator Core,
DLAC, that can achieve equivalent performance of up to ∼1
Teraflop/mm2 by skipping operations on zero values. We
make the following contributions in this paper

Demonstrate high accuracy using low-precision weights
Using low-precision 2-bit weight networks [14], we achieve
high accuracy of 76.6% Top-1/93% Top-5 on Imagenet [9],
the highest reported with a low-precision network to our
knowledge and within 1.3% of the 2015 Imagenet win-
ner [13]. Furthermore, we show that in these low-precision
networks, most of the floating-point operations operate on
zero values – both while training as well as inference.

Define a deep-learning accelerator core,DLAC We pro-
pose a deep-learning accelerator core, DLAC, that exploits
the available sparsity in these networks to achieve high ef-
fective performance and can be applied to both training as
well as inference.

Achieve high effective performance density of ∼1 TFlop/mm2

Our evaluation, based on synthesis of our design in 14nm,
shows that DLAC can sustain extremely high performance
density, reaching up to 1 TFlop/mm2 equivalent perfor-
mance for many of the layers in current state-of-the-art
Residual networks [13]. This is an order-of-magnitude
higher performance density than the previously proposed
deep learning accelerator [8].

2. LOW-PRECISION DEEP CONVOLUTION
NETWORK

We first overview recent efforts on using low-precision
weights as well as inducing sparsity in deep convolution
networks, then motivate the need for our work. We then
present how we train/fine-tune low-precision networks. We
conclude this section with analysis on the sparsity available
in these networks, quantifying the potential of acceleration

2861978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

by a hardware architecture that is optimized for efficient
zero-skipping.

2.1. Background: Lowering the precision of network
weights

Several techniques have been proposed to lower the preci-
sion of network weights. These include approaches that re-
duce the weights to half-precision [7], binary value [17], and
ternary (2-bit) value [14]. While reducing the precision from
float to half-precision can get almost 2× savings, the other
approaches can achieve significantly higher savings (16-32×
smaller model, very few float multiplications). We use the ap-
proach from Lin et al. [14] that lowers the network weights to
a ternary value with the options being [-1, 0, 1] as follows:

Wter(i, j, k, l) =

1 : if W(i,j,k,l) > wth

−1 : if W(i,j,k,l) < −1 ∗ wth

0 : otherwise
(1)

While the previous proposals trade classification accuracy
to achieve compute efficiency, we focus on low-precision net-
works that provide similar (or slightly better) accuracy than a
full-precision network while requiring lesser compute.

The recent DeepCompression [11] proposal looks at in-
ducing sparsity in deep convolution networks via pruning
where certain weights/activations are clamped to zero value.
Instead, we explore techniques that induce dynamic sparsity
in networks where the zero weights/activations can change
across input samples and training phases. By doing so, the
effective sparsity we achieve is much higher (>2×) and we
show its applicability on state-of-the-art networks.

2.2. Evaluation

We evaluate on two datasets - Cifar10 and Imagenet
Cifar10 [2] This dataset consists of 60K small images from
10 different classes and we train on them using VGG [18]
(baseline training recipe from [1]).
Imagenet [9] This dataset consists of 1.2 million images for
training and 50,000 images for testing from 1000 classes. We
train on this dataset using the Residual networks, Resnet [13]
(baseline training recipe from [4]).

We implement our proposals in Torch, a deep learning
framework and our accuracy evaluations use single-crop test-
ing. For evaluating our deep learning accelerator, we synthe-
size it in 14nm Intel process.

2.3. Training Low-precision Networks

We experiment with a number of different approaches to
improve the accuracy and reduce the compute intensity of
these extremely low-precision networks. In this section, we
overview the different techniques -

Pre-initialization from full-precision network We train
the network in full-precision for the first few iterations (15

Reset 34

Fraction of ops that are on non-zero values Time breakdown between FWD, Back and Grad Update Best case performance assuming perfect use of sparsity

Layer SparseFwdPass SparseBackwardPass SparseGradUpdate FwdTime BackwardTime GradUpdateTime Total Time Fraction NNZ_OpsFwd NNZ_OpsBkwd NNZ_OpsGradUpdate

1.00 0.25 0.38 0.63 2035.44 1905.31 1792.32 5733.06 4.91 509.76 732.75 1131.03

2.00 0.29 0.47 0.58 961.64 2242.62 1807.53 5011.78 4.30 276.11 1051.10 1041.80

3.00 0.37 0.45 0.77 679.75 1899.03 1799.14 4377.92 3.75 248.94 850.31 1381.47

4.00 0.28 0.49 0.58 903.32 2009.60 1844.11 4757.03 4.08 252.85 976.07 1064.47

5.00 0.36 0.31 0.58 694.76 2203.42 1867.17 4765.35 4.08 250.56 679.79 1079.74

6.00 0.11 0.40 0.27 828.66 1077.25 1870.49 3776.40 3.24 89.98 430.91 507.99

7.00 0.41 0.46 0.76 658.02 1457.29 1290.46 3405.76 2.92 272.34 677.57 976.77

8.00 0.14 0.42 0.32 459.89 1498.53 1029.60 2988.01 2.56 63.81 635.53 331.91

9.00 0.31 0.37 0.81 749.46 1100.91 1072.75 2923.12 2.51 230.93 410.20 873.91

10.00 0.23 0.25 0.36 486.54 1449.12 1397.72 3333.38 2.86 110.41 362.67 507.82

11.00 0.09 0.26 0.33 469.61 1842.32 1027.03 3338.96 2.86 39.96 476.79 337.64

12.00 0.29 0.37 0.50 504.18 1442.54 1030.14 2976.86 2.55 148.47 531.57 512.53

13.00 0.10 0.45 0.22 684.45 1496.67 1391.13 3572.25 3.06 68.40 673.52 309.14

14.00 0.23 0.36 0.39 509.56 1462.47 1371.09 3343.13 2.87 116.66 532.09 537.51

15.00 0.04 0.38 0.12 474.97 527.87 1008.62 2011.46 1.72 21.13 199.39 118.78

16.00 0.31 0.54 0.57 702.07 713.97 724.23 2140.28 1.83 217.94 388.61 413.26

17.00 0.19 0.52 0.35 1013.03 866.32 871.08 2750.42 2.36 188.22 451.67 305.48

18.00 0.26 0.46 0.57 494.91 558.90 907.00 1960.81 1.68 129.48 254.44 513.51

19.00 0.18 0.26 0.26 1230.81 850.25 1193.94 3275.01 2.81 215.47 218.21 306.86

20.00 0.05 0.39 0.13 1086.33 869.72 869.00 2825.05 2.42 54.07 341.34 110.30

21.00 0.16 0.15 0.22 1283.25 1165.77 867.86 3316.88 2.84 211.25 180.48 193.38

22.00 0.02 0.28 0.08 1087.46 871.73 870.49 2829.68 2.43 24.72 244.55 70.70

23.00 0.19 0.24 0.29 1109.18 843.82 867.63 2820.62 2.42 207.44 201.36 249.14

24.00 0.03 0.28 0.11 1088.43 872.35 1204.38 3165.15 2.71 31.64 241.53 126.55

25.00 0.16 0.14 0.21 1328.73 844.76 870.85 3044.34 2.61 207.21 116.92 181.63

26.00 0.02 0.28 0.06 1094.10 1183.55 862.04 3139.69 2.69 19.03 331.25 53.60

27.00 0.16 0.33 0.26 1092.72 843.22 861.50 2797.44 2.40 172.01 274.90 220.88

28.00 0.04 0.35 0.12 1357.03 388.41 859.50 2604.94 2.23 58.76 135.24 106.98

29.00 0.16 0.54 0.29 1136.08 1578.88 773.44 3488.40 2.99 181.44 859.45 227.03

30.00 0.11 0.52 0.21 1473.85 1297.40 950.02 3721.27 3.19 159.38 673.04 194.99

31.00 0.14 0.47 0.29 706.17 710.91 605.89 2022.97 1.73 98.35 334.79 176.42

32.00 0.09 0.11 0.11 1460.18 1290.25 961.82 3712.25 3.18 126.98 141.82 105.81

33.00 0.02 0.28 0.09 1233.02 1587.00 959.61 3779.63 3.24 29.37 440.79 82.31

34.00 0.14 0.54 0.26 1768.64 1273.23 945.31 3987.18 3.42 251.55 682.53 248.80

35.00 0.10 0.52 0.19 1518.11 512.83 937.36 2968.30 2.54 146.17 265.38 174.74

34364.36 42738.21 39562.22 116664.79 100.00 5430.79 15998.55 14774.87

Table 1

Operation Non-Zero fraction

FwdPass
(Inference)

0.16

BWD Pass 0.37

Grad Update 0.37
FwdPass (Inference)

BWD Pass
Grad Update

Non-Zero Fraction
0.00 0.25 0.50 0.75 1.00

�2

Fig. 1. Sparsity in Low-precision Networks Graph plots
the fraction of operations on non-zero operands when training
Resnet-34 (34-layer deep) on Imagenet.

iterations) and then switch over to the low-precision mode
for rest of the training (∼75 iterations). This improves the
accuracy by almost 2% (Section 4.2).

Skipping lowering of precision for parts of network We
do not lower the precision of the first layer in the network
to minimize the information loss from the input image. This
improves our Top-1 accuracy by ∼0.5% (Section 4.1).

Aggressive lowering of learning rate We maintain a his-
tory of the train error and lower the learning rate when the
train error does not go down for few iterations. This can im-
prove our Top-1 accuracy by more than 1% in some instances.

Regularization We regularize activations to reduce noise
and induce more sparsity. As a side effect, this technique
tends to smooth our convergence curve (Figure 3).

ReLU threshold We vary the thresholds on our rectifier units
to induce higher sparsity and reduce noise.

2.4. Sparsity in Low-precision Networks

In this section, we show that the vast majority of the oper-
ations in low-precision networks operate on zero values and
hence, we can further reduce the compute requirements of
these networks by skipping over operations on zero values
(zero-skipping). The source of zero values in our network are
as follows (i) Rectifier Units (ReLU): The rectifier units zero
out activations below the threshold value (0.01), (ii) Low-
ering the precision of weights: The formula for lowering
the precision effectively zeros out weights with small values
(Eq. 1).

The amount of sparsity is shown in Figure 1 for low-
precision Resnet-34 training on the Imagenet dataset. The
data shows that a small fraction (16%) of operations during
the forward pass (inference) operate on non-zero operands
and only around 33% of operations during the backward pass
operate on non-zero operands. This shows that we can im-
prove performance by 3-6× by skipping operations on zero
values.

3. DEEP LEARNING ACCELERATOR

DLAC is a two-dimensional grid of processing elements with
buffers for network weights and input feature map (Figure 2).
The processing elements have arithmetic units, buffers for
output feature map and control logic for skipping over opera-
tions on zero values to leverage the sparsity in low-precision
networks. To enable skipping of zero operations, we assign

2862

128

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

4 values

<i
nd

ex
, v

al
>

FMA

64

16

…
…

32

88

Double
Buffered

zero-skip
logic

Fig. 2. DLAC Architecture It is 2-D grid of processing el-
ements where each one has floating-point units and logic to
perform zero-skipping

multiple output buffers to each processing element (trad-
ing for greater number of buffers over few more arithmetic
units) and when scheduling operations to update these out-
put buffers, we skip the ones operating on zero values to
accelerate the performance.

Our accelerator supports the common operations in deep
networks as follows:

mmOp: Matrix Multiply We use this to perform convolutions
and the fully-connected layers.

ptWiseOp: Pointwise Operation The accelerators supports
performing pointwise operations of the form <op, val1,
val2, val3> on some or all the elements of the output buffer.
The op can be arithmetic operations (add/sub, mul-add), or
a ternary control expression (?:). We use this to execute the
non-linearity (Relu) and batch normalization (inference).

DLAC for training networks: In training mode, we in-
stantiate each DLAC with 512 single-precision floating-point
units and all our datapaths are 32-bit wide. This allows DLAC
to support the current standard training technique of using
single-precision operations. Furthermore, our accelerator is
able to sustain higher effective performance (3-4 TeraOps/cy-
cle) by leveraging the dynamic sparsity in these networks.
DLAC for inference: In the inference mode, we instantiate
each DLAC with 256 half-precision floating-point units, 256
half-precision adders and all the datapaths are 16-bit wide.
This provides our accelerator with ∼2× performance den-
sity boost. Similar to the training phase, the DLAC is able
to sustain much higher throughput because of efficient zero-
skipping. In addition to the low-precision networks, DLAC
can also accelerate pruned networks [11].

4. RESULTS

In this section, we evaluate the accuracy of our extremely low-
precision networks as well as the performance they can attain

Te
st

 A
cc

ur
ac

y

0

0.25

0.5

0.75

1

——Training Iterations (1-200)——>

Baseline GradUpdate Reg
SkipLayer ReluT

0.87

0.89

0.91

�9

Fig. 3. VGG Convergence Graph for Cifar10 The dark
graph inside is zoomed-in version of the final-few epochs of
training.

on our deep learning accelerator, DLAC.

4.1. Accuracy of Low-precision Networks on Cifar10

We first evaluate low-precision variant of VGG network
on Cifar10 dataset, shown in Figure 3. Our baseline net-
work replaces the regular convolution operation with its low-
precision variant, which reduces the accuracy by ∼3%. To
improve the accuracy, we utilize the following techniques –
(i) Reg series: we apply l1 regularization of activations which
improves the accuracy by a small amount, (ii) GradUpdate
series: to reduce overfitting, we backpropagate with zero er-
ror for samples that are classified correctly by the network and
skip backpropagation step completely if the complete batch
was correctly classified, and (iii) ReluT series: we change
the rectifier unit threshold (ReluT series) to 0.01 for the last
few epochs of training to reduce the noise in activations, and
(iv) SkipLayer series: we compute the first convolution layer
of the network in full-precision and convert the rest to low-
precision variant. By doing so, we ensure that our model is
able to capture all the information from the input image in the
first layer while still benefiting from the efficiency of lower
precision in the other layers of the network. The results show
that these techniques improve the accuracy by ∼1.6%.

4.2. Accuracy of Low-precision Networks on Imagenet

In this section, we present the accuracy results on Imagenet
dataset using multiple Resnet networks (2015 winner of Im-
agenet competition). We employ techniques that showed
promise on Cifar10 dataset (regularization, ReLU threshold,
skip precision lowering of first layer) and an additional trick
of aggressively lowering the learning rate when the training
accuracy stops improving.
Lowering precision of trained networks We start with
the trained model of different Resnet networks, lower the
precision of all the layers except for the first one, and train
the resultant network. We report the accuracy numbers for
the full-precision network and our low-precision 2-bit variant
in Table 1. The data shows that low-precision networks pro-
vide better accuracy as the network depth increases. Hence,

2863

Network Full-precision 2-bit precision
Depth Top-1 [4] Top-5 [4] Top-1 Top-5

Resnet-18 69.56 89.24 - -
Resnet-34 73.27 91.26 71.6 90.37
Resnet-50 76 93 73.85 91.8
Resnet-152 77.84 93.84 76.64 93.2

Table 1. Accuracy of Resnet network on Imagenet dataset for
different depths (first column suffix), regular full-precision,
and the extremely low-precision 2-bit version.

Top-1 Accuracy

Resnet-18 (FP) 69.6

Resnet-18B (LP) 65.3

Resnet-34LR (LP) 68

Resnet-34PI (LP) 70

Resnet-18 (FP)
Resnet-18B (LP)

Resnet-34LR (LP)
Resnet-34PI (LP)

Top-1 Accuracy
60 62 64 66 68 70

�1

Fig. 4. Training Resnet-34 with low-precision weights The
graph shows the accuracy we obtain by training Resnet-34 us-
ing low-precision 2-bit weights by aggressively lowering the
learning rate (Resnet-34LR) as well as pre-initializing with
a full-precision network(Resnet-34PI). We obtain higher ac-
curacy than previous work on a low-precision network [14]
(Resnet-18B) as well as the full-precision Resnet-18 while re-
quiring fewer computations than either.

just as their full-precision counterparts, the low-precision
networks can also scale their depth to provide higher accu-
racy. Based on the data in Table 1, we also observe that the
low-precision variant of a larger network provide better ac-
curacy than the regular full-precision network (low-precision
Resnet-34/Resnet-50/Resnet-152 has higher accuracy than
full-precision Resnet-18/Resnet-34/Resnet-50 respectively).
This is an important result because the low-precision variant
of a larger network needs less compute and has a smaller
model size than the regular full-precision network. Hence, in
effect, using the lower precision variant of a larger network
achieves better accuracy and requires less compute than the
original full-precision network.
Training low-precision Resnet We train Resnet with 34-
layers and 2-bit weights. We try the following two techniques
to improve accuracy (i) lowering the learning rate aggres-
sively and (ii) training in full-precision for the first few it-
erations and switching over to low-precision after that. Our
results are shown in Figure 4 – we attain ∼4.8% higher accu-
racy than previous work [14] using low-precision as well as
slightly better accuracy than the regular full-precision variant
of 18-layer Resnet.

4.3. Performance of DLAC on Low-precision Networks

Figure 5 shows the performance our accelerator can sustain
for different convolution layers in Resnet-34. The accelerator
can sustain up to 5K FLOP/cycle (2.78K FLOP/cycle on av-
erage), which at 500MHz translates to 2.5 Teraflops/second
(1.34 Teraflops/second). Furthermore, the graph shows that

Layer % Zeros in Weights %Zeros in IFMs FLOPs per cycle Dimension of matrix multiply K CRS CRS P * Q

1 60.41 0.00 1974.86 MATRIX_MULTIPLY_OP 64 147 147 12544

2 63.84 31.93 2262.03 MATRIX_MULTIPLY_OP 64 576 576 3136

3 55.81 49.89 2013.54 MATRIX_MULTIPLY_OP 64 576 576 3136

4 56.47 20.08 1906.00 MATRIX_MULTIPLY_OP 64 576 576 3136

5 54.72 56.20 2087.08 MATRIX_MULTIPLY_OP 64 576 576 3136

6 63.87 18.18 2018.01 MATRIX_MULTIPLY_OP 64 576 576 3136

7 67.79 80.92 3076.62 MATRIX_MULTIPLY_OP 64 576 576 3136

8 50.91 18.91 1537.80 MATRIX_MULTIPLY_OP 128 576 576 784

9 59.10 61.03 2419.08 MATRIX_MULTIPLY_OP 128 1152 1152 784

10 62.07 18.91 2003.91 MATRIX_MULTIPLY_OP 128 64 64 784

11 59.66 47.08 2071.88 MATRIX_MULTIPLY_OP 128 1152 1152 784

12 72.70 66.19 2357.32 MATRIX_MULTIPLY_OP 128 1152 1152 784

13 54.39 42.39 1922.19 MATRIX_MULTIPLY_OP 128 1152 1152 784

14 55.73 75.17 2469.54 MATRIX_MULTIPLY_OP 128 1152 1152 784

15 55.45 51.49 1932.10 MATRIX_MULTIPLY_OP 128 1152 1152 784

16 59.71 84.44 3065.89 MATRIX_MULTIPLY_OP 128 1152 1152 784

17 46.37 48.90 1973.36 MATRIX_MULTIPLY_OP 256 1152 1152 196

18 48.27 57.79 2417.13 MATRIX_MULTIPLY_OP 256 2304 2304 196

19 55.06 48.90 2205.54 MATRIX_MULTIPLY_OP 256 128 128 196

20 57.58 55.23 2171.20 MATRIX_MULTIPLY_OP 256 2304 2304 196

21 62.29 86.39 4330.28 MATRIX_MULTIPLY_OP 256 2304 2304 196

22 53.77 50.09 1997.11 MATRIX_MULTIPLY_OP 256 2304 2304 196

23 57.70 88.29 4664.15 MATRIX_MULTIPLY_OP 256 2304 2304 196

24 55.21 50.80 2050.98 MATRIX_MULTIPLY_OP 256 2304 2304 196

25 64.54 89.59 5169.61 MATRIX_MULTIPLY_OP 256 2304 2304 196

26 54.76 46.80 1995.14 MATRIX_MULTIPLY_OP 256 2304 2304 196

27 63.53 90.23 5154.52 MATRIX_MULTIPLY_OP 256 2304 2304 196

28 60.90 50.88 2041.49 MATRIX_MULTIPLY_OP 256 2304 2304 196

29 67.75 91.27 5115.29 MATRIX_MULTIPLY_OP 256 2304 2304 196

30 46.05 62.95 2201.55 MATRIX_MULTIPLY_OP 512 2304 2304 49

31 46.75 78.04 3383.84 MATRIX_MULTIPLY_OP 512 4608 4608 49

32 51.87 62.95 2487.42 MATRIX_MULTIPLY_OP 512 256 256 49

33 69.77 72.01 2664.89 MATRIX_MULTIPLY_OP 512 4608 4608 49

34 70.97 92.28 5046.62 MATRIX_MULTIPLY_OP 512 4608 4608 49

35 45.26 76.43 2757.86 MATRIX_MULTIPLY_OP 512 4608 4608 49

36 46.54 71.51 2281.65 MATRIX_MULTIPLY_OP 512 4608 4608 49

FL
O

Ps
/c

yc
le

0
1000
2000
3000
4000
5000

——— Layers 1 to 34 ——>

Max FLOP/cycle without zero-skipping

�1

Fig. 5. Performance of DLAC on Resnet-34 The data shows
the performance our accelerator can sustain for each layer in
34-layer deep Resnet. The graph shows that our accelera-
tor gets significant performance boost (1.8 - 5×) by skipping
operations on zero-values and that our accelerator provides
greater speed-up as we go deeper in the network because the
layers get more and more sparse.

our accelerator provides better performance for the deeper
layers of the network because of the greater sparsity in these
layers. As a result, as we map deeper networks to our ac-
celerator, we expect to get better performance because of
its ability to exploit sparsity in the deeper layers. In single-
precision mode, DLAC synthesizes to 2.2 mm2 (1.09 mm2

in 16-bit mode) cell area in 14nm with pure ASIC flow for
all the buffers and the arithmetic units (no optimized macro-
blocks). So the DLAC compute IP has compute denstiy of
0.6 Teraflop/s/mm2 and can exceed 1 Teraflop/s/mm2 for
deeper layers in the network.

Comparison to prior work In comparison to DaDianNao
Supercomputer [8], one DLAC instance provides similar to
slightly better performance than one node of DaDianNao
while being >4× smaller. Furthermore, our accelerator can
provide higher performance as the sparsity in the network in-
creases. In comparison to a recent work on zero-skipping [6],
we achieve higher speed-ups by exploiting sparsity in both
activations and weights. Unlike, EiE [10], we primarily focus
on the convolution layers and support single-precision for the
training phase.

5. CONCLUSION

In this paper, we looked at improving the accuracy of ex-
tremely low-precision DNNs and encouraging greater dy-
namic sparsity in these low-precision networks to reduce
their compute requirements. To fully leverage the efficiency
of these low-precision networks, we developed and evalu-
ated a deep learning accelerator, DLAC, that sustains high
effective flops by skipping over operations on zero values.
We demonstrate that these low-precision networks can attain
high accuracy, achieving 76.6% Top-1/93% Top-5 accuracy
on Imagenet and that the low-precision variant of a larger
network can possibly achieve higher performance while re-
quiring lesser compute than a regular full-precision network.
Our DLAC evaluation shows that we can sustain up to 1
Teraflop/mm2 equivalent which is a significant improvement
over previous accelerator proposals.

2864

6. REFERENCES

[1] 92.45% on cifar-10 in torch. http://torch.ch/blog/
2015/07/30/cifar.html.

[2] The cifar-10 dataset. https://www.cs.toronto.edu/
~kriz/cifar.html.

[3] Tensor processing unit. https://
cloudplatform.googleblog.com/2016/05/
Google-supercharges-machine-learning-tasks-with-custom-chip.
html.

[4] Training and investigating residual nets. http://torch.
ch/blog/2016/02/04/resnets.html.

[5] Wave dataflow engine. http://wavecomp.com/
technology/.

[6] Jorge Albericio, Patrick Judd, Tayler Hetherington,
Tor Aamodt, Natalie Enright Jerger, and Andreas
Moshovos. Cnvlutin: Ineffectual-neuron-free deep neu-
ral network computing.

[7] D. Amodei, R. Anubhai, E. Battenberg, C. Case,
J. Casper, B. Catanzaro, J. Chen, M. Chrzanowski,
A. Coates, G. Diamos, E. Elsen, J. Engel, L. Fan,
C. Fougner, T. Han, A. Hannun, B. Jun, P. LeGres-
ley, L. Lin, S. Narang, A. Ng, S. Ozair, R. Prenger,
J. Raiman, S. Satheesh, D. Seetapun, S. Sengupta,
Y. Wang, Z. Wang, C. Wang, B. Xiao, D. Yogatama,
J. Zhan, and Z. Zhu. Deep Speech 2: End-to-End Speech
Recognition in English and Mandarin. ArXiv e-prints,
December 2015.

[8] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang
He, Jia Wang, Ling Li, Tianshi Chen, Zhiwei Xu,
Ninghui Sun, and Olivier Temam. Dadiannao: A
machine-learning supercomputer. In Proceedings of the
47th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-47, pages 609–622, Wash-
ington, DC, USA, 2014. IEEE Computer Society.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical im-
age database. In Computer Vision and Pattern Recog-
nition, 2009. CVPR 2009. IEEE Conference on, pages
248–255. IEEE, 2009.

[10] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A.
Horowitz, and W. J. Dally. EIE: Efficient Inference En-
gine on Compressed Deep Neural Network. ArXiv e-
prints, February 2016.

[11] S. Han, H. Mao, and W. J. Dally. Deep Compres-
sion: Compressing Deep Neural Networks with Prun-
ing, Trained Quantization and Huffman Coding. ArXiv
e-prints, October 2015.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Delving Deep
into Rectifiers: Surpassing Human-Level Performance
on ImageNet Classification. ArXiv e-prints, February
2015.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Identity Mappings
in Deep Residual Networks. ArXiv e-prints, March
2016.

[14] F. Li and B. Liu. Ternary Weight Networks. ArXiv e-
prints, May 2016.

[15] Z. Lin, M. Courbariaux, R. Memisevic, and Y. Bengio.
Neural Networks with Few Multiplications. ArXiv e-
prints, October 2015.

[16] Ardavan Pedram, Robert A. van de Geijn, and Andreas
Gerstlauer. Codesign tradeoffs for high-performance,
low-power linear algebra architectures. IEEE Trans.
Comput., 61(12):1724–1736, December 2012.

[17] Mohammad Rastegari, Vicente Ordonez, Joseph Red-
mon, and Ali Farhadi. Xnor-net: Imagenet classifica-
tion using binary convolutional neural networks. arXiv
preprint arXiv:1603.05279, 2016.

[18] K. Simonyan and A. Zisserman. Very Deep Convo-
lutional Networks for Large-Scale Image Recognition.
ArXiv e-prints, September 2014.

2865

