Trinity: A Distributed Graph Engine on a Memory Cloud

*
Bin Shao Haixun Wang Yatao Li
Microsoft Research Asia Microsoft Research Asia HKUST

Beijing, China Beijing, China Kowloon, Hong Kong

binshao@microsoft.com haixunw@microsoft.com

ABSTRACT

Computations performed by graph algorithms are data driven,
and require a high degree of random data access. Despite
the great progresses made in disk technology, it still cannot
provide the level of efficient random access required by graph
computation. On the other hand, memory-based approaches
usually do not scale due to the capacity limit of single ma-
chines. In this paper, we introduce Trinity, a general purpose
graph engine over a distributed memory cloud. Through op-
timized memory management and network communication,
Trinity supports fast graph exploration as well as efficient
parallel computing. In particular, Trinity leverages graph
access patterns in both online and offline computation to
optimize memory and communication for best performance.
These enable Trinity to support efficient online query pro-
cessing and offline analytics on large graphs with just a few
commodity machines. Furthermore, Trinity provides a high
level specification language called TSL for users to declare
data schema and communication protocols, which brings
great ease-of-use for general purpose graph management and
computing. Our experiments show Trinity’s performance in
both low latency graph queries as well as high throughput
graph analytics on web-scale, billion-node graphs.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distri-
buted Systems— Distributed Databases; D.4.2 [Operating
Systems|: Storage Management— Distributed memories

Keywords
Distributed System; Memory Cloud; Graph Database

1. INTRODUCTION

Large graphs appear in a wide range of computational do-
mains, and we are facing challenges at all levels ranging from

*The work was done at Microsoft Research Asia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMOD’13, June 22-27, 2013, New York, New York, USA.

Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

505

ylibg@ust.hk

the infrastructure to the programming model for managing
and processing large graphs. Graph applications have varied
needs. We may roughly classify such needs into two cate-
gories: online query processing, which requires low latency,
and offline graph analytics, which requires high throughput.
As an example, deciding instantly whether there is a path
between two given persons in a social network belongs to the
first category while computing PageRank for the WWW be-
longs to the second. Still, many sophisticated applications
have both needs: Given two nodes in a graph, the “distance
oracle” algorithm that estimates the shortest distance be-
tween the two nodes is an online algorithm. However, to
estimate the distances, the algorithm relies on “landmark”
nodes in the graph, and the optimal set of landmark nodes
are discovered using offline analytics.

Despite the diversity of graph applications, graph compu-
tation has some unique characteristics [26]: It usually has
a high data-access-to-computation ratio, in other words, it
is I/O intensive. Furthermore, graph computation usually
requires a high degree of random data access. This is partic-
ularly true for online queries as they usually require certain
degree of graph exploration (e.g., BFS, sub-graph match-
ing, etc.). Offline graph computations are usually performed
in an iterative, batch manner. For iterative computations,
keeping data in main memory can improve performance by
an order of magnitude due to the reuse of intermediate re-
sults as illustrated by Spark [34]. Moreover, the scale of data
makes distributed parallel computation the most promising
solution for large graph processing. As we shall see, keeping
the graph, at least the topology, in distributed memory not
only improves the performance, but also enables a new set
of graph computation paradigms.

In this paper, we introduce Trinity, a distributed graph
engine on a memory cloud. Trinity supports both online
graph query processing and offline graph analytics, and it
has been used for real life applications, including knowl-
edgebases [33], knowledge graphs [36], and social networks.
Trinity is able to scale-out, which means it can host arbi-
trarily large graphs in the memory of a cluster of commodity
machines'. Instead of optimizing for certain types of graph
computation (e.g., BSP), Trinity directly addresses the ran-
dom data access problem in large graph computation. Trin-
ity implements a globally addressable distributed memory
storage, and provides a random access abstraction for large

!Trinity usually makes the graph topology and frequently
used information of the graph memory-resident. Trinity
provides transparent access to other information associated
with the graph in DBMSs.

graph computation. The design of Trinity is based on the
belief that, as high-speed network becomes more available
and DRAM prices trends downward in the long run, all-
in-memory solutions provide the lowest total cost of own-
ership for a large range of applications [8]. For instance,
RAMCloud [30] envisioned that advances in hardware and
OS technology will eventually enable all-in-memory applica-
tions, and low latency can be achieved by deploying faster
NICs and network switches and by tuning the OS, the NIC,
and the communication protocol. Trinity realizes this vision
for large graph applications, and Trinity does not rely on
hardware/platform upgrades and/or special OS tuning, al-
though Trinity can leverage these techniques to achieve even
better performance.

Graph Query Graph Scale-out

Database Processing Analytics System
Neodj [4] Yes Yes Yes No
HyperGraphDB [22] Yes Yes No No
GraphChi [25] No No Yes No
PEGASUS [23] No No Yes Yes
MapReduce [15] No No Yes Yes
Pregel [28] No No Yes Yes
GraphLab [1] No No Yes Yes

Table 1: Some Representative Graph Systems

Before we discuss the details of Trinity, we survey a few
representative graph systems that have been proposed in
the last few years. Table 1 summarizes our survey results.
Among the existing graph systems, Neodj [4] and Hyper-
GraphDB [22] focus on supporting online transaction pro-
cessing (OLTP) on graph data. However, they are not dis-
tributed: They do not handle graphs that are partitioned
over multiple machines. This limits the size of the graphs
they can efficiently handle. Furthermore, a single machine
also does not have enough computation power compared
with a distributed, parallel system. Thus, it is difficult for
such systems to handle web-scale graphs.

On the other end of the spectrum are MapReduce [15],
Pregel (28], GraphLab [1]. These are high latency, high
throughput offline platforms. Unlike Neo4j and HyperGraph-
DB, they do not support online query processing, instead,
they are optimized for analytics on large data partitioned
over hundreds of machines. MapReduce computations on
graphs depend heavily on interprocessor bandwidth, as graph
structures are sent over the network iteration after itera-
tion. Pregel and GraphLab mitigate this problem by pass-
ing computation results instead of graph structures between
processors. In Pregel, GraphLab, and GraphChi, analytics
on the graphs are expressed using a vertex centric compu-
tation paradigm. Although some well known graph algo-
rithms, including PageRank, shortest path discovery, can be
implemented through vertex centric computing with ease,
there are a large range of sophisticated graph computations,
for example, multi-level graph partitioning, that cannot be
expressed in a succinct and elegant way.

Trinity itself is not a system that comes with comprehen-
sive built-in graph computation modules. However, with its
flexible data and computation modeling capability, Trinity
enables the development of such modules and hence empow-
ers a large variety of graph applications. In other words, it
can easily morph into systems to support any specific graph
applications.

The rest of the paper is organized as follows. In Section 2,
we outline the design of the Trinity system. In Section 3, we
introduce the Trinity’s memory cloud. Section 4 describes

506

the Trinity data model. Section 5 analyzes the computation
paradigms of typical graph applications. Section 6 discusses
some technical details in system implementation. Section 7
presents experimental results on Trinity. We discuss related
work in Section 8 and conclude in Section 9.

2. AN OVERVIEW OF TRINITY

We show the architecture of Trinity in Figure 1. Trinity
is a storage infrastructure and computation framework built
on top of a cluster of well-connected machines. As a stor-
age infrastructure, Trinity organizes the memory of multiple
machines into a globally addressable, distributed memory
address space (a memory cloud) to support large graphs.
Trinity is designed for online query processing applications
as well as offline analytics applications, and it supports user-
friendly graph modeling, object-oriented data manipulation.

Client

Client

Client
Lib

Client
Lib

Tr]nlty
Proxy

’I‘rln)ty
Proxy

Lib
Client

Lib
Client

Figure 1: Trinity Cluster Structure

A Trinity system consists of multiple components that
communicate through a network. According to the roles
they play, we classify them into three types: slaves, prox-
ies, and clients. A Trinity slave plays two roles: storing
graph data and performing computation on the data. Com-
putation usually involves sending messages to and receiving
messages from other Trinity components. Specifically, each
slave stores a portion of the data and processes messages re-
ceived from other slaves, proxies, or clients. A Trinity proxy
only handles messages but does not own any data. It usu-
ally serves as a middle tier between slaves and clients. For
example, a proxy may serve as an information aggregator: It
dispatches requests from clients to slaves and sends results
back to the clients after aggregating partial results received
from slaves. Proxies are optional, that is, a Trinity system
does not always need a proxy. A Trinity client is responsi-
ble for enabling users to interacting with the Trinity cluster.
It is a user interface tier between the Trinity system and
end-users. Trinity clients are applications that are linked to
Trinity library. They communicate with Trinity slaves and
Trinity proxies through the APIs provided by the Trinity
library.

Figure 2 shows the stack of Trinity system modules. The
memory cloud is essentially a distributed key-value store,
and it is supported by a memory storage module and a
message passing framework. The memory storage module
manages memory and provides mechanisms for concurrency
control. The network communication module provides an
efficient, one-sided, machine-to-machine message passing in-
frastructure.

Trinity Provides a specification language called TSL (Trin-
ity specification language) that bridges the graph model and

Graph Operations
GetlInlinks(), Outlinks.Foreach(...), etc

Graph Model

Trinity Specification Language

Memory Cloud
(Distributed Key-Value Store)

Distributed Message
Memory Passing
Storage Framework

Figure 2: System Layers

the data storage. Due to the diversity of graphs and the
diversity of graph applications, it is hard, if not entirely im-
possible, to support efficient general purpose graph compu-
tation using fixed graph schema. Instead of using fixed graph
schema and fixed computation models, Trinity let users de-
fine graph schema, communication protocols, and computa-
tion paradigms through TSL.

3. THE MEMORY CLOUD

We create a distributed memory cloud as Trinity’s stor-
age infrastructure. The memory cloud consists of 2 mem-
ory trunks, each of which is stored on a machine. Usually,
we have 2P > m, where m is the number of machines. In
other words, each machine hosts multiple memory trunks.
The reason we partition a machine’s local memory space
into multiple memory trunks is twofold: 1) Trunk level par-
allelism can be achieved without any overhead of locking;
2) The performance of a single huge hash table is subopti-
mal due to a higher probability of hashing conflicts. Essen-
tially, the entire memory cloud is partitioned into 2 mem-
ory trunks. To support fault-tolerant data persistence, these
memory trunks are also backed up in a shared distributed
file system called TFS (Trinity File System), which is similar
to HDF'S [10].

On top of the memory cloud, we create a key-value store.
A key-value pair forms the most basic data structure of the
graph system or any system built on top of the memory
cloud. Here, keys are 64-bit globally unique identifiers, and
values are blobs of arbitrary length. As the memory cloud
is distributed across multiple machines, we cannot address
a key-value pair using its physical memory address. To ad-
dress a key-value pair, Trinity uses a hashing mechanism.
In order to locate the value of a given key, we first 1) iden-
tify the machine that stores the key-value pair, and then 2)
locate the key-value pair in one of the memory trunks on
that machine. Through this hashing mechanism (shown in
Figure 3), we provide a globally addressable memory space.

Specifically, given a 64-bit key, to locate its correspond-
ing value in the memory cloud, we hash the key to a p-bit
value 7 € [0,2P — 1]. This means the key-value pair is stored
in memory trunk ¢ within the memory cloud. To find out
which machine memory trunk ¢ is in, we maintain an “ad-
dressing table” that contains 27 slots, where each slot stores
a machine ID. Essentially, we implement a consistent hash-
ing mechanism that allows machines to join and leave the

507

64-bit UID

|_|_|_|_|_|_|_|-IIIIIll—haslklllllll—lllllllq

machine 0

machine m
Addressing
Table

machine 1 machine 2

|

of1[2]38] [i]k][2pr1
Y

p-bit
hash code

? ====]
Trinity File System
I : I :]
cell bytes Trinity
Slave
Memory Trunk
* Memory
UID |Offset| Size il
Qloos 321 123
10 — 423 211 Memory Trunks

Figure 3: Data Partitioning and Addressing

memory cloud (described later). Furthermore, in order for
global addressing to work, each machine keeps a replica of
the addressing table, and we will describe how we ensure the
consistency of the addressing tables in Section 6.2.

We then locate the key-value pair in memory trunk ¢,
which is stored on the machine whose ID is in slot i of the
addressing table. Each memory trunk is associated with a
hash table. We hash the 64-bit key again to find the offset
and size of the key-value pair in the hash table. Given the
memory offset and the size, we retrieve the key-value pair
from the memory trunk.

The addressing table provides a mechanism that allows
machines to dynamically join and leave the memory cloud.
When a machine fails, we reload the memory trunks it owns
from the TFS to other alive machines. All we need to do
is to update the addressing table so that the corresponding
slots point to the machines that host the data now. Simi-
larly, when new machines join the memory cloud, we relocate
some memory trunks to those new machines and update the
addressing table accordingly.

Each key-value pair in the memory cloud may contain
some meta data for various purposes. Most notably, we
may associate each key-value pair with a spin lock. Spin
locks are used for concurrency control and physical memory
pinning. Multiple threads may try to access the same key-
value pair concurrently. A physical key-value pair may also
be moved by the memory defragmentation thread as elabo-
rated in Section 6.1. Therefore, we must ensure a key-value
pair is locked and pinned to a fixed memory position before
allowing any thread to manipulate it. For applications that
are not read-only, the spin lock mechanism allows a thread
to access a pinned physical key-value pair exclusively by re-
quiring all threads to acquire the lock before accessing or
moving a cell.

4. DATA MODEL

Trinity is designed to handle graph data of diverse char-
acteristics. In this section, we describe data modeling issues

and the Trinity Specification Language that is designed to
facilitate the modeling.

4.1 Modeling Graph

A graph consists of nodes and edges. But a graph is
more than its topology: In real-world applications, nodes
and edges in a graph are often associated with rich informa-
tion. We may use relational databases, XML, or even plain
text files to store graphs. But they do not support efficient
access of graph data. Take relational databases as an exam-
ple. We may use one table to store the nodes, and another
table to store the edges. If edges represent more than one
relationship, we may need multiple tables to store edges of
difficult types. This seems to be simple and intuitive. How-
ever, graph operations usually involve graph traversal, which
incurs costly, multi-way joins of relational tables. Thus, re-
lational databases are not for processing graph data.

Trinity supports graphs on top of an in-memory key-value
store. Here, the “key” is a system wide identifier, and the
“value” is used for modeling application data. When the
“value” is associated with a schema (defined in TSL, which
is described in Section 4.2), we also call it a cell, and the (key,
value) pair becomes a (cellld, cell) pair. To model graphs
on top of a key-value store, we use a cell to implement a
node in a graph. A cell may contain a lot of information.
For undirected graphs, a cell (a graph node) contains a set
of celllds that represent its neighboring nodes. For directed
graphs, a cell (a graph node) contains two set of celllds, one
for incoming links, and the other for outgoing links. A cell
may contain additional data associated with a node, such as
the name of the node, its description, etc.

Usually, there is no need to represent an edge as a cell. As
mentioned above, we may represent a node’s outgoing edges
by the celllds of the nodes they connect to. Additional data
associated with an edge (e.g., its name, type, weight, etc.)
can simply stay with the cellld as (cellld, associatedData)
pairs. However, when edges are associated with rich infor-
mation, we may represent edges using cells, and store the
rich information associated with the edges in the edge cells.
Correspondingly, a node will store a set of edge celllds. We
can also model hypergraphs in this way, as we can easily
store a set of node celllds in an edge cell.

4.2 Trinity Specification Language

We designed a high level language called TSL (Trinity
Specification Language) for data and network communica-
tion modeling in Trinity. As we know, graphs have very di-
verse characteristics, and distributed algorithms on graphs
have very diverse communication patterns. In face of these
diversity, TSL brings great ease-of-use for general purpose
graph management and computing. Its goals and benefits
include the following:

e TSL provides object-oriented data manipulation for
the underlying blob data in the memory cloud. This
will be elaborated in Section 4.3.

e TSL facilitates data integration. It defines an inter-
face between graphs and external data (e.g., data in
an RDBMS). Through TSL, we can specify how nodes
in a graph are associated with records in a relational
table. This enables us to store graph topology and
some critical data in Trinity’s memory cloud, while
leaving other rich information (such as images) on disk.

508

This further enables transparent query processing over
memory cloud and RDBMSs (but with dramatically
improved performance as join relationships are mate-
rialized in Trinity), and automatic data conversion be-
tween memory cloud and external data sources.

e TSL facilitates system extension. With data schema
and communication protocols defined in TSL, the TSL
compiler generates highly efficient and powerful source
code for data manipulation and communication, which
greatly facilitates the development of advanced system
modules in Trinity. For example, we implemented a
sophisticated graph query language (TQL) within this
framework.

Figure 4 gives an example of using TSL to model the data
of a toy graph consisting of movies and actors.

[CellType: NodeCell]
cell struct Movie

{

string Name;
[EdgeType: SimpleEdge, ReferencedCell: Actor]
List<long> Actors;

}
[CellType: NodeCell]
cell struct Actor

{
string Name;
[EdgeType: SimpleEdge, ReferencedCell: Movie]
List<long> Movies;

}

Figure 4: Modeling a Movie and Actor Graph

The script above defines two types of graph nodes, namely
Movie and Actor, using two Cell structs. A Cell struct
is a basic element for modeling graph. It is a data con-
tainer which may contain an arbitrary number of: 1) prim-
itive data types, such as byte, int, and double; 2) data con-
tainer types, such as Array, List, and BitArray; and 3) other
user-defined structs. In our case, the Movie and Actor cells
contain data elements List<long> Actors and List<long>
Movies, which are outgoing edges from the cells. The “[...]”
constructs (following C# convention) in the script describes
the constructs that follow them. For example, it indicates
Actors are SimpleEdge from Movie cells to Actor cells. Be-
sides SimpleEdge (which is represented by a cellld), Trinity
also supports StructEdge (which is an independent cell) and
HyperEdge (hyperedges).

Besides modeling data, TSL also models network commu-
nication. This is important for the following reasons. First,
graph algorithms have very diverse network communication
patterns because they are data driven, and the data is dis-
tributed. It is extremely tedious for users to implement all
kinds of message passing protocols (e.g., synchronous, asyn-
chronous, etc.) Second, in vertex based computing and other
algorithms, a large number of nodes send and receive mes-
sages simultaneously. The total number of messages in the
system is huge although each message may be small. This
incurs a huge cost if the system does not automatically pack
small messages between two machines into a single transfer.
Third, graph algorithms require a flexible message passing
mechanism. The well known message passing framework
MPI has drawbacks for distributed graph applications: It is
optimized for two-sided bulk synchronous communication.

A lot of tuning is needed to write efficient, asynchronous,
fine-grained message passing programs, and writing such
code is tedious.

TSL provides an intuitive way of writing efficient message
passing programs for graph computation. It provides one-
sided communication based on the request-response commu-
nication paradigm, and it supports bulk synchronous mes-

sage passing and transparent message packing for asynchronous

messages to increase the network throughput.
struct MyMessage
string Text;

protocol Echo

{
Type: Syn;
Request: MyMessage;
Response: MyMessage;
}

Figure 5: Modeling Message Passing

Figure 5 shows an example. We implement a simple “Echo”
protocol: A client sends a message to a server, and the server
sends a message back. It is stated that “Echo” uses syn-
chronous message passing, and the type of messages being
sent and received is MyMessage. TSL compiles the script
to generate an empty message handler EchoHandler, and
the user only needs to implement the algorithm logic for the
handler as if implementing a local method. Calling a pro-
tocol defined in the TSL is also like calling a local method.
Trinity takes care of message dispatching, packing, etc., for
the user.

4.3 Object-Oriented Cell Manipulation

The memory cloud provides a key-value pair store, where
values are binary blobs. The TSL script in Figure 4 informs
the Trinity system the schema of the data, so that Trinity
knows how to manipulate the data, including, for exam-
ple, integrating the data with data from external sources.
Alternatively, we can implement graph nodes and edges as
runtime objects. Unfortunately, we cannot reference objects
across machine boundaries. Second, runtime objects incur
significant storage overhead. For C# on the .Net framework,
an empty runtime object (one that does not contain any
data element) requires 24 bytes of memory on a 64-bit sys-
tem and 12 bytes of memory on a 32-bit system. For billion-
node graphs, this is a tremendous overhead. Third, although
Trinity is an in-memory system, we do need to store mem-
ory trunks on disk or network for persistence. For runtime
objects, we need serialization and deserialization operations,
which is costly.

On the other hand, storing objects as blobs of bytes is
compact, economical, with zero serialization and deserial-
ization overhead. We can also make the objects globally ad-
dressable by giving them unique identifiers and using hash
functions to map the objects to memory in a host machine
as we have described. However, blobs are not user-friendly.
We no long have an object-oriented interface, and we need
to know the exact memory layout before we can manipulate
the data in the blob (using pointers, address offsets, and
casting to access data elements in the blob). This makes

programming difficult and error-prone?.

2Note that we cannot naively cast a blob to a structure de-

509

cell struct MyCell Cell Schema compile) Cell
rsr |{ it 1d Defined in TSL Accessor
B in 5
Seript List<long> Links;
} Blob
Generated API

using(var cell = UseMyCellAccessor(cellld))

Manipulate
MyCell via
Cell Accessor

— int Id = cell.Id; //Get the value of Id
+—— cell.Links[1] = 2; //Set Links[1] to 2

Blob View
L5100000001{00000000{00000000{00000000[00000011[00000000{00000000[00000000
00000001{00000000{00000000/00000000{00000000{00000000|00000000{00000000
00000010[00000000{00000000[00000000{00000000{00000000{00000000[00000000
00000011{00000000{00000000/00000000{00000000(00000000|00000000(00000000

Figure 6: Cell Accessor

To address this problem, Trinity introduces a mechanism
(the cell accessor mechanism) to support object-oriented
data manipulation on blob data. Users first declare the
schema of a cell in TSL, then Trinity automatically gener-
ates key-value store interfaces for manipulating cells stored
as blob strings in the memory cloud. Specifically, Trinity
compiles the TSL script to create a set of APIs for access-
ing, loading, and saving the data. One of the generated API
is UseMyCellAccessor. Given a cellld, it returns an object
of type MyCellAccessor, and users can manipulate its un-
derlying blob data as a runtime object in an object-oriented
manner. This is shown in Figure 6. As a matter of fact, a
cell accessor is not a data container, but a data mapper. It
maps the fields declared in the data structure to the correct
memory locations in the blob. Any data accessing opera-
tion to a data field will be correctly mapped to the correct
memory location with zero memory copy overhead.

4.4 Consistency

Using the spin lock associated with each key-value pair,
Trinity guarantees the atomicity of the operation on a sin-
gle cell (key-value pair). However, Trinity does not pro-
vide ACID transaction support. This means Trinity cannot
guarantee serializability for concurrent threads. For appli-
cations that need transaction support, we can implement
light-weight atomic operation primitives that span multiple
cells, such as MultiOp primitives [13] and Mini-transaction
primitives [7], on top of the atomic cell operation primitives.

S. GRAPH COMPUTATION PARADIGMS

Different graph computations have different data access
and communication patterns. In this section, we discuss the
graph computation paradigms supported by Trinity.

5.1 Traversal Based Online Queries

A lot of applications require graph exploration, the breadth-
first search and the depth-first search being the most typi-
cal. Here, we use “people search” on a social network as an
example to demonstrate the importance of efficient graph
exploration to online query processing. The problem is the
following: On a social network, for a given user, find anyone
whose first name is “David” among his/her friends, his/her
friends’ friends, and his/her friends’ friends’ friends. This is

fined in programming languages such as C or C# because
the fields of a struct are not always flatly laid out in the
memory. We cannot cast a flat memory region to a struc-
tured data pointer.

a practical problem: While logged in on Facebook, a user
performs a search in Bing. Bing explores the user’s Face-
book network to see if there is anything relevant. In the
case as shown in Figure 7, it finds someone who is the user’s
friends’ friend.

‘Web Images Videos Shopping s Maps Wore 4 VSN Hlotmailes sl ¥ 101 ¢) B0 w
L B LR e
= 1S Beta - " . T

b" |g“ harry shum E
Web Web Images Blogs Videos Morev
RELATED SEARCHES ALLRESULTS 1-10 0f 176.000 results - Advanced Mak
QiLu

5 People on Facebook: harry shum
Kai.Fu Lee
Raj Reddy SR Harry Shum
Satya Nadella m Camegie Mellon = Microsoft
Hartmut Neven 8 mutual friends
Mini_Microsoft Add as fiiend - Send a message
Brian MacDeonald facebook com
Microsoft
Harry Shum Profile Harry Shum - Microsoft Research

Former managing director of Microsoft Research Asia, Dr. Harry Shum, a Corporate Vice President
at Microsoft now, has taken the new role of leading the Core Search -

SEARGHTHISTORY! research microsoft com/en-us/peoplefhshum - Mark as spam

Figure 7: Facebook search in Bing

It is unlikely we can index the social network to solve the
“David” problem. One option is to index the neighborhood
for each user, so that given any user, we can use the index
to check if there is any “David” within 3 hops of his/her
neighborhood. However, the size and the update cost of such
an index are prohibitive for a web-scale graph. The second
option is to create an index to answer 3-hop reachability
queries for any two nodes. This is infeasible because “David”
is a popular first name, and we cannot check every David in
the social network to see if he is within 3 hops to the current
user.

Trinity solves the “David” problem by leveraging its very
efficient memory-based graph exploration capabilities. We
deployed a synthetic, power-law graph in an eight-machine
cluster managed by Trinity. The graph has Facebook-like
size and distribution (800 million nodes, 104 billion edges,
with each node having on average 130 edges). We found that
exploring the entire 3-hop neighborhood of any node in the
graph takes less than 100 milliseconds on average. In other
words, Trinity is able to explore 130 + 1302 + 130% ~ 2.2
million nodes distributed over eight machines in one tenth
of a second. The algorithm simply sends asynchronous re-
quests recursively to remote machines, and the performance
is achieved by efficient memory access and optimization of
network communication.

5.2 A New Paradigm for Online Queries

Trinity introduces a new paradigm for online graph pro-
cessing by storing web-scale graphs in the memory of a dis-
tributed system, and relying on fast random access and par-
allel computing for query processing, as demonstrated by
the above example.

In contrast, instead of storing graph in its native form,
many existing graph systems store graph data in relational
tables, or matrices, and use join operationsto simulate graph
exploration. The approach does not scale. In order to
support more sophisticated online queries such as subgraph
matching, existing systems rely on index. The reality is,
none of the existing systems and methods support efficient
subgraph matching on web-scale graphs. To understand
the challenge, consider various kinds of indices developed
to support query processing on graphs. Most of them require
super-linear space and/or super-linear construction time. For
example, the R-Join approach [14] for subgraph matching is
based on the 2-hop index [11]. The complexity to build such

510

an index is O(n*), where n is the number of vertices. Tt is ob-
vious that in large graphs where the value of n is on the scale
of 1 billion (10°), any super-linear approach will become un-
realistic, let alone an algorithm of complexity O(n*).

In Trinity, the combination of fast random access and par-
allel computing, offers a new paradigm which enables us to
rethink efficient query processing on web-scale graphs. Fig-
ure 8(a) shows the performance of subgraph matching on
web scale graphs. Here, the size of the graph ranges from 1
million to 128 million nodes, average node degree is 16, aver-
age query size is 10 (nodes), and queries are generated using
two random methods, DFS and RANDOM [32]. It shows
that without any index of graph structure, average query
time is 1 second using just 8 machines for parallel query
processing, and there is still a lot of room for improvement.

(a) Subgraph Matching

(b) Distance Oracle
1,200
1,100 -
1,000%
900,
800 |-
700 |-
600 |-
500 |-
400 -
300 |-
200 |-
100
2

100

80

60

40

Query Time (ms)

—e— Largest Degree
-=— Local Betweenness |
—e— Global Betweenness

20

Estimation Accuracy (%)

100 200 300 400 500
Number of Landmarks

o
Number of Nodes (Million)

Figure 8: New paradigms of graph computation

5.3 Vertex Centric Offline Analytics

Trinity, as well as Pregel [28] and GraphChi [25], provide a
vertex centric computation model for offline graph analytics.
A computation task is expressed in multiple iterative super-
steps and each vertex acts as an independent agent. During
each super-step, each agent performs s