
C
o
ns
ist

en
t *

Complete *
W
ell D

o
cum

ented*Easyt
oR

eu
se
* *

Evaluated

*
A
C
T
*

Ar
tifact *

A
EC

P

Integrating Algorithmic Parameters into Benchmarking and
Design Space Exploration in 3D Scene Understanding

Bruno Bodin
bbodin@inf.ed.ac.uk

Luigi Nardi
l.nardi@imperial.ac.uk

M. Zeeshan Zia
zeeshan.zia@imperial.ac.uk

Harry Wagstaff
h.wagstaff@inf.ed.ac.uk

Govind Sreekar Shenoy
gsreekar@inf.ed.ac.uk

Murali Emani
emani1@llnl.gov

John Mawer
john.mawer@manchester.ac.uk

Christos Kotselidis
christos.kotselidis@manchester.ac.uk

Andy Nisbet
andy.nisbet@manchester.ac.uk

Mikel Lujan
mikel.lujan@manchester.ac.uk

Björn Franke
bfranke@inf.ed.ac.uk

Paul H. J. Kelly
p.kelly@imperial.ac.uk

Michael O’Boyle
mob@inf.ed.ac.uk

ABSTRACT
System designers typically use well-studied benchmarks to
evaluate and improve new architectures and compilers. We
design tomorrow’s systems based on yesterday’s applica-
tions. In this paper we investigate an emerging application,
3D scene understanding, likely to be significant in the mobile
space in the near future. Until now, this application could
only run in real-time on desktop GPUs. In this work, we
examine how it can be mapped to power constrained embed-
ded systems. Key to our approach is the idea of incremental
co-design exploration, where optimization choices that con-
cern the domain layer are incrementally explored together
with low-level compiler and architecture choices. The goal
of this exploration is to reduce execution time while min-
imizing power and meeting our quality of result objective.
As the design space is too large to exhaustively evaluate,
we use active learning based on a random forest predictor
to find good designs. We show that our approach can, for
the first time, achieve dense 3D mapping and tracking in the
real-time range within a 1W power budget on a popular em-
bedded device. This is a 4.8x execution time improvement
and a 2.8x power reduction compared to the state-of-the-art.

Keywords
design space exploration; DSE; computer vision; SLAM; em-
bedded systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PACT ’16, September 11 - 15, 2016, Haifa, Israel
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4121-9/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2967938.2967963

1. INTRODUCTION
The computing landscape has changed dramatically over

the last decade. We have witnessed the decline of desk-
tops and the rise of mobile devices as computing platforms.
At the system level, power constraints have caused a fun-
damental shift to parallel heterogeneous platforms which is
particularly important in thermally limited embedded mo-
bile devices.

More recently, the well-known dark silicon challenge sug-
gests that we will not be able to simultaneously power on
all the cores (or transistors) on a device [17]. Heterogeneous
multi-core systems have emerged as a promising solution to
this problem. For example, the ARM big.LITTLE technol-
ogy [9] puts both a high power, high performance core clus-
ter, and a more efficient but less computationally powerful
cluster, on the same die. Software can then partition be-
tween these cores, or switch off cores entirely, depending on
requirements. By mapping different parts of an application
onto the appropriate specialized hardware resource, we can
use the available power budget in an optimal manner. For
that reason, heterogeneous multi-processor system-on-chips
(MPSoCs) have been widely adopted in mobile embedded
systems.

In order to design and program heterogeneous MPSoCs,
a vertical approach is necessary. Deep knowledge of all lev-
els of the stack, from compilers to the micro-architecture, is
needed in order to optimally map the executed code onto
such diverse hardware resources. Additionally, deep domain
knowledge may be required to tune software parameters to
meet multiple conflicting design goals. This paper shows
how we can go beyond conventional benchmarking in com-
puter systems research by exposing the algorithmic-level de-
sign space.

Traditionally, system designers have evaluated new archi-
tecture and compiler features using well-studied and broadly
accepted benchmarks such as SPEC2006 [22]. However,
since such benchmarks represent a historical snapshot of
applications, they are not representative of modern require-
ments. In contrast, to design tomorrow’s systems, we need
to consider new emerging applications from diverse domains.

http://dx.doi.org/10.1145/2967938.2967963

Input
frames

Reconstructed
3D scene

RenderDepth RenderTrack RenderVolume

Preprocessing
mm2meter

bilateralfilter

Tracking
depth2vertex
vertex2normal

halfsample
track

reduce

Integrate
integrate

Raycast
raycast

Figure 2: Key computational steps of the KFusion algorithm represented as a task graph. Each task comprises one or more
OpenCL kernels as depicted.

Figure 1: An RGB-D camera provides both RGB and depth
information (top left and middle respectively); the depth
frame is the input of the KFusion algorithm. Tracking re-
sults and reconstruction of the scene as seen from the current
camera pose are shown in the bottom left and middle respec-
tively. The reconstructed 3D scene from the initial pose is
shown in the right; this is the output of KFusion.

In this paper we focus on one set of emerging applications
that is becoming significant in the mobile space: real-time
3D scene understanding in computer vision. In particular,
we investigate dense simultaneous localization and mapping
(dense SLAM) algorithms which are extremely computa-
tionally demanding. One such dense SLAM algorithm is
KinectFusion [33] (KFusion) which estimates the pose of a
depth camera whilst constructing a highly detailed 3D model
of the environment. Since such applications are typically
tuned for high-end desktops with high power budget, exe-
cuting them on power-constrained embedded devices is very
challenging and, therefore, represents a realistic future ap-
plication use case. We use the SLAMBench benchmarking
framework [31], which contains a KFusion implementation,
as it allows us to capture the performance metrics used to
drive our design space exploration.

We explore the mapping of SLAM applications to power
constrained heterogeneous platforms. The key element of
our approach is the exploration of the mapping problem
at multiple levels, vertically integrating the algorithmic do-
main and the implementation layers. Instead of ignoring
levels of the computing stack, we perform co-design space
exploration. In other words, we examine how algorithmic,
compiler, and architecture configuration choices affect the
performance of the underlying system. The rationale behind
including the algorithmic parameters in the co-design space
exploration is that although these algorithms are tuned for

desktop systems, it is unlikely that the same configurations
will be optimal in a mobile MPSoC setting.

We define the performance in terms of power consump-
tion (measured in Watts, lower is better), accuracy of the
computation (measured in centimeters, lower is better), and
runtime (measured as wall clock time per frame in seconds,
lower is better). The runtime is sometimes also quantified by
the number of frames processed in one second, i.e. frames
per second (FPS), higher is better; the current Microsoft
Kinect (or equivalent ASUS Xtion Pro) RGB-D sensor runs
at 30 FPS, so 30 FPS is needed for real-time processing.
These three metrics interact and are considered simultane-
ously for a holistic evaluation of the system.

Since the co-design space can be extremely large, it is not
feasible to try all possible configurations. Instead, we sam-
ple the domain space and automatically build a model that
predicts the three performance metrics for a given configu-
ration. Using this model, and a methodology from machine
learning known as active learning, we predict a three di-
mensional performance Pareto curve that is then used to
feed the lower level layers, driving the compiler and archi-
tecture parameter choices. By exploring the resulting Pareto
curve we obtain a mapping to an embedded platform that
results in a 6.6-fold speedup over the original mobile im-
plementation. More precisely, this new configuration runs
at nearly 40 FPS while maintaining an acceptable accuracy
(under 5 cm localization error) and keeping power consump-
tion under 2 Watts. The Pareto front contains many more
configurations, allowing us to trade between runtime, power
consumption, and accuracy, depending on our desired goals.
For example, we can also find points which minimize power
consumption (e.g., a configuration providing 11.92 FPS at
0.65W) or which optimize for execution time without ex-
ceeding a given power budget (29.09 FPS at less than 1W).

This paper demonstrates that our co-design space explo-
ration tailors future applications to future power-constrained
systems. The contributions of this paper are as follows:

• We perform a vertical co-design space exploration con-
sidering algorithmic, compiler, and hardware layers.

• We show that domain-specific knowledge can be used
to trade off multiple optimization goals at an algorith-
mic level, before considering low-level implementation
choices.

• We introduce an effective method to guide the opti-
mization using multi-objective performance prediction
based on random forest and active learning.

• In order to explore the potential for this approach
we evaluate our methodology on an emerging SLAM

benchmarking framework which supports quantitative
evaluation of solution accuracy, execution time and
power consumption. We obtain a 6.6x best improve-
ment in execution time or a 4.3x best reduction in
power dissipation over an hand-tuned implementation
by a SLAM domain expert.

2. BACKGROUND
Simultaneous localization and mapping (SLAM) systems

aim to perform real-time localization and mapping “simul-
taneously” from a sensor moving through an unknown envi-
ronment. Localization typically estimates the location and
pose of the sensor with respect to a map which is extended as
the sensor explores the environment. Dense SLAM systems
in particular map entire 3D surfaces, as opposed to non-
dense (feature-based) systems where maps are represented
at the level of sparse point landmarks. Dense SLAM sys-
tems enable a mobile robot to perform path planning and
collision avoidance, or an augmented reality (AR) system to
render physically plausible animations at appropriate loca-
tions in the scene [35, 18]. Recent advances in computer
vision have led to the development of real-time algorithms
for dense SLAM such as KFusion [33]. Such algorithms es-
timate the pose of a depth camera while building a highly
detailed 3D model of the environment (see Figure 1).

Such real-time 3D scene understanding capabilities can
radically change the way robots interact with the world [18].
While classical feature-based SLAM techniques are now cross-
ing into mainstream products via embedded implementa-
tions, such as Project Tango [4] and Dyson 360 Eye [2],
dense SLAM algorithms with their high computational re-
quirements are largely at the prototype stage on GPU-based
PC or laptop platforms [33]. However, when running in an
embedded context, it is not feasible to include a large GPU
with high power and cooling requirements. While offloading
to a remote machine is possible in some circumstances, this
can introduce additional latency which makes it unsuitable
for real-time situations such as augmented reality or UAV
navigation applications.

KFusion registers and fuses the stream of measured noisy
depth frames from a depth camera (such as Microsoft Kinect),
as the scene is viewed from different viewpoints, into a clean
3D geometric map. While it is beyond the scope of this
paper to go into the details of the KFusion algorithm, we
briefly outline the key computational steps involved in Fig-
ure 2. SLAMBench provides multiple implementations of
the KFusion algorithm. We use the OpenCL implementa-
tion, and execute each OpenCL kernel on the GPU of our
target platforms.

KFusion normalizes each incoming depth frame and ap-
plies a bilateral filter (Preprocessing) to reduce noise. In the
Tracking step, it computes a point cloud (with normals) for
each pixel in the camera frame of reference and estimates
the new 3D pose of the moving camera by registering this
point cloud with the current global map using iterative clos-
est point (ICP) [11]. Once the new camera pose has been
estimated, the corresponding depth map is fused into the
current 3D reconstruction (Integration). KFusion utilizes a
voxel grid as the data structure to represent the map, em-
ploying a truncated signed distance function (TSDF) to rep-
resent 3D surfaces. The 3D surfaces are present at the zero
crossings of the TSDF and can be recovered by a Raycasting
step, which is also useful for visualizing the reconstruction.

0

10

20

30

40

50

60

70

S
p
e
e
d
 (

F
P
S
)

 limit > 30 FPS

0

1

2

3

4

5

6

7

P
o
w

e
r

(W
)

 limit < 3 W

0

2

4

6

8

10

A
T
E
 (

cm
)

 .

 limit < 5 cm

Jetson TK1 (default)

Odroid XU3 (default)

Odroid XU3 (DSE)

Figure 3: The three metrics (speed, power, and accuracy) of
SLAMBench on Jetson TK1 and ODROID-XU3. The de-
fault configuration does not meet the real-time requirements
of embedded systems in contrast to the DSE techniques in-
troduced in this paper.

In this work we use the SLAMBench benchmarking frame-
work [31] which enables evaluation of runtime, power con-
sumption, and accuracy for KFusion. Figure 3 depicts the
KFusion performance metric measurements for two differ-
ent platforms, namely the NVIDIA Jetson TK1 featuring
the Tegra K1 SoC and the ODROID-XU3 equipped with
a Samsung Exynos 5422 SoC. For a mobile SLAM system
to be usable, an implementation needs to provide real-time
processing, i.e. a frame rate of 30 FPS for the common
cameras, to consume less than 3W of power, which enables
fan-less cooling, and to provide an absolute trajectory er-
ror (ATE) of at most 5 cm. The ATE is calculated as the
mean difference between the real trajectory and the esti-
mated trajectory of a camera produced by a SLAM imple-
mentation. Thus, smaller ATE implies less deviation from
the real trajectory. We observe (Figure 3) that neither the
NVIDIA Jetson TK1 nor the ODROID meet these require-
ments with the default configuration. While the speed of the
TK1 implementation is close to 30 FPS it consumes signifi-
cant power. The ODROID implementation meets the power
constraint but its frame rate is too low. Note that both the
platforms meet the accuracy constraint. The results on the
ODROID platform after design space exploration (DSE) are
also shown in Figure 3. The improved KFusion application
now delivers FPS > 30 on the ODROID platform and, at
the same time, consumes less power, thus, meeting both the
performance and power constraints. Although the ATE has
increased slightly, the design constraint is still satisfied.

This example demonstrates that for complex applications
there is a trade-off between different performance metrics
that can be exploited through an intelligent design space
exploration.

3. METHODOLOGY
In this section we describe our approach, including a de-

tailed explanation of the design space parameters, the objec-
tives which we are targeting, and our incremental approach
to exploring the design space. In Section 4, we go on to de-
scribe the search techniques we use to guide our exploration
through the design space.

Parameters Values
A

lg
o

ri
th

m
ic

Volume resolution 64x64x64, 128x128x128
256x256x256, 512x512x512

µ distance 0.025, 0.075, 0.1, 0.2
Pyramid level iterations

Level 1 3, 5, 7, 9, 11
Level 2 3, 5, 7, 9, 11
Level 3 3, 5, 7, 9, 11

Compute size ratio 1, 2, 4, 8
Tracking rate 1, 3, 5, 7, 9
ICP threshold 0, 10−4, 10−5, 10−6, 1

Integration rate 1, 5, 10, 20, 30

C
o

m
p

ile
r

OpenCL flags cl-mad-enable, cl-fast-relaxed-math, . . .
LLVM flags O1, O2, O3, vectorize-slp-aggressive, . . .

Local work gr oup size 16, 32, 64, 96, 112, 128, 256
Vectorization

Width 1, 2, 4, 8
Direction x, y

Thread coarsening
Factor 1, 2, 4, 8, 16, 32
Stride 1, 2, 4, 8, 16, 32

Dimension x, y

A
rc

h
it

ec
tu

re GPU processor frequency 177, 266, 350, 420, 480, 543, 600, DVFS
Number of active big cores 0, 1, 2, 3, 4

Number of active little cores 1, 2, 3, 4

Table 1: The three co-design exploration spaces and the
parameters used.

3.1 Experimental Setting
In order to evaluate our design space exploration (DSE)

we use the SLAMBench framework with the ICL-NUIM [21,
20] dataset, specifically the first 400 frames of living room
trajectory 2. We halved the original sequence in order to
reduce the overall execution time of the benchmark; this was
done after careful consideration that the accuracy metric is
still representative of the whole sequence.

Usual approaches in performance optimization consider
benchmark suites that are, in general, a set of small kernels
extracted from real applications. A criticism to what can
be learnt from a benchmark suite is that they may not well
represent and capture the complex interaction of kernels in
a real-world application. Our application is composed of
more than 10 GPU-accelerated kernels. It presents the op-
portunity to tackle exploration of parameters at the algorith-
mic level that is not possible with conventional benchmark
suites.

During execution the following three performance metrics
are collected: 1) computation time, 2) absolute trajectory
error (ATE) of the frame sequence, and 3) power consump-
tion.

3.2 Co-Design Space
The possible values of the parameters taken into consider-

ation for the co-design space exploration are summarized in
Table 1. Here we look at three different spaces: algorithmic,
compilation, and architecture.

Algorithmic Space.
In this paragraph we summarize the algorithmic param-

eters that mostly affect our performance metrics. In the
case of the SLAMBench implementation of the KFusion al-
gorithm, we have access to the listed parameters. An exten-
sive explanation of these can be found in [33, 31].

• Volume resolution: The resolution of the scene be-
ing reconstructed. As an example, a 64x64x64 voxel
grid captures less detail than a 256x256x256 voxel grid.

• µ distance: The output volume of KFusion is de-
fined as a truncated signed distance function (TSDF)
[33]. Every volume element (voxel) of the volume con-
tains the best likelihood distance to the nearest visible
surface, up to a truncation distance denoted by the
parameter µ, also referred as mu in the text.

• Pyramid level iterations: The number of block av-
eraging iterations to perform while building each level
of the image pyramid.

• Compute size ratio: The fractional depth image res-
olution used as input. As an example, a value of 8
means that the raw frame is resized to one-eighth res-
olution.

• Tracking rate: The rate at which the KFusion algo-
rithm attempts to perform localisation. A new local-
isation is performed after every tracking rate number
of frames.

• ICP threshold: The threshold for the iterative clos-
est point (ICP) algorithm [11] used during the tracking
phase.

• Integration rate: As the output of KFusion is a vol-
umetric representation of the recorded scene, it needs
to be repeatedly expanded using new frames. A new
frame is integrated after every integration rate number
of frames.

We observe that the algorithmic design space consists of
roughly 1,800,000 points. Furthermore, the exploration of
algorithmic parameters involves trade-offs between accuracy,
runtime, and power consumption.

Compiler Space.
In order to explore this space, we first compile each SLAM-

Bench OpenCL kernel to LLVM IR using the clang compiler,
before performing the selected LLVM optimization passes
listed below. We then use Axtor [30] to produce OpenCL
code from the processed LLVM IR. The optimized kernels
are then used in SLAMBench instead of the original ones.
A large number of compilation parameters exist, we selected
those listed in Table 1, which are detailed below.

• OpenCL Flags: We have explored eight standard
flags that enable or disable some OpenCL compiler
optimizations. For completeness we list here the set of
OpenCL flags used, see [6] for explanation: cl-single-
precision-constant, cl-denorms-are-zero, cl-opt-disable,
cl-mad-enable, cl-no-signed-zeros, cl-finite-math-only,
cl-unsafe-math-optimizations, and cl-fast-relaxed-math.

• LLVM flags: We have explored five standard flags
that enable or disable some LLVM compiler optimiza-
tions. They are -O1, -O2, -O3, -slp-vectorizer, and
-vectorize-slp-aggressive.

• Local work group size: In OpenCL this refers to the
total number of parallel threads running on a compute
unit.

• Vectorization: Loop vectorization with various vec-
tor widths and directions on kernels that allow this
optimization.

• Coarsening degree: Thread coarsening is an ad-
vanced compiler optimization [29] which merges to-
gether multiple parallel threads, reducing the total num-
ber of threads instantiated. The factor parameter spec-
ifies how many threads have been merged. The stride
parameter affects the threads’ mapping distribution
enabling coalesced access patterns. The dimension pa-
rameter specifies the dimension affected by the merge.

The compiler parameters affect both power and perfor-
mance metrics. In addition, accuracy may be affected by
some OpenCL flags which cause relaxed maths to be used,
for example cl-fast-relaxed-math.

Architecture Space.
The architectural parameters exposed by each platform

differ quite significantly. We considered two platforms the
ASUS T200TA and the ODROID-XU3. In the case of the
ASUS T200TA we are currently only able to select the CPU
frequency governor, which in turn scales the CPU frequency
and voltage. In this case we have access to only two gov-
ernors: ‘powersave’ and ‘performance’, which set the CPU
frequency to the lowest and highest available settings, re-
spectively.

In the case of the ODROID-XU3 platform, we have access
to the parameters listed in Table 1:

• GPU processor frequency: By default the GPU
dynamic voltage and frequency scaling (DVFS) is ac-
tive and the GPU dynamically adjusts to a particular
frequency depending on the performance/power pro-
file of the application. We disable the DVFS and set
the GPU frequency to a specific value.

• Number of active cores: The number of CPU cores
that are active and running, these include the eight
“big” (Cortex-A15) and “LITTLE” (Cortex-A7) cores
(Section 5.1). By default all 8 cores are active, and we
selectively switch off a number of cores.

CPU DVFS is not available on this platform and, therefore,
this dimension in the architecture space cannot be explored.
The architectural parameters affect both the performance
and the power metrics, but not the accuracy. Future ap-
proximate computing techniques which for example involve
reducing the voltage of compute units, in order to trade off
power against the chance of calculation errors, would pro-
duce a situation where architectural exploration would in-
volve optimizing across all three targets (rather than just
power and runtime).

3.3 Multi-Objective Optimization Goal
Figure 4 presents a fictitious example depicting samples

(in green) over a 2-dimensional optimization space 1. In or-
der to meet the runtime and accuracy thresholds (in dashed
lines), the solutions of our exploration are confined to the
bottom left region of the space, the targeted prediction area

1For visualization purposes we are only showing two perfor-
mance metrics, namely the error and the runtime.

Targeted
prediction area

Pareto front

Samples

Runtime

E
rr

o
r

R
u
n
ti

m
e
 t

h
re

sh
o
ld

Accuracy threshold

Figure 4: Illustrative example based on fictitious data. This
is a two-objective optimization goal in the error and runtime
performance metrics. The samples in green are spread all
over the space. We are interested in the region highlighted
by the black circle, namely the targeted prediction area. The
Pareto front is represented in blue.

(in black). In a multi-objective optimization, a single solu-
tion that minimizes all performance metrics simultaneously
does not exist in general. Therefore, attention is paid to
Pareto optimal solutions (in blue); which is, solutions that
cannot be improved in any of the objectives without de-
grading at least one of the other objectives. We aim to find
the configurations that are simultaneously in the targeted
prediction area and on the Pareto front.

3.4 Incremental Co-Design Space Exploration
We tackle the co-design space exploration incrementally.

We first apply the active learning regressor to the algorith-
mic parameters. The compiler transformations/optimizations
are then applied to the Pareto optimal front points obtained.
Since a general tool to drive the compiler exploration is not
available for the set of vanilla and advanced compilation
parameters that we aim to explore, the compiler space is
a mixture of manual and exhaustive search. These are the
best performing points of the algorithmic space and are used
as an input to the compiler space. The architecture space
is then exhaustively evaluated since the size of this space
is relatively small (160 points). Our incremental approach
enables us to refine the optimal solutions in different steps.

4. SMART SEARCH
The algorithmic parameter space we are investigating is

too large to be exhaustively evaluated on the hardware plat-
form. Thus we take the cheaper route of training a pre-
dictive machine learning model over a handful of examples
(points in the parameter space) evaluated on hardware. We
want to use this model to accurately predict the performance
over the entire parameter space, while being many orders of
magnitude faster as compared to running the application on
hardware over a video sequence for millions of parameter
settings. Unfortunately since we do not know the perfor-
mance over the parameter space, we are also unaware of the
points for which running a physical experiment will be most
informative, in the sense of yielding the greatest increase in

Algorithmic
Configuration
Parameters[] Accuracy

Runtime
Power[]

Random samples

MACHINE
LEARNING

PREDICTIVE
MODEL

Run new samples

Active Learning

Figure 5: The learning step is based on a tiny subset of
the overall algorithmic space; these are the samples that are
actually run. Subsequently, the predictive model can predict
accuracy, power consumption, and performance of an unseen
configuration depending on its parameters.

the prediction accuracy of our model - a classic chicken and
egg problem. Thus, we resort to bootstrapping predictive
models (three separate randomized decision forests for ac-
curacy, runtime, and power prediction) from a small number
of randomly drawn samples in the parameter space. These
models are then refined in subsequent iterations by drawing
more samples from the parameter space (and retraining over
the collective set); the new samples are now drawn to im-
plicitly maximize the prediction accuracy near the respective
Pareto optimal fronts. This strategy of letting the predic-
tive model decide which samples will be most beneficial in
increasing predictive accuracy over unseen regions of the pa-
rameter space is called active learning [16, 41]. Note that we
explored a number of base predictive models including arti-
ficial neural networks, support vector machines, and nearest
neighbors. Our experiments indicated that randomized de-
cision forests outperform these methods, thus we stick to
this class of models throughout this paper.

This methodology is depicted in Figure 5 and explained
in the next sections.

4.1 Randomized Decision Forest
A decision tree is a tool widely used to formalize deci-

sion making processes across a variety of fields. A random-
ized decision tree is an analogous machine learning model,
which “learns” how to classify (or regress) data points based
on randomly selected attributes of a set of training exam-
ples. The combination of many weak regressors (binary de-
cisions) allows approximating highly non-linear and multi-
modal functions with great accuracy. Randomized decision
forest [12] combines many such decorrelated trees, based on
the randomization at the level of training data points and
attributes, to yield an even more effective supervised clas-
sification and regression model. A decision tree represents
a recursive binary partitioning of the input space, and uses
a simple decision (a one-dimensional decision threshold) at
each non-leaf node that aims at maximizing an “informa-
tion gain” function. Prediction is performed by “dropping”
down the test data point from the root, and letting it tra-
verse a path decided by the node decisions, until it reaches
a leaf node. Each leaf node has a corresponding function
value (or probability distribution on function values), ad-
justed according to training data, which is predicted as the
function value for the test input. During training, random-

Figure 6: On the left, a 2-dimensional input space with re-
cursive 1-dimensional decision stumps is shown. On the
right, a classification decision tree learned over the train-
ing data is visualized. Each node represents a portion of the
input space.

ization is injected into the procedure to reduce variance and
avoid overfitting. This is achieved by training each individ-
ual tree on randomly selected subsets of the training samples
(also called bagging), as well as by randomly selecting the
deciding input variable for each tree node to decorrelate the
trees. Figure 6 depicts a decision tree that performs classi-
fication over two input dimensions X1 and X2, and predicts
a class from respective regions.

A regression random forest is built from a set of such
decision trees where the leaf nodes output the average of the
training data labels, and the output of the whole forest is
the average of the predicted results from the different trees.
In our experimental setting, we train separate regressors to
learn the mapping from our input (parameter) space to each
output variable, i.e. the three performance metrics.

4.2 Active Learning
Active learning is a paradigm in supervised machine learn-

ing which uses fewer training examples to achieve better pre-
diction accuracy - by iteratively training a predictor, and
using the predictor in each iteration to choose the training
examples which will increase its accuracy the most. Thus the
accuracy of the predictive model is incrementally improved
by interleaving exploration and exploitation steps, as shown
by the feedback loop in Figure 5. We initialize our base
predictors (randomized decision forests) from a very small
number of randomly sampled points in the parameter space.
For these points the application is evaluated over a video
sequence on the hardware platform, yielding accuracy, run-
time, and power consumption corresponding to these points
(labels in a supervised setting). Since our objective is to ac-
curately estimate the points near the pareto optimal front,
we use the current predictor to provide performance values
over the entire parameter space and thus estimate the pareto
fronts for accuracy, runtime, and power (separately) such as
the one in Figure 4. For the next iteration, only parame-
ter points near the predicted pareto front are sampled (and
evaluated on hardware), and subsequently used to train new
predictors using the entire collection of training points from
current and all previous iterations. This process is repeated
over a number of iterations. Our experiments (Sect. 5)
indicate that this smarter way of searching for highly infor-
mative parameter points in fact yields superior predictors as
compared to a baseline that uses randomly sampled points
alone. Thus by iterating this process several times in the
active learning loop, we are able to discover high-quality de-

Machine type ODROID-XU3 ASUS T200TA

CPU Samsung Exynos 5422 Intel Atom Z3795
CPU cores 4 (A15) + 4 (A7) 4 Intel Silvermont
CPU GHz 2.0 (A15) 1.4 (A7) 1.6 (2.4 Boost)

GPU ARM Mali-T628-MP6 Intel HD Graphics
GPU architecture Midgard 2nd gen. Bay Trail-T

GPU MHz 600 311 (778 Boost)
OpenCL version 1.1 1.2
Toolkit version Mali SDK1.1 Beignet v1.1.1

Compiler gcc 4.8.2 gcc 5.3.1
OS (kernel) Ubuntu 14.04 (3.10.53) Fedora 23 (4.2.3)

Table 2: Specification of the platforms selected for experi-
mentation.

sign configurations that lead to good performance outcomes.
This approach enables predicting performance metrics over
a parameter space comprising of approximately 1,800,000
points in a matter of seconds.

5. EXPERIMENTAL EVALUATION
In this section we describe how we evaluated our novel co-

design space exploration techniques. We begin by providing
a more detailed description of the target platforms (Section
5.1). We then briefly summarize our key results (Section
5.2), before providing more detail on the results of each stage
of our co-design space exploration in Sections 5.3, 5.4, and
5.5.

5.1 Platforms
We use the popular Hardkernel ODROID-XU3 platform,

based on the Samsung Exynos 5422, for all of our experi-
ments (refer to Table 2). This board has been previously
evaluated for use in UAV applications [34, 24], and is also
used in the evaluation of SLAMench [31]. We also considered
the ASUS T200TA (refer to Table 2) for comparison during
the algorithmic and compilation space. As mentioned ear-
lier, this platform does not provide enough flexibility for a
full exploration including the hardware space.

The Exynos 5422 includes a Mali-T628-MP6 GPU along-
side ARM’s big.LITTLE heterogeneous multiprocessing so-
lution, consisting of four Cortex-A15“big”performance tuned
out-of-order processors, and four Cortex-A7 “LITTLE” en-
ergy tuned in-order processors. The Mali-T628-MP6 GPU
consists of two separate OpenCL devices: one with four cores
and another with two. In our experiments we only use the 4-
core OpenCL which excludes partitioning tasks across mul-
tiple GPU devices. This is a potential avenue to explore
in order to deliver even higher performance within a power
budget. The ODROID-XU3 platform has integrated power
monitors with on-board voltage/current sensors and split
power rails. This allows independent power measurements
for the “big” cores, “LITTLE” cores, GPU, and DRAM. The
SLAMBench benchmarking framework provides natively an
interface to access and log these power sensors.

We also measure performance on an Intel Atom [3] plat-
form in the form of an ASUS Transformer T200 tablet. This
contains an Intel Atom Z3795 SoC, which includes a quad-
core Intel Atom CPU running at up to 2.4 GHz. An Intel
HD Graphics GPU is also present, containing 6 execution
units and running at up to 778 MHz. We use the open
source Beignet [1] OpenCL runtime which supports version

Constraint Speed (FPS) Max ATE (cm) Power (Watts)
Default 6.03 4.41 2.77

Best runtime 39.85 4.47 1.47
Best accuracy 1.51 3.30 2.38
Best power 11.92 4.45 0.65
Power < 1W 29.09 4.47 0.98
Power < 2W 39.85 4.47 1.47
FPS > 10 11.92 4.45 0.65
FPS > 20 28.87 4.47 0.91
FPS > 30 32.38 4.47 1.01

Table 3: Best performance on the ODROID-XU3 platform,
running KFusion under given constraints.

1.2 of the OpenCL standard and was produced by Intel’s
Open Technology Center.

5.2 Overall Results
We observe that the default configuration provides a frame-

rate of 6 FPS for a power budget of 2.77 Watts. Our co-
design space exploration results (refer to Table 3) show sig-
nificantly better frame-rates with reduced power consump-
tion and comparable accuracy. As an example consider a
power budget of 1W. Our results show that a configuration
exists in the real-time range (29.09 FPS) and with a similar
accuracy ATE compared to the default configuration (4.47
cm). The selected best configurations perform well across
datasets and in live mode using an actual RGB-D ASUS
Xtion Pro camera.

Active learning effectively and consistently pushes the Pareto
front towards better solutions. Taking into account the
domain layer of the stack unleashes unprecedented perfor-
mance trade-offs compared to the more usual compiler opti-
mizations. In fact our algorithmic design space exploration
provides the greatest improvement on the performance met-
rics by a large factor (refer to Section 5.3). However, ex-
ploration on the hardware parameters shows that important
speed/power trade-offs can be obtained in this space. In par-
ticular, as we shall see, the greatest improvement in power
consumption is provided by exploration of hardware param-
eters.

5.3 Algorithmic Design Space Exploration
The algorithmic space consists of application parameters

summarized in Table 1 and described at the top of Section
3.2. As described in Section 4, we first sample this space at
random, and then use active learning in order to push the
Pareto front toward better solutions (refer to Figure 5.3).

Sampling.
We draw 3,000 uniformly distributed random samples from

the parameter space and evaluate the KFusion pipeline on
the video stream; for both platforms the cumulated run-
times take roughly 5 days. By using random sampling, we
observe that the Pareto front cannot be improved beyond
2,000 samples. Thus, there is an inflection point beyond
which random sampling is unproductive.

Active learning.
In order to further explore optimal points in the design

space, we employ active learning in conjunction with ran-
dom decision forest (Section 4.2). For the ODROID-XU3
this produces 1,142 new samples after 6 iterations, thus in-
creasing the total number of samples to 4,142. Note that the

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Runtime (sec)

0.035

0.040

0.045

0.050

0.055
M

a
x
 A

T
E
 (

m
)

Accuracy limit = 0.05m

Default configuration
Active learning
Random sampling

(a) ODROID-XU3

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Runtime (sec)

0.035

0.040

0.045

0.050

0.055

M
a
x
 A

T
E
 (

m
)

Accuracy limit = 0.05m

Default configuration
Active learning
Random sampling

(b) ASUS T200TA

Figure 7: Random sampling (red) and active learning
(black). For the sake of visualization we only show two
dimensions (max ATE and runtime) of a three dimension
plot.

number of samples produced per iteration is not constant as
it depends on the predicted points’ proximity to the Pareto
front. We observe that the number of samples per itera-
tion varies between 100 and 300. The runtime of these new
configurations was faster, close to a day, as most of these
configurations were good configurations (accurate and fast).
The training of the random forest model was fast as well,
less than two minutes for every iteration. With the ASUS
T200TA platform, 1392 new points has been produced by
active learning.

Effectiveness of the active learning method.
Figure 5.3 shows the overall improvement of the Pareto

front obtained with active learning (in red) compared to the
Pareto obtained with random sampling (in black). For the
ODROID-XU3 we observe that random sampling provides a
set of 333 valid configurations, i.e. 333 configurations with
a max ATE smaller than 5 cm. For the ASUS T200TA,
we found 291 valid configurations during the sampling. Fur-

Mu dist
ance

Integra
tio

n ra
te

Tra
ck

ing ra
te

ICP th
re

sh
old

Volume re
so

lutio
n

Compute si
ze

 ra
tio

Pyra
mid le

vel 1

Pyra
mid le

vel 2

Pyra
mid le

vel 3

Runtime

Power

Accuracy

Figure 8: Impact of algorithmic parameters (x-axis) on the
performance metrics (y-axis) for the ODROID-XU3 plat-
form (the equivalent diagram for the ASUS T200TA is sim-
ilar). Bigger squares indicate a higher correlation. A white
square denotes a parameter which when increased improves
the corresponding metric, whilst a black square shows a
worsening.

thermore, by using the active learning technique, we observe
642 new possible configurations with an ATE of less than 5
cm on the ODROID-XU3, and 665 on the ASUS T200TA.
This means we have produced twice as many valid points
as random sampling, for roughly a third of the number of
samples. These ratios are an indicator of the effectiveness
of our active learning-based prediction model. There is a
discrepancy between predicted and measured performance.
This is shown by the active learning points in Figure that
do not lie on the Pareto front. A performance comparison is
also available on Table 4. Note that there are 36 points on
the Pareto front for the ODROID-XU3 and 167 points for
the ASUS T200TA; these are the configurations forwarded
to explore the compiler and architecture parameters in the
incremental exploration of section 3.4.

Relationship between parameters and metrics.
It is particularly interesting to analyze the impact of each

algorithmic parameter in isolation. To study the linear re-
lationship of the algorithmic parameters with the perfor-
mance metrics (frame-rate, accuracy and power) we use the
Hinton diagram in Figure 8. In this figure, each square de-
notes the correlation between a pair (parameter, metric),
i.e. the linear relation between a parameter on the x-axis
and the performance metric on the y-axis. Note that a big-
ger square denotes a stronger correlation and vice versa.
Furthermore, the square color denotes if a parameter has
a positive (white) or negative (black) correlation with the
performance metric. For example, an increased compute
size ratio improves power efficiency and frame-rate but de-
grades accuracy. This analysis provides a real applicability
beyond our design space exploration. It gives an insight
into linear relationships between algorithmic parameters and
performance goals (frame-rate, accuracy, and power). As
shown in the figure there are several parameters that have
a non-linear relationship with the performance parameters.
It would not be possible for a domain expert to understand
these high-dimensional non-linearities, thus emphasizing the
importance of automated analysis. For example, mu, inte-
gration rate, icp threshold, and the compute size ratio are
the parameters with strong linear relationship in terms of
accuracy, while only compute size ratio is strongly linear in
execution time.

Constraint FPS Error Power
Volume

Resolution
Compute
Size Ratio

Pyramid
Integ.
Rate

ICP
Threshold

µ
Tracking

Rate
Default [5] 5.46 4.41 2.1 256 1 10x5x4 2 0.0 0.1 1

Default (measured) 6.03 4.41 2.77 256 1 10x5x4 2 0.0 0.1 1

Best speed
RS 36.11 4.63 2.31 128 4 7x11x7 10 1.0 0.2 1
AL 38.28 4.47 2.16 128 4 9x3x9 30 1.0 0.2 1

Best accuracy
RS 3.35 4.19 2.83 128 1 5x5x11 20 0.0 0.2 1
AL 3.02 4.05 2.82 128 1 11x5x5 1 0.0 0.2 1

Best power
RS 19.12 4.73 2.13 128 4 3x11x9 20 0.0 0.1 1
AL 38.07 4.47 2.12 128 4 9x3x7 30 1.0 0.2 1

Table 4: Comparison of random sampling (RS) best solutions with active learning (AL) search over the algorithmic space for
the ODROID-XU3 platform. We list the results for the default configuration given in the original SLAMBench paper [5], and
our own results running the same configuration using a newer version of the SLAMBench package. For consistency, in this
work our baseline version for performance comparison is the default measured version. The SLAMBench paper provides error
as mean ATE over the whole workload, we provide it as the maximum ATE for any frame of the workload.

Volume resolution < 96

Compute size ratio < 3 Compute size ratio > 6

Volume resolution >192

Mu distance< 0.05 Compute size ratio < 3

Accurate (Max ATE < 5 cm)

Fast (Speed > 30 FPS)

Power efficient (consumption < 3W)

+

+
OR

+

+
OR OR

YES NO

Figure 9: Decision tree showing how algorithmic parame-
ters affect the performance metrics for the ODROID-XU3
platform.

Interpreting the results.
We rank the different algorithmic parameters as a function

of their influence on the performance metrics. This is shown
as a decision tree (Figure 9) for the ODROID-XU3 platform.
The salient advantage of the decision tree is that it can be
readily understood. For the sake of presentation we only
plot a few levels of the tree.

We observe in our results that the Volume resolution is the
algorithmic parameter that has the most significant impact
on performance. Hence, it is at the root node with a deci-
sion threshold of 96. Note that for the Volume resolution,
96 is not a valid value but it can be seen as an intermediate
of two valid values, i.e. 64 and 128. In addition, note that
in Figure 8, the correlation between Volume resolution and
the performance metrics is relatively small; this further high-
lights the highly non-linear nature of this parameter. The
symbols represent a target performance goal achieved or not
achieved, respectively without and with a cross. As we can
see, there are two branches that contain configuration points
satisfying the three performance metric thresholds depicted
in the legend. These branches are Volume resolution < 96
and Compute size ratio ≥ 3, or Volume resolution ≤ 192
and 3 ≤ Compute size ratio ≥ 6. When in a branch we have
a performance metric with a cross, that means that there
are no configurations in all that sub-tree able to meet that
performance metric requirement.

By using the described techniques to explore the algorith-
mic space, we have obtained a 6.35x improvement in exe-
cution time (best speed), and a 23.5% reduction in power
consumption (best power), compared to the default configu-
ration on the ODROID-XU3 board. This means that, even
without performing further exploration of the compiler and
architectural spaces, we are already able to meet our design
requirements. However, as will be seen, some runtime im-
provements and significant reductions in power consumption
can still be obtained.

5.4 Compiler Space
Table 1 summarizes the compiler parameters that are ex-

plored in our study. For this study we use the 36 Pareto
optimal points of the algorithmic space to conduct a com-
piler design space study. In other words, we take the best
performing configurations of the algorithmic space and use
this sub-set of optimal points to further explore the compiler
space, as explained in section 3.4

Optimizations.
We consider compiler optimizations that only affect the

kernels in isolation. Note that kernel transformations such
as vectorization, thread coarsening, and OpenCL local work-
group sizes fall in this category. We optimize each kernel
independently, which enables us to undertake an exhaustive
exploration of the space of our selected optimizations for
each kernel. For each vectorizable kernel, we look for every
possible loop length vectorization (4 possibilities per axis for
a total of 8) and select the best performing configuration.
Furthermore, for each kernel we explore 72 different thread
coarsening values. Note that a thread coarsening value is
a combination of factor, stride, and dimension (see Table
1). To perform this transformation, we use an automatic
source to source thread coarsening generation tool [29]. In
addition, we also include several LLVM optimizations using
the LLVM flags listed in Table 1. In Figure 10, as these
optimizations mainly affect the runtime, we only show the
impact of exploring the compiler design space on the run-
time performance of each kernel of KFusion. These kernels
correspond to those summarized in Figure 2 and numerical
suffix values differentiate input datasize.

We observe an average runtime speed-up of 23% with
the ODROID-XU3, and 16% with the ASUS T200 and a
maximum speed-up of 80% for the ‘halfSampleRobustIm-

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

bilateralFilter
depth2vertex0
depth2vertex1
depth2vertex2
halfSam

pleR
obustIm

age1

halfSam
pleR

obustIm
age2

integrate
m

m
2m

eters
raycast
reduce0
reduce1
reduce2
renderD

epth
renderTrack
renderVolum

e
track0
track1
track2
vertex2norm

al0

vertex2norm
al1

vertex2norm
al2

G
eo. M

ean

S
pe

ed
up

ASUS T200TA
ODROID-XU3

Figure 10: For each Pareto optimal solution in the algo-
rithmic space, we apply some common and advanced com-
piler optimization techniques. The graph shows the average
speed-up obtained for each kernel, for both the ODROID
and ASUS platforms.

ageKernel1’ kernel on ODROID-XU3. Other kernels achiev-
ing speedups are the ‘bilateralFilter’ (which performs image
smoothing in the KFusion front end), and kernels associated
with the reduction (‘reduce’) and tracking (‘track’) portions
of the algorithm. However, we observe that these optimiza-
tions are effective only on less computationally intensive ker-
nels, and hence they have little significant impact on the
overall execution time of KFusion.

Impact of the compilation parameters.
We observe that the compiler parameters explored in our

study provide only modest performance improvements. Specif-
ically, we realize that real-time frame rate, i.e. 30 FPS,
cannot be obtained by only applying the compiler optimiza-
tions. This highlights the need of co-exploring the algorith-
mic, compiler, and architecture design space.

When running KFusion on the ODROID-XU3 with the
optimized kernels, we observe an average of 6% performance
improvement and a maximum of 20% performance improve-
ment over the set of Pareto optimal points obtained from
the algorithmic space exploration.

5.5 Architecture Space
The last stage in our incremental co-design space explo-

ration is exploring the architecture parameters in Table 1.
Note that the architecture parameters only have an impact
on the runtime and power, the ATE is not affected by this
space exploration. This exploration will be performed across
the Pareto optimal points obtained from the compiler de-
sign space stage under the constraint that they are accurate
enough, i.e. ATE < 5 cm. This constraint is a reasonable
assumption in most applications in the SLAM domain.

Exhaustive exploration.
Since the hardware design space size is only 160 configura-

tions on the ODROID-XU3 platform, it can be exhaustively

0.00 0.05 0.10 0.15
Runtime (sec)

0

1

2

3

4

5

6

7

P
o
w

e
r

co
n
su

m
p
ti

o
n
 (

W
)

Configuration
Default configuration
Pareto front

Figure 11: Exhaustive exploration of the architecture de-
sign space (grey dots) for the ODROID-XU3 platform. The
default configuration (black cross) and the Pareto optimal
front (black line) are also depicted.

Constraint FPS Error Power

Best speed
before 38.28 4.47 2.16
after 39.85 4.47 1.47

Best power
before 38.07 4.47 2.12
after 11.92 4.45 0.65

Table 5: Compiler and architecture space exploration im-
provements. Our technique has been able to obtain signifi-
cant improvements in power consumption, without compro-
mising the execution time, and has also found configurations
suitable for extremely power constrained environments.

explored. We visualize the power consumption and runtime
dimensions in Figure 11. The black cross depicts the default
configuration and the black line is the Pareto front. We ob-
serve that a configuration exists that provides a frame-rate
of 32.38 FPS (runtime 0.03 seconds) while drawing only 1.01
Watts of power. Thus this represents an interesting configu-
ration that supports real-time performance and, at the same
time, consuming minimal power. We further observe that
there exists a configuration in the Pareto front that provides
a frame-rate of nearly 40 FPS while consuming less than 2
Watts of power. There is also an extreme low-power config-
uration (0.65W) where we are trading power consumption
for a lower frame rate. The improvements obtained from the
architecture and compilation spaces can be seen in Table 5.

5.6 Discussion
The majority of improvement in runtime came from op-

timizing at the algorithmic stage. By tuning the various
parameters in the co-design space, we were able to achieve
significant improvements in both execution time and power
consumption (see Table 3). Our optimizations over the com-
pilation and architectural spaces provided minimal improve-

ments in runtime performance, meaning that if we had fo-
cused on only the ‘lower’ two layers of our design space, we
would not have been able to reach our design goals with our
selected platform. This shows the importance of incorporat-
ing domain knowledge into the design space. Although this
multi-layered approach may not have converged on an opti-
mal set of solutions, it reduced the size of the design space
significantly and allowed us to find good configurations much
more quickly.

Importantly, modifying the algorithmic parameters signif-
icantly affects the runtime profile of KFusion. As the Hinton
plot in Figure 8 shows, each parameter can have varying ef-
fects on runtime, accuracy, and power consumption. If we
had focused on only the lower tiers of the optimization space,
we would have missed this significant opportunity for im-
provements in runtime and power consumption, and instead
obtained only minor improvements.

6. RELATED WORK
The computer vision community primarily focuses on de-

veloping accurate algorithms [21, 39], almost always run-
ning on high-performance and power hungry systems. As
computer vision technology becomes mature, a few bench-
marks [40, 15, 38] have attempted to refocus research on run-
time constrained contexts. Similarly, new challenges such as
the Low-Power Image Recognition Challenge (LPIRC 2016)
are emphasizing the importance of low-power embedded im-
plementations of computer vision applications. In this con-
text, recently SLAMBench [31] enabled quantitative, com-
parable, and validatable experimental research in the form
of a benchmark framework for dense 3D scene understanding
on a wide range of devices. Adding energy consumption as
a metric when evaluating computer vision applications, has
enabled energy constrained systems such as battery-powered
robots and embedded devices to become evaluation plat-
forms. Zeeshan et al. [42] is a first attempt at exploring
SLAM configuration parameters trading off performance for
accuracy on embedded systems.

During the last two decades, several design space explo-
ration techniques and frameworks have been used in a va-
riety of different contexts ranging from embedded devices,
to compiler research, and system integration [32, 10]. Kang
et al. [26] proposed a system which reduces the size of the
design space by considering sets of design points to be equiv-
alent. Hu et al. [23] present a user-guided design space ex-
ploration framework, allowing the user to identify both good
(and bad) design regions, and hence guide the subsequent
search. Ansel et al. [8] introduced an extensible and portable
framework for empirical performance tuning. It runs an en-
semble of search techniques systematically allocating larger
budgets to those who perform well, using a multi-armed ban-
dit optimal budget allocation strategy. Norbert et al. tackle
the software configurability problem for binary [37] and for
both binary and numeric options [36] using a performance-
influence model which is based on linear regression. They
optimize for execution time on several examples exploring
algorithmic and compiler spaces in isolation.

In particular, machine learning (ML) techniques have been
recently employed in both architectural and compiler re-
search. Khan et al. [27] employed predictive modeling for
cross-program design space exploration in multi-core sys-
tems. The techniques developed managed to explore a large
design space of chip-multiprocessors running parallel appli-

cations with low prediction error. Similarly, Ipek et al. [25]
employed an artificial neural network to predict the impact
on the performance of hardware parameters, e.g. cache sizes,
buffer sizes, of a particular architecture. Furthermore, Lee et
al. [28] used polynomial regression to predict power and per-
formance on a multiprocessor design space. Chen et al. [14]
suggest that a ML model can be used to produce a rela-
tive ranking of design points, rather than predicting their
performance precisely.

Regarding compiler optimization research, several efforts
to apply ML in this field have been undertaken during the
last decade. Cavazos et al. [13] used ML to discover which
sequence of compiler optimizations apply better to executed
programs. Moreover, the research conducted in [7, 19] em-
ploy ML techniques for various compiler optimizations, e.g.
loop unrolling, common subexpression elimination, loop hoist-
ing, based on program features.

In contrast to the aforementioned research, to the best
of our knowledge, our work is the first to conduct a ver-
tical co-design space exploration, taking into account algo-
rithmic, compiler, and hardware layers in order to solve a
three-objective optimization problem. Furthermore, to the
best of our knowledge, we show that random forest in con-
junction with active learning is effective to focus the search
for Pareto optimal configurations in this context.

7. CONCLUSIONS AND FUTURE WORK
We have considered an incremental co-design space ex-

ploration on a three-objective optimization goal, optimiz-
ing jointly on the runtime, power, and accuracy dimensions.
Our incremental co-design is able to combine trade-offs at
different levels in the system, refining the Pareto front in
subsequent optimization stages. We have been demonstrat-
ing our methodology on a popular multi-kernel dense SLAM
implementation. As a result, for the first time, this imple-
mentation runs in the real-time range on a device with a
power budget of 1W. This is a 4.8x improvement in run-
time and a 2.8x improvement in power consumption over an
hand-tuned implementation by a SLAM domain expert on
the same platform for a similar accuracy. This work goes
beyond conventional benchmarking in computer systems re-
search by exposing the algorithmic-level design space.

In further work, we will explore how our approach gen-
eralizes to different applications, compilers and platforms.
We will investigate variable selection methods that reduce
the dimension of the space by creating a new feature space
and by doing so will enable us to consider larger spaces for
bigger mapping problems. There are also a large number
of opportunities in transfer learning approaches. In partic-
ular, each configuration is likely to give a similar accuracy
across a range of devices, and this knowledge might be used
to guide exploration toward more interesting points from a
power/runtime perspective. Alternatively, we might keep a
fixed hardware, and use learned knowledge of the architec-
tural space to more effectively search through design points
for different applications running on the same hardware.

8. ACKNOWLEDGMENTS
We acknowledge funding by the EPSRC grant PAMELA

EP/K008730/1. M. Luján is funded by a Royal Society Uni-
versity Research Fellowship. We thank the PAMELA Steer-
ing Group for the useful discussions.

9. REFERENCES
[1] Beignet.

https://www.freedesktop.org/wiki/Software/Beignet/.

[2] Dyson 360 Eye web site.
https://www.dyson360eye.com.

[3] Intel Atom Z3795.
http://ark.intel.com/products/80267/
Intel-Atom-Processor-Z3795-2M-Cache-up-to-2
39-GHz.

[4] Project Tango web site.
https://www.google.com/atap/projecttango.

[5] SLAMBench web site. http://apt.cs.manchester.ac.uk/
projects/PAMELA/tools/SLAMBench.

[6] OpenCL 1.1 Specification, Sept. 2010.

[7] F. Agakov, E. Bonilla, J. Cavazos, B. Franke,
G. Fursin, M. F. P. O’Boyle, J. Thomson,
M. Toussaint, and C. K. I. Williams. Using machine
learning to focus iterative optimization. In Proceedings
of the International Symposium on Code Generation
and Optimization, CGO ’06, pages 295–305,
Washington, DC, USA, 2006. IEEE Computer Society.

[8] J. Ansel, S. Kamil, K. Veeramachaneni,
J. Ragan-Kelley, J. Bosboom, U.-M. O’Reilly, and
S. Amarasinghe. Opentuner: an extensible framework
for program autotuning. In Proceedings of the 23rd
international conference on Parallel architectures and
compilation, pages 303–316. ACM, 2014.

[9] ARM Ltd. big.little technology.

[10] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno,
C. Passerone, and A. Sangiovanni-Vincentelli.
Metropolis: an integrated electronic system design
environment. In IEEE Computer, volume 36, pages
45–52, April 2003.

[11] P. J. Besl and N. D. McKay. Method for registration
of 3-D shapes. In Robotics-DL tentative. Int. Society
for Optics and Photonics, 1992.

[12] L. Breiman. Classification And Regression Trees.
Chapman and Hall, London, UK, 1984.

[13] J. Cavazos, C. Dubach, F. Agakov, E. Bonilla,
M. F. P. O’Boyle, G. Fursin, and O. Temam.
Automatic performance model construction for the
fast software exploration of new hardware designs. In
Proceedings of the 2006 International Conference on
Compilers, Architecture and Synthesis for Embedded
Systems, CASES ’06, pages 24–34, New York, NY,
USA, 2006. ACM.

[14] T. Chen, Q. Guo, K. Tang, O. Temam, Z. Xu, Z.-H.
Zhou, and Y. Chen. Archranker: A ranking approach
to design space exploration. SIGARCH Comput.
Archit. News, 42(3):85–96, June 2014.

[15] J. Clemons, H. Zhu, S. Savarese, and T. Austin.
MEVBench: A mobile computer vision benchmarking
suite. In IISWC, 2011.

[16] C. Cohn, L. Atlas, and R. Ladner. Improving
generalization with active learning. Machine Learning,
15(2):201–221, 1994.

[17] H. Esmaeilzadeh, E. Blem, R. St. Amant,
K. Sankaralingam, and D. Burger. Dark silicon and
the end of multicore scaling. In Proceedings of the 38th
Annual International Symposium on Computer
Architecture, ISCA ’11, pages 365–376, New York, NY,
USA, 2011. ACM.

[18] M. Fallon, P. Marion, R. Deits, T. Whelan,
M. Antone, J. McDonald, and R. Tedrake. Continuous
humanoid locomotion over uneven terrain using stereo
fusion. In ICHR, 2015.

[19] G. Fursin, Y. Kashnikov, A. Memon, Z. Chamski,
O. Temam, M. Namolaru, E. Yom-Tov, B. Mendelson,
A. Zaks, E. Courtois, F. Bodin, P. Barnard,
E. Ashton, E. Bonilla, J. Thomson, C. K. Williams,
and M. O’Boyle. Milepost gcc: Machine learning
enabled self-tuning compiler. International Journal of
Parallel Programming, 39(3):296–327, 2011.

[20] A. Handa, V. Patraucean, V. Badrinarayanan,
S. Stent, and R. Cipolla. SceneNet: Understanding
Real World Indoor Scenes With Synthetic Data.
ArXiv e-prints 1511.07041, 2015.

[21] A. Handa, T. Whelan, J. McDonald, and A. Davison.
A Benchmark for RGB-D Visual Odometry, 3D
Reconstruction and SLAM. In ICRA, 2014.

[22] J. L. Henning. SPEC CPU2006 benchmark
descriptions. ACM SIGARCH Computer Architecture
News, 2006.

[23] X. Hu, G. Greenwood, S. Ravichandran, and G. Quan.
A framework for user assisted design space
exploration. In Proceedings of 36th Design Automation
Conference, pages 414–419, 1999.

[24] D. Hulens, T. Goedemé, and J. Verbeke. How to
choose the best embedded processing platform for
on-board UAV image processing? Proceedings
VISAPP 2015, pages 1–10, 2015.

[25] E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski,
and M. Schulz. Efficiently exploring architectural
design spaces via predictive modeling. SIGARCH
Comput. Archit. News, 34(5):195–206, Oct. 2006.

[26] E. Kang, E. Jackson, and W. Schulte. An approach for
effective design space exploration. In Foundations of
Computer Software. Modeling, Development, and
Verification of Adaptive Systems, volume 6662 of
Lecture Notes in Computer Science, pages 33–54.
Springer Berlin Heidelberg, 2011.

[27] S. Khan, P. Xekalakis, J. Cavazos, and M. Cintra.
Using Predictive Modeling for Cross-Program Design
Space Exploration in Multicore Systems. In
Proceedings of the 16th International Conference on
Parallel Architecture and Compilation Techniques,
PACT ’07, pages 327–338, Washington, DC, USA,
2007. IEEE Computer Society.

[28] B. C. Lee and D. M. Brooks. Accurate and efficient
regression modeling for microarchitectural
performance and power prediction. SIGARCH
Comput. Archit. News, 34(5):185–194, Oct. 2006.

[29] A. Magni, C. Dubach, and M. F. O’Boyle. A
large-scale cross-architecture evaluation of
thread-coarsening. In Proc. of SC13: Int. Conf. for
High Performance Computing, Networking, Storage
and Analysis. ACM, 2013.

[30] S. Moll. Decompilation of LLVM IR. Master’s thesis,
2011.

[31] L. Nardi, B. Bodin, M. Z. Zia, J. Mawer, A. Nisbet,
P. H. J. Kelly, A. J. Davison, M. Luján, M. F. P.
O’Boyle, G. Riley, N. Topham, and S. Furber.
Introducing SLAMBench, a performance and accuracy
benchmarking methodology for SLAM. In ICRA, 2015.

https://www.freedesktop.org/wiki/Software/Beignet/
https://www.dyson360eye.com
http://ark.intel.com/products/80267/Intel-Atom-Processor-Z3795-2M-Cache-up-to-2_39-GHz
http://ark.intel.com/products/80267/Intel-Atom-Processor-Z3795-2M-Cache-up-to-2_39-GHz
http://ark.intel.com/products/80267/Intel-Atom-Processor-Z3795-2M-Cache-up-to-2_39-GHz
https://www.google.com/atap/projecttango
http://apt.cs.manchester.ac.uk/projects/PAMELA/tools/SLAMBench
http://apt.cs.manchester.ac.uk/projects/PAMELA/tools/SLAMBench

[32] S. Neema, J. Sztipanovits, G. Karsai, and K. Butts.
Constraint-based design-space exploration and model
synthesis. In Embedded Software, volume 2855 of
Lecture Notes in Computer Science, pages 290–305.
Springer Berlin Heidelberg, 2003.

[33] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,
D. Kim, A. J. Davison, P. Kohli, J. Shotton,
S. Hodges, and A. Fitzgibbon. KinectFusion:
Real-time dense surface mapping and tracking. In
ISMAR, 2011.

[34] C. Papachristos, D. Tzoumanikas, and A. Tzes. Aerial
robotic tracking of a generalized mobile target
employing visual and spatio-temporal dynamic subject
perception. In Intelligent Robots and Systems (IROS),
2015 IEEE/RSJ International Conference on, pages
4319–4324, Sept 2015.

[35] R. Salas-Moreno, B. Glocker, P. H. J. Kelly, and A. J.
Davison. Dense planar SLAM. In ISMAR, 2014.

[36] N. Siegmund, A. Grebhahn, S. Apel, and C. Kästner.
Performance-influence models for highly configurable
systems. In Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, pages
284–294. ACM, 2015.

[37] N. Siegmund, S. S. Kolesnikov, C. Kästner, S. Apel,
D. Batory, M. Rosenmüller, and G. Saake. Predicting
performance via automated feature-interaction
detection. In Proceedings of the 34th International
Conference on Software Engineering, pages 167–177.
IEEE Press, 2012.

[38] S. Song, S. P. Lichtenberg, and J. Xiao. Sun rgb-d: A
rgb-d scene understanding benchmark suite. In
Computer Vision and Pattern Recognition (CVPR),
2015 IEEE Conference on, pages 567–576, June 2015.

[39] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and
D. Cremers. A benchmark for the evaluation of
RGB-D SLAM systems. In IROS, 2012.

[40] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie,
S. Garcia, S. Belongie, and M. B. Taylor. SD-VBS:
The San Diego vision benchmark suite. In IISWC,
2009.

[41] M. Warmuth, G. Ratsch, M. Mathieson, J. Liao, and
C. Lemmon. Active learning in the drug discovery
process. In Neural Information Processing Systems
(NIPS), 2001.

[42] M. Z. Zia, L. Nardi, A. Jack, E. Vespa, B. Bodin,
P. H. J. Kelly, and A. J. Davison. Comparative Design
Space Exploration of Dense and Semi-Dense SLAM.
In ICRA, 2016.

	Introduction
	Background
	Methodology
	Experimental Setting
	Co-Design Space
	Multi-Objective Optimization Goal
	Incremental Co-Design Space Exploration

	Smart search
	Randomized Decision Forest
	Active Learning

	Experimental evaluation
	Platforms
	Overall Results
	Algorithmic Design Space Exploration
	Compiler Space
	Architecture Space
	Discussion

	Related work
	Conclusions and Future Work
	Acknowledgments
	References

