
Weld: A Common Runtime for High Performance
Data Analytics

Shoumik Palkar, James J. Thomas, Anil Shanbhag†, Deepak Narayanan, Holger Pirk†,
Malte Schwarzkopf†, Saman Amarasinghe†, Matei Zaharia

Stanford InfoLab †MIT CSAIL

Abstract
Modern analytics applications combine multiple functions from
different libraries and frameworks to build increasingly complex
workflows. Even though each function may achieve high perfor-
mance in isolation, the performance of the combined workflow is
often an order of magnitude below hardware limits due to extensive
data movement across the functions. To address this problem, we
propose Weld, a runtime for data-intensive applications that opti-
mizes across disjoint libraries and functions. Weld uses a common
intermediate representation to capture the structure of diverse data-
parallel workloads, including SQL, machine learning and graph
analytics. It then performs key data movement optimizations and
generates efficient parallel code for the whole workflow. Weld can
be integrated incrementally into existing frameworks like Tensor-
Flow, Apache Spark, NumPy and Pandas without changing their
user-facing APIs. We show that Weld can speed up these frame-
works, as well as applications that combine them, by up to 30×.

1. INTRODUCTION
Modern data applications use an increasingly diverse mix of al-

gorithms, libraries and systems. In most domains, applications now
incorporate statistical techniques, machine learning or graph ana-
lytics in addition to relational processing. This shift has given rise
to a wide range of libraries and frameworks for advanced analytics,
such as TensorFlow [1], Apache Spark [37], SciDB [7], and graph
frameworks [21, 31]. Given the demand for advanced analytics,
future applications are likely to further embrace these frameworks.

Unfortunately, this increased diversity has also made it harder to
achieve high performance. In the past, an application could push all
of its data processing work to an RDBMS, which would optimize
the entire application. Today, in contrast, no single system under-
stands the whole application. Instead, researchers and developers
have optimized individual libraries and functions, such as machine
learning or graph algorithms [21, 26, 31]. Because real applications
combine many analytics functions and frameworks, however, this
approach leaves a great deal of performance on the table.

In particular, most data analytics algorithms are data-intensive,
meaning they perform little computation per byte of input data. With

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2017.
8th Biennial Conference on Innovative Data Systems Research (CIDR ‘17)
January 8-11, 2017 , Chaminade, California, USA.

separately-optimized processing functions, each individual function
is fast, but data movement across the functions can dominate the
execution time. For example, even though TensorFlow uses opti-
mized BLAS kernels in its individual operators, algorithms using
multiple operators can be 10–30× slower than hand-tuned code. We
find similar slowdowns in workflows using Python or Spark.

To address this problem, we propose Weld, a common runtime
for data analytics libraries that optimizes across them. Although
defining a single runtime that fully understands all workloads (e.g.,
machine learning, graphs, or SQL) is unrealistic, our key insight is
that we can still find simple abstractions that capture the structure
of these workloads and enable powerful cross-library optimizations.
We show that this approach enables order-of-magnitude speedups
both within and across current data processing libraries.

Weld is based on two key ideas. First, to optimize across diverse
libraries, Weld asks them to express their work using a functional-
like intermediate representation (IR) that is highly amenable to
cross-library optimizations such as loop fusion, vectorization, data
layout changes, and loop tiling [35]. This IR is sufficiently expres-
sive to capture SQL, machine learning, graph computations and
other workloads. Second, Weld offers a runtime API based on lazy
evaluation that lets applications build up a Weld computation by
calling different libraries, and then optimizes across them. For ex-
ample, if a user runs a NumPy [28] function on each row returned
by a Spark SQL [3] query, Weld can vectorize calls to the function
across rows, or push predicates from the function into Spark.

We evaluate Weld using both individual algorithms and appli-
cations that combine them. On SQL, machine learning and graph
benchmarks, Weld is competitive with hand-tuned code and opti-
mized systems such as HyPer [24] and GraphMat [31]. In addition,
we have integrated Weld into Spark SQL, NumPy, Pandas, and Ten-
sorFlow. Without changing the user APIs of these frameworks, Weld
provides speedups of up to 6× for Spark SQL, 32× for TensorFlow,
and 30× for Pandas. Moreover, in applications that combine these
libraries, cross-library optimization enables speedups of up to 31×.

Finally, Weld’s approach goes somewhat against the “one size
does not fit all” mantra in high-performance database systems [30].
We argue that as applications start to use more and more disjoint
libraries, one size will have to fit all to achieve bare-metal perfor-
mance across them. The cost of data movement through memory is
already too high to ignore in current workloads, and will likely get
worse with the growing gap between processor and memory speeds.
The traditional method of composing libraries, through functions
that pass pointers to in-memory data, will be unacceptably slow. To
solve this problem, the research community must search for new in-
terfaces that enable efficient composition. Weld’s common runtime
approach is one such design point to bring end-to-end optimization
to advanced analytics.

2. DESIGN PHILOSOPHY
The main question in designing a runtime like Weld is the level of

abstraction at which it should operate. Clearly, there is a tradeoff be-
tween how much the runtime “knows” about workloads (e.g., does it
have machine learning operators as first-class primitives?), and how
difficult it is to implement and maintain. In theory, for example, one
could imagine extending an RDBMS with primitives for machine
learning, graph analytics, and other workloads, and incorporating
them into its optimizer and cost model. While past research has
shown good results pushing various analytics algorithms into an
RDBMS [7, 9, 14, 15], this approach is an uphill battle. For exam-
ple, in-database machine learning libraries like MADlib [14] do not
support new methods such as deep learning, and natural expressions
of these methods in SQL do not perform well. Thus, most machine
learning development still happens outside databases. Moreover,
extending an RDMBS with a new data type or operator is complex,
which limits the set of people who can do it, and further limits the
rate at which new methods will be made available to users.

In Weld, we take a fundamentally different approach. We believe
that the industry will continue to develop disparate libraries for data
analysis, and we wish to design a simple, minimal runtime that
will perform key optimizations across them while giving users the
freedom to pick and choose libraries from any developer. Concretely,
our design is based on the following three principles:

1. Work with independently written libraries. We believe
that future applications will continue to mix multiple libraries,
and developers will not wait for a single über-system to incor-
porate the best algorithms. The runtime must extract enough
information from existing, specialized libraries to optimize
across them, and offer enough performance benefits that li-
brary developers adopt it, but otherwise get out of their way.

2. Enable the most impactful cross-library optimizations. Al-
though many complex domain-specific optimizations (e.g.,
optimizing mathematical expressions) could be applied across
libraries, we believe that the most bang-for-the-buck will be
in two simple areas that affect all libraries: data movement
and parallelism. We need to make sure that our runtime sup-
ports data movement optimizations such as pipelining across
libraries and loop tiling, and that it understands the parallel
structure of each computation and can therefore optimize par-
allel code. We show that just these optimizations give some
computations in existing libraries a 31× performance boost
on a one core and further speedups on multiple cores.

3. Integrate incrementally into existing systems. Because the
runtime requires integration with each library, we design it
for incremental adoption. In particular, Weld’s runtime API
allows libraries to move some of their functions to Weld (e.g.,
specific TensorFlow operators) while keeping the rest out-
side. Moreover, Weld’s programming interface is familiar
to developers: it exposes functional operations such as map

and reduce, which are already widely used in data analytics,
and it can call existing C functions. Finally, Weld offers key
benefits even within a single library by optimizing across sep-
arate functions—something that would require complex code
generation systems otherwise [24]. Many library developers
already write their most performance-intensive operators in
languages such as C or OpenCL [1, 28], so we believe there
are compelling reasons to write them in Weld.

In practice, data processing systems can integrate Weld in sev-
eral ways. Many systems, such as RDBMS engines and Tensor-

data = lib1.f1()
lib2.map(data,

item => lib3.f2(item)
)

User Application Weld Runtime

Combined IR
program

Optimized
machine code

11011100
11101011
01111010

IR fragments
for each function

Runtime
API

f1

map

f2

Data in
application

Figure 1: As applications call Weld-enabled libraries, the runtime collects
fragments of IR code, which it then combines into a single Weld program.
This complete program is optimized jointly and then compiled to parallel
machine code, which executes against the application’s in-memory data.

Flow, break down computations into a small set of physical opera-
tors. Writing these operators in Weld will automatically allow both
high performance for each operator and optimization across them.
Some systems also perform runtime code generation to LLVM, C or
Java [3, 24]; these can be modified to emit Weld IR instead.

3. SYSTEM OVERVIEW
At a high level, Weld is based on three key ideas:

1. An intermediate representation (IR) that captures the struc-
ture of common data-parallel algorithms, and supports rich
optimizations across them. For this purpose, we designed a
minimal IR that is lower-level than both functional and re-
lational operators, but is still able to capture their parallel
structure and express complex optimizations. The IR is suf-
ficiently general to support functional APIs such as Spark,
relational operators, linear algebra and graph algorithms.

2. A runtime API that lets libraries expose parts of their com-
putation as Weld IR fragments. As applications call Weld-
enabled functions, the system builds a DAG of such fragments,
but only executes them lazily when libraries force an evalua-
tion. This lets the system optimize across different fragments.

3. A compiler backend that maps the final, combined Weld IR
program to efficient multithreaded code. We implemented
our current backend using LLVM [18]. Because the Weld IR
is explicitly parallel, our backend automatically implements
multithreading and vectorization using Intel AVX2.

Figure 1 shows how these components combine to optimize an
application using multiple libraries. In the rest of this paper, we
sketch the current prototype of Weld, focusing especially on the IR.
We then present results that illustrate the impact of Weld.

4. WELD IR
The most important architectural element of Weld is its interme-

diate representation (IR) for code, which is somewhat akin to the
logical operator algebra in a database. The IR determines both what
workloads can run on Weld and what optimizations can easily be
applied. Because our goal is to both support as wide a range of work-
loads as possible and to perform data movement and parallelism-
aware optimizations, we needed an IR with the following properties:

• Library composition. Applications can combine libraries in
many ways: for example, they may call one library function
on the result of another, or even nest parallel functions inside
each other (e.g., launching a map operation in Spark and calling
a parallelizable function such as a NumPy vector sum inside
it). Because Weld will combine IR fragments from multiple
libraries, the IR must support composition and nesting.

• Explicit parallelism. The operators in the IR must be explic-
itly parallel, letting the runtime know what can be done in
parallel without having to infer it from sequential code.

• Ability to express optimizations. We wanted the IR to be
able to express both the initial computation and optimizations
we make over it, such as loop fusion, so that our backend can
implement a wide variety of transformations without leaving
the representation. This is akin to how logical plans in a
database are both the input and output of optimization steps,
and also follows the design of compiler IRs such as LLVM.

We investigated several existing IRs for Weld, but found that they
did not meet these goals. Relational algebra expressions, as used in
databases, contain explicitly parallel operators but do not support
complex composition such as nesting. For example, it would be
hard to express the concept of a “table” that contains vectors, each
of which can be acted on in parallel.1 In contrast, compiler IRs such
as LLVM are not explicitly parallel, and would require us to infer
parallel structure from low-level operations such as loads and stores.

Instead, we developed a simple parallel IR similar to monad com-
prehensions [11]. Our IR is based on parallel loops and a construct
for merging results called “builders.” Parallel loops can be nested
arbitrarily, which allows complex composition of functions. Within
these loops, the program can update various types of builders, which
are declarative data types for constructing results in parallel (e.g.,
computing a sum or adding items to a list). Multiple builders can be
updated in the same loop, making it easy to express optimizations
such as loop fusion or tiling, which change the order of execution
but produce the same result.

4.1 Data Model
Weld’s IR supports several common data types, shown in Table 1.

Apart from scalars, it offers structures, variable-length vectors, and
dictionaries. We chose these types because they appear commonly
in data-intensive applications as well as low-level data processing
code (e.g., dictionaries are useful for hash joins). These types can
be nested to represent more complex data.

4.2 Operators
Weld’s IR contains basic operators for arithmetic, assigning

names to values, sequential looping, and read operations on col-
lections (e.g., lookups into a hash table). It also contains a foreign
function interface for calling external C functions. Our IR uses Static
Single Assignment form, meaning that variables are immutable once
defined, simplifying its analysis.

The IR has two parallel operators: a parallel loop to iterate over
data, and builders for constructing results. A builder is a declarative
data type that computes a result in parallel. Builders are write-only,
build-once; expressions such as parallel loops can merge values into
a builder, but a final result can only be materialized once, after these
merges are done. Weld includes multiple types of builders, as shown
in Table 2. For example, a vecbuilder[T] takes values of type T and
1 Of course, in relational algebra, foreign keys and joins can be used to express ar-
bitrary relationships, but analyzing and optimizing applications expressed this way
becomes challenging.

Primitive Data Types
Scalars char, int, long, float, ...

Structures {T1, T2, ...} for field types T1, T2, . . .
Vectors vec[T]

Dictionaries dict[K, V]

Table 1: Primitive data types in Weld.

Builder Types
vecbuilder[T] Builds a vec[T] from merged values of

type T.
merger[T,func,id] Builds a value of type T by merging val-

ues with a commutative function func and
an identity value id.

dictmerger[K,V,func] Builds a dict[K,V] by merging values
with a commutative function.

vecmerger[T,func] Builds a vec[T] from an initial vector by
merging values {index,T} using a com-
mutative function func.

groupbuilder[K,V] Builds a dict[K,vec[V]] from merged
values of type {K,V}.

Table 2: Builder types in Weld.

builds a vector from the merged values. A merger[T,func,id] takes
a commutative function and an identity value and combines values
of type T into a single result.

Builders support three basic operations. merge(b, v) adds a new
value v into the builder b and returns a new builder2 to represent
the result. Merges into builders are associative, allowing them to
be reordered. result(builder) destroys the builder and returns
its final result: no further operations are allowed on it after this
call. Finally, the for(vector, builders, func) operator applies a
function of type (builders, T) => builders to each element of a
vector in parallel, updating one more builders for each one, and
returns the final set of builders. The for operator is the only way to
launch parallel work in Weld: the iterations of the loop will run in
parallel and merge their results into the provided builders.

// Merging two values into a builder

b1 := vecbuilder[int];

b2 := merge(b1, 5);

b3 := merge(b2, 6);

result(b3) // returns [5,6]

// Using a for loop to merge multiple values

b1 := vecbuilder[int];

b2 := for([1,2,3], b1, (b, x) => merge(b, x+1));

result(b2) // returns [2,3,4]

// Merging results only for some iterations

result(

for([1,2,3],

vecbuilder[int],

(b, x) => if (x>1) merge(b, x) else b

)) // returns [2,3]

Listing 1: Some simple examples of using builders.

Note that because for itself returns a set builders, it can be nested
and composed (see Listing 2). This lets Weld express nested parallel
programs, including irregular parallelism (where instances of the

2 In practice, some mutable state will be updated with the merged value, but Weld’s IR
treats all values as immutable, and so we represent the result as a new builder object
in the IR.

inner loop do different amounts of work). It also makes Weld
amenable to a wide range of loop transformations.

lists := [[1,2], [3,4,5], [6]];

result(

for(lists, vecbuilder[int], (b, list) =>

for(list, b, (b1, el) => merge(b1, el))

)

) // returns [1,2,3,4,5,6]

Listing 2: Using nested loops to compute a result over nested data. Here
we flatten some nested lists.

Weld places two restrictions on the use of builders for efficiency
and correctness. First, each builder must be consumed (passed to an
operator) exactly once per control path to prevent having multiple
values derive from the same builder, which would require copying
its state. Therefore, formally builders are a linear type [34]. Second,
functions passed to for must return builders derived from their
arguments. These restrictions let the backend safely implement
builders using mutable state.

4.3 Generality of the IR
Even though loops and builders are the only parallel operators in

Weld, they can be used to implement a wide range of programming
abstractions. Specifically, Weld supports all of the functional opera-
tors in systems like Spark, as well as all of the physical operators
needed for relational algebra. For example, the last two snippets in
Listing 1 implement the map and filter functional operators. Sim-
ply switching these loops to use a merger can implement a reduce.
Thus, the Weld IR can express a wide variety of parallel algorithms
that have been implemented in functional or relational systems such
as MapReduce, Spark, MADlib, and others [9, 14, 37].

One limitation of the current version of the IR is that it is fully
deterministic, so it cannot express asynchronous algorithms where
threads race to update a result, such as Hogwild! [26]. We plan to
investigate adding such primitives in a future version of the IR.

4.4 Why Loops and Builders?
Weld contains only loops and builders as its core operators. A

strawman design for an IR might have used higher-level operators
than a for loop. Unfortunately, this design prevents many optimiza-
tions from being expressed easily. Consider the example in Listing 3,
where two operations produce a result over the same input vector:

data := [1,2,3];

r1 := map(data, x => x+1);

r2 := reduce(data, 0, (x, y) => x+y);

Listing 3: A map and reduce over the same input vector.

Even though both the map and reduce operations could be com-
puted in a single pass over the data, no operator akin to mapAndReduce

exists to compute both values in one pass. More complex optimiza-
tions, such as loop tiling, are even more difficult to express in a
functional IR. By exposing all parallelism through a single loop
construct over builders, patterns like the above can easily be fused
into programs such as Listing 4.

data := [1,2,3];

result(

for(data, {vecbuilder[int], merger[+]},

(bs, x) =>

{merge(bs.0, x+1), merge(bs.1, x)}

)) // returns {[2,3,4], 6}

Listing 4: for loop operating over multiple builders to produce both a
vector and an aggregate in one pass.

5. RUNTIME API
Weld uses its IR in conjunction with a runtime API to enable

optimizations even across independent libraries in an application.
The runtime API, currently available in Python and Scala, lets ap-
plications build up a Weld IR expression using lazy evaluation, by
combining expressions from different libraries (even across lan-
guage boundaries). Libraries can then call an evaluate() API in
methods that need to output results to run the whole expression.

To illustrate, we consider the function in Listing 5, which uses
the Python Pandas [22] and NumPy libraries to compute the total
population of all cities with over 500,000 residents. NumPy stores
data in C-style arrays. Pandas provides a table-like “data frame”
API, where each column is stored as a NumPy array.

def large_cities_population(data):

data is a Pandas DataFrame object.

filtered = data[data["population"] > 500000]

sum = numpy.sum(filtered)

print sum

Listing 5: A sample Python program using Pandas and NumPy.

In the standard eagerly-evaluated Pandas and NumPy libraries,
this code causes two data scans: one to filter out values greater than
500,000 (filtered), and one to sum the values. Using Weld, these
scans can be fused into a single loop and the sum can be computed
“on the fly”—all without changes to the user’s code. Additionally,
this fused loop can benefit from optimizations such as vectorization
and predication for further performance gains.

To use Weld for this program, methods in the DataFrame class in
Pandas must be extended to return a lazily evaluated Weld object.
We must also provide a Weld implementation for the > operator on
DataFrame columns and for the numpy.sum function.

Listing 6 shows the Weld IR expressions for implementations
of each of these functions. Both implementations use functional
“sugar” operators (filter and reduce) that compile into the IR as
described in Section 4.3. The runtime API provides support for
building Weld expressions from existing objects.

DataFrame column > filter

Input Weld expressions: v0: vec[int], c0: int

filter(v0, x => x > c0)

numpy.sum

Input Weld expressions: v0: vec[int]

reduce(v0, 0, (x, y) => x+y)

Listing 6: Implementations of Pandas and NumPy functions using Weld. In
the above example, v0 and c0 can be other Weld expressions.

With these implementations, we can now build a Weld program
by combining them. Listing 7 shows the final fused Weld expression
for the variable sum.

reduce(filter(v0, x => x > 500000),

0, (x, y) => x+y)

Listing 7: The combined Weld program.

Finally, the print statement calls Python’s __str__ operation on
this variable to convert it to a string. At this point, our modified
NumPy library forces the runtime to optimize and evaluate the
Weld expression. After optimization, this function becomes a single
parallel loop using a sum builder, as shown in Listing 8:

result(for(v0, merger[+,0],

(b, x) => if (x > 500000) merge(b, x) else b))

Listing 8: The optimized Weld program after loop fusion.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

1 2 4 8 12

R
u

n
ti
m

e
 [

s
e

c
s
]

Number of threads

HyPer
Hand-opt

Weld

(a) Q1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 4 8 12

R
u

n
ti
m

e
 [

s
e

c
s
]

Number of threads

HyPer
Hand-opt

Weld

(b) Q3.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

1 2 4 8 12

R
u

n
ti
m

e
 [

s
e

c
s
]

Number of threads

HyPer
Hand-opt

Weld

(c) Q6.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 2 4 8 12

R
u

n
ti
m

e
 [

s
e

c
s
]

Number of threads

HyPer
Hand-opt

Weld

(d) Q12.

Figure 2: Results for TPC-H queries. Weld generates code that is competi-
tive with HyPer and with hand-optimized C++.

 0

 2

 4

 6

 8

 10

 12

1 2 4 8 12

R
u

n
ti
m

e
 [

s
e

c
s
]

Number of threads

GraphMat
Hand-opt

Weld

(a) PageRank.

 0

 5

 10

 15

 20

 25

R
u

n
ti
m

e
 [

s
e

c
s
] TF

TF-Op
Weld

(b) Word2Vec.

Figure 3: Results for PageRank and Word2Vec. Weld’s generated code
outperforms GraphMat’s PageRank implementation and is competitive with
TensorFlow’s hand-optimized Word2Vec operator (TF-Op).

6. PROTOTYPE EVALUATION
We have implemented a prototype of Weld with APIs in Scala

and Python that compiles expressions to multithreaded code using
LLVM. The prototype also supports capturing user-defined functions
using AST introspection, similar to LINQ [36] and TupleWare [6],
for integration into functional APIs such as Spark. To interact with
data in the host program, Weld takes pointers directly to existing
data, and is compatible with the layout of C arrays and structs. The
prototype implements several optimizations, including loop fusion,
loop tiling, common subexpression elimination, and vectorization.

In this section, we substantiate the core claims of Weld, namely
(1) that Weld can generate highly efficient code for diverse data
applications and (2) that there is substantial benefit to optimizing
across data-intensive libraries and functions. We run our bench-
marks on a machine with an Intel Xeon E5-2680 v3 CPU with 12
cores (24 hyperthreads). Our handwritten baselines are compiled
using Clang 3.5 (-O3, -march=native).

6.1 Performance vs. State of the Art
To evaluate Weld’s raw performance on diverse workloads, we

implemented three benchmarks: a set of TPC-H [33] queries for
SQL, PageRank for graph analytics, and a simple neural network
called Word2Vec for machine learning. For each, we compare
Weld to a hand-optimized C++ implementation and an existing high-
performance framework. Our C++ implementations are vectorized
manually using Intel AVX2 intrinsics and techniques such as pred-
ication; they represent our best effort to extract peak performance
from our hardware.

Figure 2 shows Weld’s execution time for four TPC-H queries run-

 0.1

 1

 10

 100

 1000

LR (1T) LR (12T)

R
u

n
ti
m

e
 [

s
e

c
s
;

lo
g

1
0

]

Workload

TF
Hand-opt

Weld

(a) Logistic Regression.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

TPC-H Q1 TPC-H Q6

R
u

n
ti
m

e
 [

s
e

c
s
]

Workload

SparkSQL
Weld

(b) Spark SQL.

 1 10 100 1000

Native

C++

Weld 1T

Weld 12T

Runtime [secs; log10]

(c) Pandas Data Cleaning Task.

Figure 4: Library Integration Results. 4a. Integrating Weld into TensorFlow
yields a 32× speedup on one core and 21× on 12 cores. 4b. Replacing Java
codegen with Weld in Spark SQL speeds up TPC-H Q1 and Q6 by 6×. 4c.
Weld speeds up Pandas by 4× on a single core, and by 27× on 12 cores.

ning at scale factor of 10, compared to the HyPer v0.5 database [24]
and handwritten implementations. Weld is competitive or outper-
forms HyPer for all queries. Weld’s speedups for Q6 and Q12 come
from implementing predication and vectorization in the backend;
HyPer depends on LLVM to vectorize code, which it fails to do
for these queries. Weld’s speedups on other queries come from
lightweight hash table implementations and dynamic load balancing
of work across cores.

Figure 3a shows Weld’s PageRank performance on the twitter_rv
graph, comparing against a C++ implementation and against Graph-
Mat [31], the fastest multicore framework we found for PageRank.
Weld generates code which is competitive with C++ and outper-
forms GraphMat. GraphMat’s worse performance is likely due to
the extra work required to track the activeness of vertices (necessary
for other graph algorithms, but not for this version of PageRank).

Finally, Figure 3b shows our results for a common neural network
algorithm called Word2Vec [32], which maps words in a vocabulary
to a smaller D-dimensional space. We compare Weld’s implemen-
tation to TensorFlow. Because this algorithm is data-intensive, the
TensorFlow developers have also developed a custom C++ kernel
that combines the core operators in Word2Vec to eliminate data
movement cost [32]. We also compare with this version, labeled
TF-Op. Weld outperforms the standard TensorFlow version by 12×
by eliminating data movement, and is competitive with the hand-
written TF-op. Weld can thus generate parallel code competitive
with state-of-the-art systems across at least three domains.

6.2 Accelerating Existing Frameworks
We also prototyped integrations of Weld into four common data

processing frameworks: Spark SQL for relational queries, Tensor-
Flow for machine learning, NumPy for linear algebra, and Pandas
for data science. In all cases, we added sufficient support to run the
operators required for a small test workload.
TensorFlow. We evaluate TensorFlow on a binary logistic regres-
sion classifier trained on the MNIST dataset [20]. The classifier
identifies each digit in the dataset as either zero or nonzero. We eval-
uate the default TensorFlow implementation against a Weld-enabled
TensorFlow implementation and an optimized implementation using
the Eigen [12] library. Figure 4a shows the results. On a single core,

 0

 0.5

 1

 1.5

 2
R

u
n

ti
m

e
 [

s
e

c
s
] Scala

Weld

(a) Spark SQL UDF.

 0.1

 1

 10

 100

 1000

R
u
n
ti
m

e
 [
s
e
c
s
;
lo

g
1
0
]

Native
C++

Weld 1T
Weld 12T

(b) Pandas + NumPy Workflow.

Figure 5: 5a. Optimizing across a Spark SQL query and a UDF with Weld
gives a 14× speedup over unmodified Spark SQL. 5b. Optimizing across
NumPy and Pandas gives a 31× speedup on a single core and a further 8×
speedup on 12 cores.

Weld’s lazy evaluation allows IR fragments from each operator to
be fused and co-optimized, and achieves a 32× speedup over the
baseline. This speedup comes from whole-program optimizations
such as dead code elimination, as well as loop fusion to prevent in-
termediate result materialization. With multiple cores, this speedup
reduces to 21×, since the Weld version becomes memory-bound.
Weld’s performance is competitive with the C++/Eigen code.
Spark SQL. We also integrated Weld into Spark SQL to demon-
strate how Weld can improve performance in distributed systems by
accelerating single-node performance. We ran these experiments on
a 21-node Amazon EC2 r3.xlarge cluster, with one instance running
the Spark driver and the others running executors. We evaluated
TPC-H queries 1 and 6 on data with a scale factor of 800. The data
was read from Spark’s in-memory cache. Figure 4b shows the result;
Weld integration provides a 6.1× speedup for Query 1 and a 6.5×
speedup for Query 6; these speedups come largely from generating
native machine code instead of Java code as in Spark SQL.
Pandas. We ran our Pandas integration on a data science tutorial
we found online [8]. The workload uses Pandas to clean a dataset
of zipcodes, using operators such as string slicing and filtering
to strip zipcodes to five digits, remove nonexistent zipcodes, and
uniquify the list of zipcodes after these transformations. Figure 4c
shows the results, compared with native Pandas and a handwritten
C++ implementation. Weld produces fast code by fusing operators
in Pandas; even though Pandas’ underlying implementation is in
C++, materializing intermediate DataFrames after each operation
is costly. Weld also enables automatic multi-threading in the other-
wise single-threaded Pandas library; in all, Weld provides a 4.2×
improvement over the standard library implementation, and a further
6.5× improvement when transparently parallelizing to 12 cores.

6.3 Cross-Library Optimization
Weld’s runtime API also enables substantial optimization across

libraries. We illustrate this using a Spark SQL query that calls a
User-Defined Function (UDF) written in Scala, as well as a Python
data science workload that combines Pandas and NumPy.

Figure 5a shows the result for Spark SQL. We compare a Spark
SQL query using an opaque Scala UDF to one using a Weld-backed
UDF. The query calls the UDF on each row of a table, then sums
the results. Without Weld, Spark SQL generates Java code for the
entire query, but the call to the Scala UDF is costly and needs data
conversions. Weld combines the whole task into a single IR program,
which is optimized to vectorize the UDF calls across SQL table
rows before summing them. This leads to a 14× speedup.

The Python workload starts with the Pandas data cleaning task
in the previous section [8], then evaluates a simple linear model
in NumPy to compute a crime index for each city. It then uses
NumPy to aggregate these indices into a total crime index. Figure 5b

Library Glue Code LoC Per-Operator LoC
NumPy Py: 84, C++: 24 avg: 16, max: 50
Pandas Py: 416, C++: 153 avg: 22, max: 64

Spark SQL Py: 5, Scala: 300 avg: 23, max: 63
TensorFlow Py: 175, C++: 652 avg: 22, max: 85

Table 3: Number of lines of code in our library integrations.

shows the results. Because Weld collects IR fragments from disjoint
libraries and optimizes them together, the system can prevent data
movement even across library boundaries. Despite the native NumPy
library running over BLAS kernels [19], we observe speedups of
31× over the baseline even on a single core. Apart from preventing
materialization through loop fusion, we see further speedups by
enabling vectorization of operators across libraries (e.g., the filter
in the Pandas library is vectorized and acts as a predicate for the
computation carried out by the NumPy function). With multiple
cores, we see a further 8× speedup over single-threaded Weld
execution, for an overall 250× speedup over the Pandas baseline.

6.4 Integration Effort
Our integrations into TensorFlow, Spark SQL, Pandas, and NumPy

required fairly low effort, taking only a few graduate student days
per framework. Each integration required about 500 lines of one-
time “glue” code per framework, which mainly involves marshalling
input data, calling Weld’s API to build expressions, and subsequent
un-marshalling of the output produced by Weld. In addition, each
integration required 50–100 lines per operator ported after the glue
code was written. This shows that Weld can be integrated into
existing systems incrementally at relatively low cost.

TensorFlow and Spark SQL both have lazily evaluated APIs,
so porting them to use Weld was straightforward. Glue code for
TensorFlow also included rewriting the parts of the data-flow graph
to use Weld operators instead, plus some work in wrapping raw
data pointers into types that Weld’s runtime understands. Spark
SQL already performs Java code generation on a per-operator basis,
so porting this framework simply entailed generating Weld code
instead. In fact, Weld could automatically apply optimizations that
required significant effort on the part of the Spark SQL developers,
such as multi-operator fusion in the style of HyPer [24]. Pandas and
NumPy are both eagerly evaluated frameworks, so some glue code
was required to produce results lazily until certain “output” operators
such as print are called. Table 3 summarizes the integration effort.

7. RELATED WORK
Weld builds on ideas in multiple fields, including compilers, par-

allel programming models, database engines, and domain-specific
languages (DSLs). Unlike most existing systems, however, it aims to
provide a runtime that can be used across diverse existing libraries
instead of creating a new, standalone programming model in which
data-intensive applications should be built.

Runtime code generation is used in RDBMS engines like Hy-
Per [24], LegoBase [17] and Voodoo [25]. These systems are re-
stricted to the relational model, however, and are often complex
to write because they need to generate imperative code directly
from multiple operators. Tupleware [6] also integrates LLVM-based
UDFs into the generated code, but does not aim to integrate general,
independently written parallel libraries.

NESL [4], Data-Parallel Haskell [13], and data flow engines like
DryadLINQ, Musketeer and Spark [10, 23, 36, 37] use functional
or relational operators as a parallel IR. While they support some
types of fusion transformations, this choice makes it hard to express
other transformations that can be captured in Weld, such as loops

that produce multiple results (§4.4) and loop tiling.
OpenCL [29] and SPIR [16] are low-level interfaces to diverse

parallel hardware. They let users launch multiple copies of a kernel
function in parallel, but do not aim to optimize across different ker-
nel invocations in the same program. In addition, their intermediate
representation is sequential (C- or LLVM-like) code.

Weld’s IR is closest to monad comprehensions [11] and to Delite’s
multiloop construct [5, 27], both of which support nested parallel
loops that emit multiple results, and perform sophisticated loop
optimizations. However, unlike these systems, which apply the IR
in a “closed” environment (relational algebra or DSLs written over a
common framework), Weld focuses on optimizing across separately
developed, existing libraries written in current languages.

8. CONCLUSION AND FUTURE WORK
With the advent of advanced analytics, data applications have

become significantly more complex, combining multiple indepen-
dently written libraries for functions such as feature transformation,
graph analytics and machine learning. Unfortunately, the traditional
method of combining libraries via function calls runs into a fun-
damental barrier on modern hardware: the cost of data movement
starts to dominate, creating order-of-magnitude slowdowns. This
cost is likely to get worse with the increasing gap between comput-
ing capacity and memory speeds.

To address this problem, libraries will need to adopt richer inter-
faces for composition, which facilitate cross-library optimizations
while still giving their developers enough flexibility to implement
sophisticated algorithms. We have explored one such interface in
Weld, through an API and IR that capture enough structure from
data-parallel libraries to perform key data movement and parallelism
optimizations, yet support a wide range of workloads. We showed
that Weld enables speedups of up to 32× in current data science
frameworks such as Spark, TensorFlow, NumPy and Pandas, and
can be integrated incrementally into each framework.

Weld represents only the first step towards a more efficient inter-
face for advanced analytics applications, and one specific design
point, but we hope that it helps frame important research questions.
In particular, some questions we are exploring next include:
• Optimization. How should we design a program optimizer for

Weld? Existing techniques from databases, such as cost-based
optimization, are likely to be very helpful for the Weld IR, but
they need to be adapted to the much broader set of workloads
that Weld supports (e.g., nested loops and nested data structures).
In addition, Weld’s setting has fewer data statistics available by
default. Alternatively, one can imagine sampling or adaptive
re-optimization to respond to statistics measured at runtime.

• Data placement. Our current IR does not explicitly represent
data placement and locality optimizations, though the loop fu-
sion optimizations try to minimize data movement. We would
like to extend the IR to support richer placement controls and
optimization for targeting NUMA hardware devices.

• Data access methods. To integrate Weld into libraries with com-
plex internal data formats, it may be necessary to read and write
data to specialized formats such as Parquet, Protocol Buffers, or
in-memory pointer-based formats. This process can be costly,
making integration of query processing and (lazy) loading at-
tractive [2]. Alternatively, it may be possible to transform Weld
IR code to operate directly against other formats.

• Domain-specific extensions. While the current IR focuses
solely on parallel loops and builders in order to fuse operations
and minimize data movement, it is clear that further performance

could be gained from adding more domain-specific knowledge.
Where is the sweet spot between adding domain knowledge and
adding complexity to the IR? For example, would adding linear
algebra types and operations enable significant optimizations
across math libraries? We plan to investigate extending Weld
with User-Defined Types in the tradition of extensible optimizers
and database engines.

• Multi-query execution and optimization. A classic database
technique that is applicable more broadly is sharing work across
multiple queries. By waiting to capture multiple Weld expres-
sions within a data science program, we may be able to perform
data sharing in complex machine learning or graph workloads.

• Heterogeneous hardware. Weld’s explicitly parallel represen-
tation and support for complex transformations also makes it
a good candidate to target additional hardware platforms, such
as GPUs and FPGAs. In many domains, these platforms have
become essential for performance, so expanding the set of back-
ends we support could really help diversify Weld’s use cases.

9. ACKNOWLEDGEMENTS
Sam Madden contributed significantly to the development of this

project. We also thank the CIDR reviewers, Peter Bailis, Chris
Ré, and our colleagues at the Stanford InfoLab and MIT for their
thoughtful feedback.

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, et al. “TensorFlow: A System for
Large-Scale Machine Learning”. In: Proc. USENIX OSDI.
Savannah, GA, USA, 2016, pp. 265–283.

[2] Ioannis Alagiannis, Renata Borovica, Miguel Branco, Stratos
Idreos, and Anastasia Ailamaki. “NoDB: efficient query exe-
cution on raw data files”. In: Proc. ACM SIGMOD. Scottsdale,
AZ, USA, 2012, pp. 241–252.

[3] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai,
Davies Liu, Joseph K. Bradley, et al. “Spark SQL: Relational
Data Processing in Spark”. In: Proc. ACM SIGMOD. Mel-
bourne, Victoria, Australia, 2015, pp. 1383–1394.

[4] Guy E. Blelloch, Jonathan C. Hardwick, Siddhartha Chatter-
jee, Jay Sipelstein, and Marco Zagha. “Implementation of a
Portable Nested Data-parallel Language”. In: SIGPLAN Not.
28.7 (1993), pp. 102–111.

[5] Kevin J. Brown, HyoukJoong Lee, Tiark Rompf, Arvind K.
Sujeeth, Christopher De Sa, Christopher Aberger, and Kunle
Olukotun. “Have Abstraction and Eat Performance, Too: Op-
timized Heterogeneous Computing with Parallel Patterns”.
In: Proc. CGO. Barcelona, Spain, 2016, pp. 194–205.

[6] Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska,
Carsten Binnig, Ugur Cetintemel, and Stan Zdonik. “An Ar-
chitecture for Compiling UDF-centric Workflows”. In: Proc.
VLDB Endow. 8.12 (2015), pp. 1466–1477.

[7] Philippe Cudre-Mauroux, Hideaki Kimura, K.-T. Lim, Jennie
Rogers, R. Simakov, Emad Soroush, et al. “A Demonstra-
tion of SciDB: A Science-oriented DBMS”. In: Proc. VLDB
Endow. 2.2 (2009), pp. 1534–1537.

[8] Julia Evans. Pandas Cookbook example. URL: http://nbvi
ewer.jupyter.org/github/jvns/pandas-cookbook/blob/v0.

1/cookbook/Chapter%207%20-%20Cleaning%20up%20messy%

20data.ipynb.

http://nbviewer.jupyter.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%207%20-%20Cleaning%20up%20messy%20data.ipynb
http://nbviewer.jupyter.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%207%20-%20Cleaning%20up%20messy%20data.ipynb
http://nbviewer.jupyter.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%207%20-%20Cleaning%20up%20messy%20data.ipynb
http://nbviewer.jupyter.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%207%20-%20Cleaning%20up%20messy%20data.ipynb

[9] Jing Fan, Adalbert Gerald Soosai Raj, and Jignesh M. Patel.
“The Case Against Specialized Graph Analytics Engines”. In:
Proc. CIDR. Asilomar, CA, USA, 2015.

[10] Ionel Gog, Malte Schwarzkopf, Natacha Crooks, Matthew P.
Grosvenor, Allen Clement, and Steven Hand. “Musketeer:
All for One, One for All in Data Processing Systems”. In:
Proc. ACM EuroSys. Bordeaux, France, 2015, 2:1–2:16.

[11] Torsten Grust. “Monad Comprehensions: A Versatile Repre-
sentation for Queries”. In: The Functional Approach to Data
Management: Modeling, Analyzing and Integrating Heteroge-
neous Data. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 288–311.

[12] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. URL: http:
//eigen.tuxfamily.org.

[13] HaskellWiki. Data Parallel Haskell. URL: https://wiki.

haskell.org/GHC/Data_Parallel_Haskell.

[14] Joseph M. Hellerstein, Christoper Ré, Florian Schoppmann,
Daisy Zhe Wang, Eugene Fratkin, Aleksander Gorajek, et al.
“The MADlib Analytics Library: Or MAD Skills, the SQL”.
In: Proc. VLDB 5.12 (2012), pp. 1700–1711.

[15] Alekh Jindal, Praynaa Rawlani, Eugene Wu, Samuel Madden,
Amol Deshpande, and Mike Stonebraker. “Vertexica: Your
Relational Friend for Graph Analytics!” In: Proc. VLDB 7.13
(2014), pp. 1669–1672.

[16] John Kessenich. An Introduction to SPIR-V. 2015. URL: https
://www.khronos.org/registry/spir-v/papers/WhitePaper.

pdf.

[17] Yannis Klonatos, Christoph Koch, Tiark Rompf, and Hassan
Chafi. “Building Efficient Query Engines in a High-level
Language”. In: Proc. VLDB 7.10 (2014), pp. 853–864.

[18] Christian Lattner and Vikram Adve. “LLVM: a compilation
framework for lifelong program analysis transformation”. In:
Proc. CGO. Palo Alto, CA, USA, 2004, pp. 75–86.

[19] Charles L. Lawson, Richard J. Hanson, David R. Kincaid,
and Fred T. Krogh. “Basic Linear Algebra Subprograms for
Fortran Usage”. In: ACM Trans. Math. Softw. 5.3 (1979),
pp. 308–323.

[20] Yann LeCun, Corinna Cortes, and Christopher J. C. Burges.
The MNIST database of handwritten digits. URL: http://
yann.lecun.com/exdb/mnist/.

[21] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos
Guestrin, Aapo Kyrola, and Joseph M. Hellerstein. “Dis-
tributed GraphLab: A Framework for Machine Learning
and Data Mining in the Cloud”. In: Proc. VLDB 5.8 (2012),
pp. 716–727.

[22] Wes McKinney. “Data Structures for Statistical Computing in
Python”. In: Proc. SciPy. Austin, TX, USA, 2010, pp. 51–56.

[23] Derek G. Murray, Michael Isard, and Yuan Yu. “Steno: Auto-
matic Optimization of Declarative Queries”. In: Proc. SIG-
PLAN PLDI. San Jose, CA, USA, 2011, pp. 121–131.

[24] Thomas Neumann. “Efficiently Compiling Efficient Query
Plans for Modern Hardware”. In: Proc. VLDB 4.9 (2011),
pp. 539–550.

[25] Holger Pirk, Oscar Moll, Matei Zaharia, and Sam Madden.
“Voodoo-a vector algebra for portable database performance
on modern hardware”. In: Proc. VLDB 9.14 (2016), pp. 1707–
1718.

[26] Benjamin Recht, Christopher Re, Stephen Wright, and Feng
Niu. “Hogwild: A Lock-Free Approach to Parallelizing Stochas-
tic Gradient Descent”. In: Advances in Neural Information
Processing Systems. Ed. by J. Shawe-Taylor, R. S. Zemel,
P. L. Bartlett, F. Pereira, and K. Q. Weinberger. Curran Asso-
ciates, Inc., 2011, pp. 693–701.

[27] Tiark Rompf, Arvind K. Sujeeth, Nada Amin, Kevin J. Brown,
Vojin Jovanovic, HyoukJoong Lee, et al. “Optimizing Data
Structures in High-level Programs: New Directions for Ex-
tensible Compilers Based on Staging”. In: Proc. ACM POPL.
Rome, Italy, 2013.

[28] SciPy.org. NumPy library. URL: http://www.numpy.org/.

[29] John E. Stone, David Gohara, and Guochun Shi. “OpenCL:
A Parallel Programming Standard for Heterogeneous Com-
puting Systems”. In: Computing in Science Engineering 12.3
(2010), pp. 66–73.

[30] Michael Stonebraker and Ugur Cetintemel. ““One Size Fits
All”: An Idea Whose Time Has Come and Gone”. In: Proc.
ICDE. Tokyo, Japan, 2005, pp. 2–11.

[31] Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Pat-
wary, Subramanya R. Dulloor, Michael J. Anderson, Satya
Gautam Vadlamudi, et al. “GraphMat: High Performance
Graph Analytics Made Productive”. In: Proc. VLDB 8.11
(2015), pp. 1214–1225.

[32] TensorFlow documentation. Vector Representations of Words,
word2vec example. URL: https : / / www . tensorflow . org /

versions/r0.11/tutorials/word2vec/index.html.

[33] Transaction Processing Performance Council. TPC-H ad-hoc,
decision support benchmark. URL: http://www.tpc.org/
tpch/.

[34] David Walker. “Substructural Type Systems”. In: Advanced
Topics in Types and Programming Languages. Ed. by Ben-
jamin C. Pierce. MIT Press, 2005. Chap. 1.

[35] Michael E. Wolfe. “More Iteration Space Tiling”. In: Proc.
ACM/IEEE Supercomputing. Reno, NV, USA, 1989, pp. 655–
664.

[36] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar
Erlingsson, Pradeep Kumar Gunda, and Jon Currey. “DryadLINQ:
A System for General-purpose Distributed Data-parallel Com-
puting Using a High-level Language”. In: Proc. USENIX
OSDI. San Diego, CA, USA, 2008, pp. 1–14.

[37] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata
Das, Michael Armbrust, Ankur Dave, et al. “Apache Spark: A
Unified Engine for Big Data Processing”. In: Commun. ACM
59.11 (2016), pp. 56–65.

http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://wiki.haskell.org/GHC/Data_Parallel_Haskell
https://wiki.haskell.org/GHC/Data_Parallel_Haskell
https://www.khronos.org/registry/spir-v/papers/WhitePaper.pdf
https://www.khronos.org/registry/spir-v/papers/WhitePaper.pdf
https://www.khronos.org/registry/spir-v/papers/WhitePaper.pdf
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://www.numpy.org/
https://www.tensorflow.org/versions/r0.11/tutorials/word2vec/index.html
https://www.tensorflow.org/versions/r0.11/tutorials/word2vec/index.html
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/

	Introduction
	Design Philosophy
	System Overview
	Weld IR
	Data Model
	Operators
	Generality of the IR
	Why Loops and Builders?

	Runtime API
	Prototype Evaluation
	Performance vs. State of the Art
	Accelerating Existing Frameworks
	Cross-Library Optimization
	Integration Effort

	Related Work
	Conclusion and Future Work
	Acknowledgements

