Learning Steady-States of Iterative Algorithms over Graphs

Hanjun Dai' Zornitsa Kozareva’ BoDai' Alexander J. Smola’ Le Song '3

Abstract

Many graph analytics problems can be solved via
iterative algorithms where the solutions are often
characterized by a set of steady-state conditions.
Different algorithms respect to different set of fixed
point constraints, so instead of using these tradi-
tional algorithms, can we learn an algorithm which
can obtain the same steady-state solutions automat-
ically from examples, in an effective and scalable
way? How to represent the meta learner for such
algorithm and how to carry out the learning? In this
paper, we propose an embedding representation for
iterative algorithms over graphs, and design a learn-
ing method which alternates between updating the
embeddings and projecting them onto the steady-
state constraints. We demonstrate the effectiveness
of our framework using a few commonly used
graph algorithms, and show that in some cases, the
learned algorithm can handle graphs with more
than 100,000,000 nodes in a single machine.

1. Introduction

Graphs and networks arise in various real-world applications
and machine learning problems, such as social network analy-
sis (Hamilton et al., 2017b), molecule screening (Hachmann
et al., 2011; Duvenaud et al., 2015; Lei et al., 2017) and
knowledge base reasoning (Trivedi et al., 2017). Many graph
analytics problems can be solved via iterative algorithms
according to the graph structure, and the solutions of the algo-
rithms are often characterized by a set of steady-state condi-
tions. For instance, the PageRank (Page et al., 1999) score of
anode in a graph can be computed iteratively by averaging the
scores of its neighbors, until the node score and this neighbor
averaging are approximately equal. Mean field inference for
the posterior distribution of a variable in a graphical model
can be updated iteratively by aggregating the messages from
its neighbors until the posterior is approximately equal to

!'Georgia Institute of Technology >Amazon *Ant Financial.
Correspondence to: Hanjun Dai <hanjundai @ gatech.edu>.

Proceedings of the 35" International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

the results of the aggregation operator. More generally, the
intermediate representation h,, for each node v in the node
set V is updated iteratively according to an operator 7 as

hs)t+1) — T({hq(f) }ueN(v))) vt =]-a and

h{® « constant, YveV (1)
until the steady-state conditions are met
h’r}:T({hZ}ueN(v))a Yvel.)

Variants of graph neural network (GNN) (Scarselli et al.,
2009), like GCN (Kipf & Welling, 2016), neural message
passing network (Gilmer et al., 2017), GATs (Velickovié¢
et al., 2017) etc., perform fixed T rounds of updates to
Eq (1) without respecting the steady state. Thus for learning
algorithms like PageRank or mean field inference, a large
T is required. In such case, both the computational cost
and gradient updates will become problematic. Also note
that due to the batch-update nature of GNN family models,
multiple rounds of update over all nodes are needed. These
two limitations make them not scalable and effective enough,
regarding the computational cost and convergence.

In this paper, instead of designing algorithms for each
individual graph problem, we take a different perspective,
and ask the question:

Can we design a learning framework for a diverse
range of graph problems that learns the algorithm
over large graphs achieving the steady-state
solutions efficiently and effectively?

Furthermore, how to represent the meta learner for such algo-
rithm and how to carry out the learning of these algorithms?
In this paper we propose a stochastic learning framework
of algorithm design based on the idea of embedding the inter-
mediate representation of an iterative algorithm over graphs
into vector spaces, and then learn such algorithms using
example outputs from the desired algorithms to be learned.

More specifically, in our framework, each node in the graph
will maintain an embedding vector, and these embedding
vectors will be updated using a parameterized operator
To where the parameters 6 will be learned. Furthermore,
following each embedding update step, the embedding
will also be projected towards the steady state constraint
space, gradually enforcing the steady-state conditions. As
illustrated in Figure 1, both of the two steps are stochastic,

Learning Steady-States of Iterative Algorithms over Graphs

update f/l;
freeze f and Ty

oo kb
. N

update f and Ty

freeze hy, \

/1-hop mini-batch I

AN

l-hop mini-batch II 1-hop mini-batch III Stage II

s an 00
ox e— on e—;
/m #

Stochastic update of f and Ty

Stochastic fixed point iteration for steady-state constraints

Figure 1. Overview of proposed graph steady-state learning algorithm. In stage I, we update the classifier ﬁ, and steady-state operator 7o
with 1-hop neighborhood of stochastic samples; in stage I, the embeddings h,, are updated by performing stochastic fixed point iterations.

which only requires 1-hop neighborhood for the update. We
argue that such 1-hop stochasticity is key to the efficiency
and effectiveness. Most of the GNN variants (e.g., Li
etal. (2015)) need O(T'(|V|+|€|)) computational cost and
memory consumption per each round of parameter update.
For large graphs, this would be quite expensive. Hamilton
etal. (2017a) attempts the mini-batch update using 7T-hops
neighborhood of sampled mini-batch of nodes. However,
the neighborhood size grows exponentially with respect to
T'. Asin the idea of six degrees of separation, T'= 6 would
already include all the nodes in the social network.

We note that this new algorithm is significantly different
from the traditional graph embedding settings where the goal
is to learn representations (or features) for nodes in a graph
for classification. In contrast, our goal is to efficiently learn
an algorithm which can run in a large graph and can respect
specific condition with physical meaning. The successive
stochastic projection of the embeddings onto the steady-state
condition, which is not present in previous graph embedding
methods, is a crucial step in our algorithm, and creates an
important inductive bias which allows us to generalize the
learned steady-state algorithm output to the entire network
and even to a different network.

We showed that our framework can be adapted to learn the
steady-state of a few commonly used graph algorithms,
namely the detection of connected components, PageRank
scores, mean field inference, and node labeling problem over
graphs. We conducted systematical comparison between
the learned algorithms and several existing algorithms to
demonstrate the benefits in terms of both effectiveness
and scalability on both randomly generated graphs and
real-world graphs. In particular, in the PageRank problem,
the learned algorithm can easily handle graphs with more
than 100,000,000 nodes in a single machine.

2. Iterative Algorithms over Graphs

Many iterative algorithms over graphs can be formulated into
the form of Eq (1) and the solutions satisfy a requirement of

the form of Eq (2). More specifically, for a graph, G=(V,£),
with node set V and edge set &, the iterative algorithm
framework can be instantiated as follows

e Graph component detection problem. We want to
find all nodes within the same connected component as
source node s € V. This task can be solved by iteratively
propagating the label at node s to other nodes

yff‘*’l) = max yi(f), ygo) =1, yf)o) =0,YveVy
ueN (v)
where N (v) denotes the set of neighbors of v. At al-

gorithm step ¢ = 0, the label ygo) at node s are set to 1

(infected) and O for all other nodes. The steady state is

achieved when nodes in the same connected component

as s are infected. That is y, =max,c ar(v) Y-

e PageRank scores for node importance. We want to
estimate the importance of each node in a graph. The
scores can be initialized to 0 (7’50) + 0,Yv € V) and
updated iteratively as

1), (1=X) A Z ®)
Ty +— Ty, YUEV.
IV, 22,
The steady-state scores 7, will satisfy the relation), =
a=»

A *
VT IV 2uen (@) T

e Mean field inference in graphical model. We want
to approximate the marginal distributions of a set of
variables x,, in a graph model defined on G. That is
p({xv}vé\/) X HvEV (b(xv) H(u,v)eg ¢($uaxv) where
o(x,) and ¢(x,,x,) are the node and edge potential
respectively. The marginal approximation ¢ (.,) can be
obtained in an iterative fashion by the following mean
field update

¢ () ole,)][]

ueN (v)

exp (/ q" (wu)10g¢(wu,:cv)dU>,

and the steady-state solution satisfies ¢*(x,) =
S [Tuenwyexp ([, 4" (@u)logd(u.zy)du).

Learning Steady-States of Iterative Algorithms over Graphs

e Compute long range graph convolution features.
We want to extract long range features from graph and
use that figure to capture the relation between graph
topology and external labels. One possible parametriza-
tion of graph convolution features A, can be updated
from zeros initialization as

hg,t—i_l)(—d Wl.I‘U—FWQ Z hgf)
ueN (v)
where o is a nonlinear elementwise operation,
and Wy, W, are the parameters of the opera-
tor. The steady state is characterized as h} <

o (W1 T, +Wo EuEN(u) hj;) . Then the labeling func-

tion f(hZ) for each node is determined by the state-
steady feature h}.

Typically, to learn these iterative algorithms with GNN fam-
ily models, we need to run many iterations in order for them
to converge to the steady-state solutions. Especially when the
graph scale gets large, a large number of iterations are needed,
making the GNNs very computationally intensive and slow.
In the following, we will formulate a generic learning prob-
lem for designing a faster algorithms for these scenarios.

3. The Algorithm Learning Problem

In this section we propose a framework of algorithm
design based on the idea of embedding the intermediate
representation of an iterative algorithm over graphs into
vector spaces, and then learn such algorithms using example
outputs from the desired algorithms to be learned.

More specially, we assume that we have collected the output
of an iterative algorithm 7 over a single large graph'. The
training dataset consists of the input graph G = (V,£), and
the output of the algorithm for a subset of nodes, V) C V
from the graph:

b= {f; = f(hy) I =T{h uen)] vev(”}. 3)

In the dataset, R} is the quantity in the algorithm which
satisfies the steady-state conditions, and f(-) is an additional
labeling function which takes the steady-state quantity and
produces the final label for each node. In the case where
h? is the output of an algorithm, we can think of f(-) is the
identity function.

Given the above dataset D from previous run of the
algorithm, the goal is to learn a parameterized algorithm Ag
such that the output of the algorithm can mimic the output
of the original algorithm 7. That is the learned algorithm

'Our method can also be used for the cases where data are
collected from multiple graphs. In this case, we can view multiple
graphs as a single big graph with a collection of connected
components.

Ag produces { fo toey = Ag[G], which are close to f,r

according to some loss function £(f;F, f,)-

Overall, the algorithm learning problem for Ag can be
formulated into the following optimization problem

min > 0(fif0) 4)
veVY)
s.t. { fo Yoevn =Ao[G])

In the above general statement of the learning problem,
we have not specified the actual form of the algorithm and
the parametrization of the algorithm step. In the following
section we will explain our design of fast iterative algorithm
which can be learned.

The design goal of our model will focus on two key aspects:
respect steady-state conditions and learn fast. Thus the
core of our model is a steady-state operator 7o between
vector embedding representation of nodes, and a link
function mapping the embedding to the algorithm output.
Furthermore, the embeddings are obtained by solving the
steady-state operator stochastically, making it very efficient
for large scale graph problems.

3.1. Steady-state operator and linking function

We will associate each node in the graph with an unknown
vector embedding representation ﬁv € R?, and the core of
our algorithm is a parameterized operator, Jg, for enforcing
steady-state relz/l\tions between these embeddings. Given

a link function f(h,), our model makes predictions on the
algorithm outputs by the following operations

o~ o~

output: {ﬁ,::f(hv)}uev (6)

s.t. hy="To [{hu}uGN(v)} (7)
In our model, the steady-state operator g and the linking
function fis not fixed before hand, and their parameters
will be learned from dataset D in Eq (3). Furthermore, the
vector embeddings ﬁv need to be found from Eq (7), after
which the embeddings are used for making predictions about
the algorithm outputs via f Thus, we need an algorithm for
finding the (approximate) steady-state of Eq (7).

3.2. Finding steady-state

Here we use an iterative algorithm to find the steady-state
of Eq (7). The algorithm will execute in a similar fashion
as randomized Gauss-Seidel method which updates one
unknown variable at the time according to the steady-state
equation. Adapting the scheme to our case, we will start
all {EU }uey from some constant, and then update the
embedding one at at time. That is

~

h, < constant forallve)

Learning Steady-States of Iterative Algorithms over Graphs

for v sampled from V:
ﬁv «—To [{ﬁu}ue/\f(v)} (8)

We note that in this randomized scheme, the embeddings
{ﬁv }vey are updated in an asynchronous fashion. Further-
more, each time the update is also carried out only one hop for
the sampled node v. This makes it very efficient compared
to synchronous update over the entire graph for 7" hops.
For comparison, the synchronous update will amount to a
computational complexity of O(T'(|V|+|£])) which quickly
becomes prohibitive for large graphs. Instead, our steady-
state finding algorithm is carried out using mini-batches.

3.3. Specific parameterization for 7¢ and g

The operator 7o and link function g can come from general
nonlinear function class. The operator 7g enforces the
steady-state condition of node embeddings based on 1-hop
local neighborhood information. Due to the variety of graph
structures, this function should be able to handle different
number of inputs (i.e., different number of neighbor nodes)
and be invariant to the ordering of these neighbors. In our
work, we use the following parameterization:

To [{(hubueni | =Wio | Walza, 3 (o]
ueN (v)

©))
where o(-) is element-wise activation function, such as
commonly used Sigmoid or ReLU. W; and Wy are the
weight matrices. x,, is the optional feature representation of
nodes, such as observations in Markov Random Field (MRF).
In general, a two-layer neural network formulation as above
would be enough for most cases. But one can also use
problem-specific parameterization for better performance.

For prediction function g, it takes the node embeddings as
inputs, and predicts the corresponding algorithm outputs.
We also adopt a two-layer neural network, i.e.,

g(hw) =0 (V; ReLU(V h,)), (10)
where V7,V are parameters of g(-). o(-) is a task-specific
activation function. For linear regression this is the identity

function o(z) = z. For multi-class classification problem,
o(+) is softmax which would output a probabilistic simplex.

3.4. The optimization problem

Thus the overall optimization problem for learning our
model can be formulated as

. 1 x P
min E({Wi,Vi}?:l)::W Z 0 f5.9(hv))

{Wi,Vi}i_, veEV W)

st. hy=To [{ﬁu}ue/\/(v)} Yue. (11)

In the next section, we will introduce an alternating algorithm
to solve the above optimization problem. The algorithm will

alternate between using most current model to find the embed-
dings and make prediction, and using the gradient of the loss
with respect to { W7, W5, V7, V5 } for update these parameters.

4. Learning Algorithm

It should be emphasized that directly applying the vanilla
stochastic gradient descent requires visiting all the nodes in
the graph many times due to the constraints in Eq. (11), mak-
ing the reduction of the cost via stochastic gradient compu-
tation in vain. As we discussed in Section 3.2, this step is ac-
tually the computation bottleneck. In this section, we present
a scalable algorithm which exploits the stochasticity in both
equilibrium constraints and the objective in Eq. (11) to learn
the parameters. Then, we provide the analysis of the compu-
tational and memory complexity in detail to show how our
proposed approach could save the computation in Section 4.2.

4.1. Stochastic Fixed-Point Gradient Descent

In fact, the optimization Eq. (11) can be understood as
improving the policy which minimizing the cost that is
proportional to f*. The fix-point equation characterizes the
dynamic programming whose solution is steady state ﬁv for
each node. Comparing to the reinforcement learning (RL),
it plays a similar role as “value function”. With these estima-
tions of the steady states, we minimize the cost by updating
the parameters in g and g, which can be understood as a
similar role as “policy” in RL. Based on such understanding,
we design our algorithm inspired by the policy iteration in
reinforcement learning (Sutton & Barto, 1998). Furthermore,
to reduce the complexity in the first stage for estimating, we
introduce an extra randomness over the constraints and solve
it approximately through stochastic fixed point iteration.

Stochastic gradient descent for “policy”’ improvement.
Specifically, at k-th round in the stochastic optimization,

once we have {?z’j} satisfying the steady-state equation,

veY
ie., hk =To [{hﬁ'}ue,\/(v)} ,Yv € V, we have the gradient
estimators as

o) ()]
' I 8g(h§) ow;

[a(i) [here)
v BT av; !

where the expectation IE[] is taken w.r.t. uniform distribution
over labeled nodes V). With such treatment, we can update
the parameters, i.e., {W7,Ws,V7,V5}, as vanilla stochastic
gradient descent.

Stochastic fixed-point iteration for ‘“value” estimation.
However, it is prohibitive to solve the steady-state equation

Learning Steady-States of Iterative Algorithms over Graphs

Algorithm 1 Learning with Stochastic Fixed Point Iteration

1 Initialize Wy ,Wa,V3,Va,{hy }vey randomly
2: fork=1to K do
3 fort,=1ton,do
Sample V={v;,vs,....un} €V
Use Eq. (12) to update embedding iAzUi Vv, € %
end for
fort;=1tonydo
Sample V¥ = {v;,vs,...,ups } €V
(Wi Wi—nggi- Yoo AV Vien g i
10: end for
11: end for

R A A

exactly in large-scale graph with millions of vertices since
it requires visiting all the nodes in the graph. Therefore,
we introduce the extra randomness on the constraints for
sampling the constraints to tackle the groups of equations ap-
proximately. This technique is very effective in dealing with
infinite constraints in approximately solving MDP (De Farias
& Van Roy, 2003; 2004).

Specifically, in k-th step, we first sample a set of nodes
V ={v1,va,...,un } €V from the entire node set rather of the
labeled set. For stability, we update the new embedding of
v; by moving average in following form:

o, = (1=, +0To [{hubueno) | Vo V. (12)

The overall algorithm is summarized in Algorithm 1. The
whole iterative process will run K steps or untill convergence.
During each macro iteration, the two stages can also have
multiple inner loops. Specifically, let n; be the number
of inner loops for “policy” improvement, and n;, be the
number of inner loops in “value” estimation.During the
experiment we found that, having more fixed point iterations,
i.e., ny, > ny helps the model converge faster and achieve
better generalization.

We name our algorithm Stochastic Steady-state Embedding
(SSE), due to its stochasticity nature and steady-state
enforcement.

4.2. Complexity analysis

In this section, we briefly analyze the computation and
memory complexity of Algorithm 1.

In “policy” improvement stage, assume the labeled set V(%)
is an unbiased sample from V), then the computational cost is
oM ‘l%), since we only need 1-hop nodes to update. Here
we use the average node degree in graph to calculate the
expected number of edges in each mini-batch. Similarly, in
“value” estimation stage, we have O (N %) So in summary,
the computational cost in each iteration is just proportional
to the number of edges in each mini-batch.

Component Identification w.r.t different T

100
95
90
85
80
75

70 & GCN
—e— SSE

5 6 7

Accuracy / %

65

1 2 3 4
T

(a) Graph consists of two (b)Accuracy w.rt. different T.
disjoint chains.

Figure 2. Graph connectivity experiment.

The memory cost of our algorithm is also smaller compared
to the existing graph neural networks. Regardless of
necessary memory held by parameters W o, V72 and
node/edge features, the dominating part is the persistent
node embedding matrix {Ev }vey which takes O([V)]) space.
This is also much cheaper than most GNN-family models
which take O(T'|V|) space, due to the requirement of storing
intermediate embeddings for back-propagation use.

5. Experiments

In this section, we experimentally demonstrate the effec-
tiveness and efficiency of learning various graph algorithms.
We compare our proposed algorithm with some of the GNN
variants who have the fixed finite number of propagations
T, using experiments with both transductive and inductive
settings. In transductive setting, we compare with GCN (Kipf
& Welling, 2016), a localized first-order approximation
of spectral graph convolutions and structure2vec (Dai
et al., 2016) which mimics the graphical model inference
algorithms to obtain feature representation. The number
of propagation steps is tuned in 7' € {1,...,7} for them. In
inductive setting, we compare with GraphSage (Hamilton
etal., 2017a) and its variants. For our proposed algorithm,
We tune the number of inner loops for SGD and fixed point
iterations n s,ny, € {1,5,8}, to balance the parameter learning
and fixed point constraint satisfaction.

We demonstrate the effectiveness of the proposed algorithm
in capturing steady-state information with learning graph
algorithmes, i.e., the graph connectivity detection, PageRank,
and Mean Field Inference on graphical model, where the
global-range steady information is the key for success, in
Section 5.1, 5.2 and 5.3, respectively. We also show the
comparison on benchmark datasets in Section 5.4, where
we can achieve comparable or better accuracy. Finally we
show our advantage in terms of scalability in Section 5.5.

5.1. Algorithm-learning: connectivity

The graph we constructed contains 2 disjoint chains. Each
chain is a connected component which contains 1,000 nodes
and 999 edges. Figure 2a illustrates the graph we created.

Learning Steady-States of Iterative Algorithms over Graphs

Blogcatalog PageRank test MAE

0-6 W >
05 o5
1 S G D GRS G G Gy % 0.4
203 203
w —&— GCN —- S2V-degree w
<z(0.2 =>4 structure2vec =~ —e— SSE <z(0.2

0.1 0.1

0.0 0.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of training

(a) PageRank on BlogCatalog

Pubmed PageRank test MAE

m

—&— GCN —- S2V-degree
—>¢— structure2vec —e— SSE

<

o3
0.2
0.1

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9
Fraction of training

(b) PageRank on Pubmed

Mean Field test MAE

0.6 —A— GCN

= structure2vec
0.5 —e— SSE
0.4

0
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
Fraction of training

(c) Mean-Field Inference for MRF

Figure 3. Algorithm learning for PageRank and Mean Field Inference. Error is measured using Mean Absolute Error (MAE).

The algorithm needs to know the multi-hop structure, in
order to identify the component ID for a certain node. In
this transductive setting, we use 10% nodes with labels for
training, and the rest for testing. With proper parameter tun-
ing, the GCN and structure2vec can achieve 96% accuracy
in distinguishing two components, while our SSE gets 99%.

In Figure 2b, we vary the T' of GCN, and report its test
performance. Since our proposed algorithm doesn’t have the
dependency over T', we simply include it as a reference. We
can see as T' gets larger, the GCN model converges to better
solution by taking longer range of information, while the
computational cost increases linearly with 7". Also through
this experiment we find it is not only computationally more
efficient, but also experimentally more effective in learning
the steady-states.

5.2. Algorithm Learning: PageRank

In this task, we learn to predict the PageRank scores for each
node in the network graph. In our experiment we use the
default value (which is 0.85) for the damping factor.

Real-world graphs: We take the Blogcatalog and Pubmed
graphs for evaluation (graph statistics can be found in Ta-
ble 6 and Table 5 in Appendix). The dataset contains about
10k ~ 20k nodes. For each dataset, we first run the PageRank
algorithm using networkx (Hagberg et al., 2008). Since the
raw PageRank scores are normalized to a probabilistic sim-
plex, we rescale it by multiplying the total number of nodes.
This avoids some precision issue of the float numbers. In
transductive setting, we reserve 10% nodes for held-out eval-
uation, and vary the training set size from 10% to 90% of the
total nodes. We also modify the vanilla structure2vec model
to use degree-weighted message aggregation, denoted as S2V-
degree, for better performance in PageRank prediction task.

The quantitative results are shown in Figure 3a and 3b,
respectively. We can see from the figure that, our proposed
algorithm can achieve almost perfect fitting results on all
the two datasets, even with only 10% nodes for training.
However, although we’ve shown that with larger 7" the GCN

can match our performance in Section 5.1, it is not effective
in current experiment. Simply making 7 larger will cause
problem for both gradient propagation and memory con-
sumption, and thus it is not effective. The modified baseline
S2V-degree performs the second best, so we compare with
itin detail on Barabasi-Albert random graphs in next part.

Barabasi-Albert random graphs: To evaluate how the
performance varies as graph size grows, we further carry out
experiments on Barabasi-Albert (BA) graphs. We vary the
number of nodes n € {1k,10k,100k,1m,10m}, and use two
different parameters m = 1 and m = 4 for BA model. It is
known that when m = 1 the graph has diameter of O(logn)
and for m > 2 itis O(logn/loglogn) (Bollobas & Riordan,
2004). Thus for m = 1, it is more challenging since the
number of hops of information need is larger.

In transductive setting, we split the nodes equally into training
and test set; in inductive setting, the training is performed in a
single graph, while the algorithm is asked to generalize to new
graphs from the same distribution. For S2V-degree we set
T =5 due to the consideration of feasibility. The transductive
and inductive results are shown in Table 1 and 2, respectively.
As is expected, the MAE in m =4 setting is lower than that
in m =1 setting. Our proposed algorithm achieves almost
perfect MAE and increases slightly when the prediction task
becomes more and more challenging as the size of graph
increasing to 10m nodes. In comparison, the performance of
S2V-degree is significantly worse, especially when graph size
grows. This is because I' = 5 propagations cannot capture
enough long range information. We emphasize that for large
graphs with 10m nodes, it is also hard for batch algorithm
like S2V-degree to converge and generalize well.

5.3. Algorithm Learning: mean-field inference

To further evaluate the ability of our proposed algorithm
in capturing the steady-state information, we design a task
to fit the posteriors from the mean-field (MF) inference
algorithm. Here we define a lattice graph over a 128 x 128
grid. Specifically, we focus on the pair-wise Markov

Learning Steady-States of Iterative Algorithms over Graphs

Table 1. Transductive learning of PageRank on Barabasi-Albert
graphs with different sizes and hyperparameters (m = 1,4). We
report MAE on 50% held-out nodes.

#nodes 1k 10k 100k Im 10m

m=1 S2V-degree 0.0652 0.0843 0.1444 0.4012 0.4954
SSE 0.0041 0.0054 0.0075 0.0088 0.0162

#nodes 1k 10k 100k Im 10m

m=4 S2V-degree 0.0138 0.0165 0.0347 0.0944 0.1223
SSE 0.0043 0.0051 0.0056 0.0065 0.0083

Table 2. Inductive learning of PageRank on Barabasi-Albert graphs,
trained on graph with same hyper-parameters.

#nodes 1k 10k 100k Im 10m
m=1 S2V-degree 0.0783 0.0956 0.1931 0.4532 0.5254
SSE 0.0062 0.0074 0.0073 0.0097 0.0202
#nodes 1k 10k 100k Im 10m
m=4 S2V-degree 0.0172 0.0193 0.0394 0.1243 0.1527
SSE 0.0057 0.0063 0.0066 0.0079 0.0101

Random Field graphical model:
P({H} {x,})x H(I)(Hvaxv) H V(H,,H,) (13)

veY (u,v)€E

where x, is the observation and H,, is the latent variable.
The mean-field score for each H,, is a vector calculated using
the UGM toolset . The task is to learn the mean-field score
q(H,) for each node over a 128 x 128 lattice with x,, set
to be binary with a Gaussian perturbation. The posterior in
this case can be understood as steady-state that is expressed
by nonlinear fixed point equation. We test the learned
mean-field scores on the 10% of the vertices and vary the
size of training set sampled from the remaining vertices.

From Figure 3c we can see, our proposed algorithm still
works best regarding the MAE metric, and can achieve
better results with fewer labeled vertices. Here the fixed
point equations are nonlinear, which is different from the
PageRank experiment. The baseline algorithms can also
achieve good performance with more supervision.

5.4. Application: node classification
Transductive setting:

To demonstrate the effectiveness of addressing steady-state
information, we conduct experiments on a large graph
dataset, namely the Amazon product co-purchasing network
dataset (Yang & Leskovec, 2015)3. Among the 75,149
product types, we select those with at least 5,000 products.
This results in 58 labels finally. The statistics of dataset can

https://www.cs.ubc.ca/~schmidtm/
Software/UGM.html

*http://snap.stanford.edu/data/com-Amazon.

html.

be found in Table 6 in Appendix.

From Table 3 we can see the SSE outperforms the baselines
by a large margin. We also observed that in Amazon dataset,
GNN-family models benefit more from more supervision,
due to the larger model capacity. Our proposed method
achieves the best performance, regardless of the amount
of supervision available. This suggests that our algorithm
can effectively utilize the global-range information of graph
structure.

To make the comparison comprehensive, we also conduct
experiments on small benchmark datasets that are commonly
used in the literature. Details can be found in Appendix A.2.2
and Appendix A.2.1, for multi-class citation network
classification and multi-label classification, respectively.
Since the graphs are small, typically for GNN family models,
T =2 would be enough to get good prediction. Nonetheless,
the SSE still achieves comparable results.

Inductive setting:

In this setting, we use the PPI dataset from GraphSage Hamil-
ton et al. (2017a), which contains 56,944 nodes (for proteins)
and 818,716 edges (for their interactions). It is a multi-label
classification tasks, where each protein can have at most
121 labels. Each protein is associated with additional
50-dimensional features. We use the same train/valid/test
split as in Hamilton et al. (2017a).

Table 4 shows the results. The GraphSage results are taken
from the original paper, since we are using the exactly
same setting. We can see regarding the Micro-F1 metric,
our proposed SSE achieves much better performance. We
show that, since GraphSage is trained using mini-batch of
nodes within 7T™-hops, it is not effective enough to capture the
steady-state information, which in this case seems essential.

5.5. Scalability

In this section, we demonstrate that the proposed algorithm
is very efficient for large-scale graphs in terms of both
convergence speed and execution time.

5.5.1. TIME PER UPDATE

All the algorithms are executed on a 16-core cluster with
256GB memory. We evaluate the wall-clock time cost
per update. For baselines GCN and structure2vec, this
corresponds to one feedforward and back propagation round
with T-step embedding propagation on entire graph; for our
method, this corresponds to ny + 7 mini-batch updates.
Here we focus on models in GNN family. For GCN and
structure2vec, we compare with 7'=1 and 7' = 5; while in
our method, ny =1 and nj, =5.

The task we choose here is PageRank in Section 5.2. The
graphs we evaluate on are generated using Barabasi-Albert

https://www.cs.ubc.ca/~schmidtm/Software/UGM.html
https://www.cs.ubc.ca/~schmidtm/Software/UGM.html
http://snap.stanford.edu/data/com-Amazon.html
http://snap.stanford.edu/data/com-Amazon.html

Learning Steady-States of Iterative Algorithms over Graphs

Table 3. Multi-label classification in Amazon product dataset.

We report both Micro-F1 and Macro-F1 on held-out test set.

Amazon Micro-F1/% Macro-F1/%
Methods 1% 2% 3% 4% 5% 6% 7% 8% 9% 1% 2% 3% 4% 5% 6% 7% 8% 9%
structure2vec 70.27 74.54 77.18 7995 8097 81.58 82.71 8327 8355 66.62 70.07 7474 7643 77.62 78.65 79.92 80.13 80.11
GCN 7039 7358 77.61 80.34 82.03 8323 8425 851 8568 66.16 71.01 7456 77.11 7897 80.5 8136 82.15 82.75
SSE 78.36 81.06 82.61 83.79 84.59 85.08 85.68 86.57 87.13 75.07 77.67 79.03 79.86 81.14 81.59 82.39 83.13 84.03
Time per update in Barabasi-Albert graphs
105 3.04 —— SSE-train —— SSE-train
= SSE SSE-test 2.0 % SSE-test
o I 2.5 —— S2V-train —— S2v-train
E 104 mmm s2v-5 w20 f\ S2V-test wls S2V-test
5 . GON-5 l I 0 o \
S < 1.0 \
£ 10° 5
' 05 W \”M}
10° o KKK }“») .l\J\Nu‘M
0.0
100k im 10m 100m 104 10° 106 107 108 10° 104 10° 106 107 108 10°
nodes # samples # samples

(a) Wall-clock time per round of up-
date. The (*) in the figure denotes the
out-of-memory error.

(b) Convergence on BA graphs with #
nodes=1,000,000 and m=1.

(c) Convergence on BA graphs with #
nodes=1,000,000 and m=4.

Figure 4. Results on scalability experiments. We compare both the time needed per update, as well as number of samples required for
convergence in PageRank experiments with large Barabasi-Albert random graphs.

Table 4. Inductive node classification using PPI dataset.

Method Micro-F1
GraphSAGE-GCN 0.500
GraphSAGE-mean 0.598
GraphSAGE-LSTM 0.612
GraphSAGE-pool 0.600

SSE 0.836

model with m = 4 as its parameter. We vary the number
of nodes in {100k,1m,10m,100m}, and report the time in
milliseconds in Figure 4a.

The results show our algorithm takes almost constant
time for each update, due to its stochasticity nature. As
graph size grows, the time cost for GCN and structure2vec
grows linearly. For graph with 100m nodes, storing the
intermediate updates and gradients for 7'=5 in structure2vec
is no longer feasible *.

5.5.2. CONVERGENCE

Here we compare the number of samples required for dif-
ferent algorithms to converge to a good solution. Figure 4b
and 4c show the curves. We take the Barabasi-Albert graphs
with 1,000,000 node and two different settings of m =1
and m =4, and fit with the PageRank scores on 50% nodes.
We also visualize the test error convergence curve on the
held-out 50% nodes. Both training and test curves report the

*Note that for open source implementation of GCN, the
Tensorflow limits the # elements in sparse matrix. That’s why it
cannot work on graphs with 10m nodes.

RMSE (root mean square error), since we use this metric for
optimization.

We compare with S2V-degree with T = 5, which achieves
second best results in Section 5.2. For our algorithm, each
round of updates requires 256 X (ny +ny) samples. Here
256 is the mini-batch size we used, while S2V-degree needs
the whole graph per update.

From the figures we can see our proposed algorithm
converges much faster than the S2V, in terms of number of
samples. The number of samples required by our algorithm
is equivalent to only scanning through the entire training
set for 4 or 5 passes. While for S2V-degree, it requires
hundreds or thousands of passes to converge. Also note
that, S2V-degree with T'= 5 gets much worse test error in
the case when m =1, due to its limited ability for capturing
steady-state information.

6. Conclusion

In this paper, we presented SSE, an algorithm that can learn
many steady-state algorithms over graphs. Different from
graph neural network family models, SSE is trained stochasti-
cally which only requires 1-hop information, but can capture
fixed point relationships efficiently and effectively. We
demonstrate this in both synthetic and real-world benchmark
datasets, with transductive and inductive experiments for
learning various graph algorithms. The algorithm also scales
well up to 100m nodes with much less training effort. Future
work includes investigation in learning more complicated
graph algorithms, as well as distributed training.

Learning Steady-States of Iterative Algorithms over Graphs

Acknowledgements

This project was supported in part by NSF I1S-1218749, NIH
BIGDATA 1R01GM 108341, NSF CAREER IIS-1350983,
NSF 1IS-1639792 EAGER, NSF CNS-1704701, ONR
N00014-15-1-2340, Intel ISTC, NVIDIA and Amazon
AWS. We thank the anonymous reviewers who gave useful
comments.

References

Bollobas, B. and Riordan, O. The diameter of a scale-free
random graph. Combinatorica, 24(1):5-34, 2004.

Breitkreutz, B.-J., Stark, C., Reguly, T., Boucher, L.,
Breitkreutz, A., Livstone, M., Oughtred, R., Lackner,
D. H., Béhler, J., Wood, V., et al. The biogrid interaction
database: 2008 update. Nucleic acids research, 36
(suppl-1):D637-D640, 2007.

Dai, H., Dai, B., and Song, L. Discriminative embeddings of
latent variable models for structured data. In /ICML, 2016.

De Farias, D. P. and Van Roy, B. The linear program-
ming approach to approximate dynamic programming.
Operations research, 51(6):850-865, 2003.

De Farias, D. P. and Van Roy, B. On constraint sampling in
the linear programming approach to approximate dynamic
programming. Mathematics of operations research, 29
(3):462-478, 2004.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell,
R., Hirzel, T., Aspuru-Guzik, A., and Adams, R. P.
Convolutional networks on graphs for learning molec-
ular fingerprints. In Advances in Neural Information
Processing Systems, pp. 2215-2223,2015.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O.,
and Dahl, G. E. Neural message passing for quantum
chemistry. arXiv preprint arXiv:1704.01212,2017.

Grover, A. and Leskovec, J. node2vec: Scalable feature
learning for networks. In KDD, 2016.

Hachmann, J., Olivares-Amaya, R., Atahan-Evrenk, S.,
Amador-Bedolla, C., Sanchez-Carrera, R. S., Gold-Parker,
A., Vogt, L., Brockway, A. M., and Aspuru-Guzik, A. The
harvard clean energy project: large-scale computational
screening and design of organic photovoltaics on the
world community grid. The Journal of Physical Chemistry
Letters,2(17):2241-2251, 2011.

Hagberg, A., Swart, P, and S Chult, D. Exploring network
structure, dynamics, and function using networkx.
Technical report, Los Alamos National Laboratory
(LANL), 2008.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive

representation learning on large graphs. arXiv preprint
arXiv:1706.02216, 2017a.

Hamilton, W. L., Ying, R., and Leskovec, J. Representation
learning on graphs: Methods and applications. arXiv
preprint arXiv:1709.05584, 2017b.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. arXiv preprint
arXiv:1609.02907,2016.

Lei, T., Jin, W., Barzilay, R., and Jaakkola, T. Deriving
neural architectures from sequence and graph kernels.
arXiv preprint arXiv:1705.09037, 2017.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R.
Gated graph sequence neural networks. arXiv preprint
arXiv:1511.05493,2015.

Mahoney, M. W. Randomized algorithms for matrices and
data. Foundations and Trends®) in Machine Learning,
3(2):123-224,2011.

Page, L., Brin, S., Motwani, R., and Winograd, T. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford InfoLab, 1999.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. Neural
Networks, IEEE Transactions on, 20(1):61-80, 2009.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. Al magazine, 29(3):93, 2008.

Sutton, R. and Barto, A. Reinforcement Learning: An
Introduction. MIT Press, 1998.

Trivedi, R., Dai, H., Wang, Y., and Song, L. Know-evolve:
Deep temporal reasoning for dynamic knowledge graphs.
InICML,2017.

Velickovié, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903,2017.

Yang, J. and Leskovec, J. Defining and evaluating network
communities based on ground-truth. Knowledge and
Information Systems, 42(1):181-213, 2015.

Zafarani, R. and Liu, H.
data repository at ASU, 2009.
//socialcomputing.asu.edu.

Social computing
URL http:

http://socialcomputing.asu.edu
http://socialcomputing.asu.edu

Learning Steady-States of Iterative Algorithms over Graphs

Appendix

A. More on experiments

A.1. Dataset information

Table 5. Multi-class node classification Dataset statistics as reported

in Kipf & Welling (2016).
Dataset #Nodes #Edges #Classes #Features Labelrate
Citeseer 3,327 4,732 6 3,703 3.6%
Cora 2,708 5,429 7 1,433 5.2%
Pubmed 19,717 44,338 3 500 0.3%

Table 6. Multi-label node classification Dataset statistics

Dataset #Nodes #Edges #Labels Label type Graph type
BlogCatalog 10,312 333,983 39 membership social network
PPI(transductive) 3,890 76,584 50 Bio-states protein
Wikipedia 4,777 184,812 40 POS-tag word-net
Amazon 334,863 925,872 58 product type co-purchasing
PPI(inductive) 56,944 818,716 121 Bio-states protein

The real-world dataset used are shown in Table 5 and Table 6.

The multi-class classification datasets are from Kipf &
Welling (2016), where the multi-label classification datasets
are from Grover & Leskovec (2016), Hamilton et al. (2017a)
and SNAP website. Datasets in Table 5 and also the inductive
PPI dataset have extra node features. When available, we
use the same train/valid/test split as in original paper.

A.2. Experiments on small graphs

In this section, we compare with baseline algorithms on
small benchmark datasets. We show that in the graphs
where the diameter is small, existing algorithms can do
pretty good, since local information is almost equivalent to
global-range information. Nonetheless, our SSE can still
achieve comparable performance in this scenario.

A.2.1. MULTI-LABEL CLASSIFICATION

Here we compare our proposed method on the multi-label
benchmark datasets. We include all the datasets used in
Grover & Leskovec (2016) (namely, BlogCatalog (Zafarani
& Liu, 2009), Protein-Protein Interactions (PPI) (Breitkreutz
et al., 2007) and Wikipedia (Mahoney, 2011)). All the
statistics of the dataset can be found in Table 6.

The evaluation metric we used here is Micro-F1 and
Macro-F1 score. We tuned the hyperparameters for all the
algorithms on 10% of training nodes, and then trained the
model on full training set. The dimension of the embedding
is set to 128. The results are shown in Table 7. We achieve
the best results in Wikipedia, while getting comparable
performances on the other two. In dataset like Blogcatalog,
a small local neighborhood would be enough to infer the
group membership of users in this friendship network, thus

our approach would not benefit from taking global-range
of information into account. However, in the Wikipedia
dataset where we achieves the best Micro-F1 and Macro-F1
scores, it is important to know long range information to get
a consensus among POS-tag labeling.

A.2.2. DOCUMENT CLASSIFICATION

Figure 5. The document classification accuracy on benchmark
citation networks.
Classification Accuracy on Citation Networks

801 B GCN
B structure2vec
70 = SSE

o o

MLP accuracy:

Citeseer:46.50%
Cora: 55.10%
Pubmed:71.40%

Accuracy / %
N W D U1 O
o O O

iy
o o

Citeseer Cora Pubmed

In this section, we evaluate the performances on several
benchmark citation graphs, namely Citeseer, Cora an
Pubmed (Sen et al., 2008). The task is to do document clas-
sification, where each node in the citation graph represents
the corresponding document. Different from the experiment
in Section A.2.1, here the documents have auxiliary bag-
of-words features. Since the document classes are mutually
exclusive, we train all the models with Cross Entropy loss.

The statistics of the datasets are shown in Table 5. The
number of features corresponds to the vocabulary size in
each dataset. The edges (undirected) are formed by the
citation relationship between articles. We use the same
training/validation/test splits as in Kipf & Welling (2016).
During training, only 20 instances per class are provided
with corresponding labels.

We report the test classification accuracy in Figure 5. When
possible, we include the baselines’ performances directly
from previously published results (Kipf & Welling, 2016).
From the figure we can see, the proposed SSE performs
the best in Citeseer dataset, while being slightly worse than
other GNN models in Cora and Pubmed dataset, respectively.
We’ve also include the results that using the node feature with
multi-layer perceptron (MLP). The MLP doesn’t consider
any graph structure into consideration, which serves a sanity
check.

Learning Steady-States of Iterative Algorithms over Graphs

Table 7. Multi-label classification in small datasets. We report both Micro-F1 and Macro-F1 on held-out test set.

Blogcatalog Micro-F1/% Macro-F1/%
Methods 10% 20% 30% 40% 50% 60% 70% 80% 90% 10% 20% 30% 40% 50% 60% 0% 80% 90%
structure2vec 35.05 36.65 38.43 39.35 4048 40.89 42.56 42.58 42.61 19.78 22.39 23 25.16 25.89 2696 26.86 27.46 27.69
GCN 36.80 3842 3947 40.88 40.88 41.69 42.06 4243 4250 1931 2096 2043 223 21.86 22.14 23.06 232 2343
SSE 3390 3642 36.80 37.39 3791 3792 3858 39.10 40.28 19.88 22.68 22.88 23.80 23.89 24.08 2438 25.12 2499

PPI Micro-F1/% Macro-F1/%
Methods 10% 20% 30% 40% 50% 60% 70% 80% 90% 10% 20% 30% 40% 50% 60% T70% 80% 90%
structure2vec 19.86 23.19 24.73 2546 2529 27.79 2775 2832 2899 15.14 1594 1832 1841 19.04 2041 2056 22.01 23.83
GCN 18.85 2252 2540 2636 26.52 27.80 27.96 2828 2844 16.03 17.09 19.01 2045 21.01 21.62 2350 23.29 24.13
SSE 19.17 22.04 23.64 23.64 2524 2444 2636 2620 27.16 1558 17.79 1836 1930 2099 20.16 22.64 2280 22.63

Wikipedia Micro-F1/% Macro-F1/%
Methods 10% 20% 30% 40% 50% 60% 70% 80% 90% 10% 20% 30% 40% 50% 60% 70% 80% 90%
structure2vec 47.94 50.24 4998 50.76 5245 53.54 5321 54.07 5495 11.53 11.63 1238 13.05 14.12 16.65 1680 17.37 17.27
GCN 4694 49.14 49.61 48.82 49.61 4992 49.61 51.02 5055 1130 11.64 1241 1232 13.11 1298 1347 13.87 1434
SSE 4694 49.76 5133 5144 51.18 5291 5432 5433 5526 13.63 1370 16.00 16.26 1633 1641 17.00 1733 17.42

