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1 INTRODUCTION
Deep learning models can now recognize images, process natural
language, and defeat humans in challenging strategy games. The
steadily advancing compute capabilities of modern hardware has
played a prominent role in deep learning’s present ubiquity and rel-
evance in many problem domains. Many of the most popular deep
learning frameworks, such as TensorFlow, MXNet, Caffe, and Py-
Torch, harness the power of modern hardware by focusing support
on a narrow class of server-class GPU devices—with this support
depending on the use of highly engineered and vendor-specific GPU
libraries. However, the number and diversity of specialized deep
learning accelerators is increasing rapidly in the wild. These acceler-
ators pose an adoption challenge as they introduce new abstractions
that modern compilers and frameworks are ill-equipped to deal with.

Providing support in various deep learning frameworks for diverse
hardware back-ends in the present ad-hoc fashion is unsustainable.
Ultimately, the goal is to easily deploy deep learning workloads to
all kinds of hardware targets, including embedded devices, GPUs,
FPGAs, and ASICs (e.g, the TPU), which significantly diverge in
terms of memory organization, compute primitives etc. Given these
requirements, the development of an optimization framework that
can lower a high-level specification of a deep learning program down
to low-level optimized code for any hardware back-end is critical.

Current deep learning frameworks rely on a computational graph
intermediate representation to implement optimizations such as auto
differentiation and dynamic memory management [3, 4, 7]. Graph-
level optimizations, however, are often too high-level to handle
hardware back-end-specific operator-level transformations. On the
other hand, current operator-level libraries that deep learning frame-
works rely on are too rigid and specialized to be easily ported across
hardware devices. To address these weaknesses, we present TVM1,
(shown in Figure 1) an end-to-end system allowing the effective
deployment of deep learning workloads specified in a high-level
framework (including Caffe, MXNet, PyTorch, Caffe2, CNTK) to
diverse hardware back-ends (including CPUs, GPUs, and FPGA-
based accelerators).

2 FUNDAMENTAL CHALLENGES
An optimizing compiler for deep learning systems needs to expose
both high-level and low-level optimizations. We summarize four
fundamental challenges that TVM solves in this section:
High-level dataflow rewriting TVM exploits a computational graph
representation to apply high-level optimizations. Computational

1An extended version of this paper can be found at
https://www.cs.washington.edu/tr/2017/12/UW-CSE-17-12-01.pdf
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Figure 1: The TVM Stack Diagram. Current stack support: descrip-
tions from many deep learning frameworks and targeting major CPU,
GPU and specialized accelerators.

graphs provide a global view on computation tasks, yet avoid spec-
ifying how each computation task needs to be implemented. We
can perform various high-level data-flow rewriting operations to
optimize the computation. Static memory planning can be performed
on the graph to pre-allocate memory to hold each intermediate ten-
sor result. Operator fusion fuses multiple operators together into a
single kernel without storing intermediate results back into global
memory. We can also perform data layout transformations to use a
more friendly data layout to speedup computation by exploiting a
given hardware architecture’s data layout constraints.
Memory reuse across compute units Modern GPUs and special-
ized accelerators have a shared memory organization for which the
often used shared-nothing nested parallel model is not optimal. We
enhanced the nested parallel model used in Halide [16] among other
DSLs to allow thread cooperation via shared memory during com-
putation. This enhancement, along with the nested parallel model,
can generate GPU code that is performance-competitive with hand
written kernels.
Tensorized compute intrinsics Deep learning workloads can be
typically decomposed into tensor operators like matrix-matrix multi-
plication or 1-D convolution. These natural decompositions have led
to novel hardware architectures that expose tensor compute primi-
tives that go beyond vector-vector instructions. Examples include
matrix-matrix multiplication [13], matrix-vector product [1] and 1D
convolution [9]. These new primitives create novel challenges when
scheduling high-level tensor operators: the schedule must leverage
these primitives to benefit from hardware specialization. We dub this
the tensorization problem, analogous to the vectorization problem
in SIMD architectures.

Tensorization differs significantly from vectorization. The inputs
to the tensor compute primitives are multi-dimensional, with fixed or
variable lengths, and dictate different data layouts. More importantly,
we cannot resort to a fixed set of primitives, as new deep learning
accelerators are emerging with their own flavors of tensor instruc-
tions. Therefore, we need a solution that is future proof to support
new generations of specialized architectures.
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Workload MXNet(ms) TVM (ms) Speedup
ResNet18 1390 567 2.4
MobileNet 2862 209 12

Table 1: End-to-end experiment results on Raspberry Pi. TVM gen-
erates operators that outperform MXNet which is backed by hand-
optimized libraries. The speedup on MobileNet demonstrates TVM’s
ability to quickly optimize emerging tensor operators, such as depth-
wise [12] conv which are not supported in existing DNN libraries.
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Figure 2: GPU end-to-end comparison of ResNet and MobileNet
workloads among TVM, MXNet, Tensorflow, and Tensorflow XLA on
NVIDIA Tesla K80 and GTX 1080.

To solve this challenge, we separate the hardware interface from
the schedule. Specifically, we introduce a tensor intrinsic declaration
mechanism. We use a tensor expression language to declare the
behavior of each new hardware intrinsic, as well as the lowering rule
associated with it. As a result, our tensorization procedure replaces a
unit of computation with the corresponding tensor intrinsics to take
advantage of hardware specialization.
Latency Hiding While traditional architectures with simultaneous
multithreading and automatically managed caches implicitly hide la-
tency in modern CPUs/GPUs, specialized accelerator designs usually
favor leaner control and offload most of the scheduling complexity
to the compiler stack. TVM can generate hardware explicit syn-
chronization instructions to correctly interleave computation with
memory operations. As a result, TVM can effectively hide the mem-
ory access latency and maximize the utilization and performance of
the targeted accelerator.
Relation to Existing Works Deep learning frameworks [3, 4, 6, 7]
provide convenient interfaces for users to run deep learning work-
loads. While existing frameworks currently depend on vendor spe-
cific libraries. they can leverage TVM’s stack to generate optimized
code a larger hardware devices. High-level computation graph DSLs
are a typical way to represent and perform high-level optimizations.
Tensorflow’s XLA [3] and the recently introduced DLVM [19] fall
into this category. While graph level representations are a good fit for
high-level optimizations, they are too high-level to optimize tensor
operators under a diverse set of hardware back-ends. Prior work that
resorts to vendor crafted libraries require significant engineering
effort for each hardware back-end and operator-variant combination.

Halide [16] introduced the principle of separation between com-
pute and scheduling. We adopt Halide’s insight and reuse its existing
useful scheduling primitives in our compiler. The tensor operator
scheduling is also related other works on DSL for GPUs [11, 17]
as well as works on polyhedral-based loop transformation [5, 18].
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Figure 3: Left: We offload convolutions in the ResNet workload to
VDLA, an FPGA-based accelerator design. The grayed-out bars corre-
spond to layers that cannot be accelerated by the FPGA and therefore
have to run on the CPU. The FPGA can provide a 40x acceleration on
offloaded convolution layers over the ARM Cortex A9. The overall per-
formance of the FPGA system is now bottlenecked by the CPU. We en-
vision that extending the VDLA design to incorporate support for these
other operators will help reduce inference time even further.
Right: The effect of latency hiding on a FPGA-based hardware acceler-
ator design on each layer of ResNet

TACO [14] introduces a generic way to generate sparse tensor op-
erators on CPU. Weld [15] is a DSL for data processing tasks. We
specifically focus on solving the new optimization challenges of
optimizing deep learning workloads for GPUs and specialized ac-
celerators. More importantly, we provide an end-to-end stack that
can directly take descriptions from deep learning frameworks, and
jointly optimize together with the high-level stack.

Despite the trend domain specific accelerators for deep learn-
ing [8, 13], it is yet unclear how a compilation stack can be built to
effectively target these devices. TVM provides a generic solution to
effectively target the specialized accelerators via tensorization and
compiler-driven latency hiding.

3 EXAMPLE RESULTS
We evaluated TVM on three types of platforms—an embedded CPU,
a server-class GPU, and a deep learning accelerator implemented on
a low-power FPGA-based SoC. The benchmarks are based on real
world deep learning inference workloads including ResNet [10] and
MobileNet [12]. We compare our approach with existing deep learn-
ing frameworks including MxNet [7] and TensorFlow [2] that rely on
highly engineered vendor-specific libraries. The results are summa-
rized in Table 1, Figure 2 and Figure 3. TVM delivers performance
across hardware back-ends that is competitive with state-of-the-art
libraries for low-power CPU and server-class GPU.

The FPGA experiment demonstrates TVM’s ability to target new
hardware accelerator back-ends. It also shows the importance of
latency hiding. Overall latency hiding achieves anywhere from 7%
up to 54% latency reduction on each kernel by hiding some of the
latency of loading data into the accelerator. In terms of compute
resources, no latency hiding leads to at best 52% utilization, whereas
latency hiding increases utilization to 74%.

4 CONCLUSION
Our system provides an end-to-end stack to solve fundamental op-
timization challenges across a diverse set of hardware back-ends.
We hope our work can facilitate more studies of programming lan-
guages, system, and open new opportunities for hardware co-design
techniques for deep learning systems.
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