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Streams of Data Everywhere
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Many new data sources are now available:

Linear access patterns make data processing a streaming problem
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High-Throughput Low-Latency Analytics
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Google Zeitgeist
40K 
user queries/s
Within ms

Feedzai
40K 
card trans/s 
In 25 ms

NovaSparks
150M 
stock options/s 
In less than 1 ms

Facebook Insights
9GB 
of page metrics/s
In less than 10 s

tt+1

window
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Algorithmic Complexity Increases
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…
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Design Space for Data-Intensive Systems
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Tension between performance & algorithmic complexity

Easy for
most
algorithms

Hard for
machine
learning
algorithms

Hard for
all 
algorithms
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Scale Out in Data Centres
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Input data ...
Servers in

data centre

Results

select highway, segment, direction, AVG(speed) 
from Vehicles[range 5 seconds slide 1 second]
group by highway, segment, direction
having avg < 40

Task parallelism:
Multiple data processing jobs

Data parallelism:
Single data processing job

select distinct W.cid
From Payments [range 300 seconds] as W,

Payments [partition-by 1 row] as L
where W.cid = L.cid and W.region != L.region

select distinct W.cid
From Payments [range 300 seconds] as W,

Payments [partition-by 1 row] as L
where W.cid = L.cid and W.region != L.region

select distinct W.cid
From Payments [range 300 seconds] as W,

Payments [partition-by 1 row] as L
where W.cid = L.cid and W.region != L.region

select highway, segment, direction, AVG(speed) 
from Vehicles[range 5 seconds slide 1 second]
group by highway, segment, direction
having avg < 40

Task vs Data Parallelism
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Idea:
Execute data-parallel tasks
on cluster nodes

Tasks organised as dataflow graph

Almost all big data systems do this:
– Apache Hadoop, Apache Spark, Apache 

Storm, Apache Flink,
Google TensorFlow, ...

Peter Pietzuch - Imperial College London

8

parallelism
degree 3

parallelism
degree 2

Distributed Dataflow Systems



LSDS Cambridge, October 31

“Nobody Ever Got Fired for Using a Hadoop Cluster” [HotCDP’12]

Or Flink or Spark ;)
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• 2012 study of MapReduce workloads
– Microsoft: median job size < 14 GB
– Yahoo: median job size < 12.5 GB
– Facebook: 90% of jobs < 100 GB

Many data-intensive jobs easily fit into memory
It’s expensive to scale-out in terms of hardware and engineering!

☛ In many cases a single server is cheaper/more efficient than a cluster

The size of the workloads has changed, 
but so has the size/price of memory!
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10s of

streaming processors

Exploit Single-Node Heterogeneous Hardware 

Servers with CPUs and GPUs now common
– 10x higher linear memory access throughput
– Limited data transfer throughput

1000s of 

cores

10s GB of

RAM

Use both CPU & GPU resources for stream processing
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CQL: SQL-based declarative language for 
continuous queries [Arasu et al., VLDBJ’06]

Credit card fraud detection example:
– Find attempts to use same card in different regions 

within 5-min window
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select distinct W.cid
from Payments [range 300 seconds] as W,

Payments [partition-by 1 row] as L
where W.cid = L.cid and W.region != L.region

CQL offers correct window semantics

With Well-Defined High-Level Queries

<\>

Self-join
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Challenges & Contributions
1. How to parallelise sliding-window queries across CPU and GPU?
Decouple query semantics from system parameters

2. When to use CPU or GPU for a CQL operator?
Hybrid processing: offload tasks to both CPU and GPU

3. How to reduce GPU data movement costs?
Amortise data movement delays with deep pipelining

12

SABER
Window-Based Hybrid Stream Processing Engine for CPUs & GPUs

Details omitted



LSDS Cambridge, October 31

Problem: Window semantics affect system 
throughput and latency

– Pick task size based on window size?

13

123456

How to Parallelise Window Computation?

Window-based parallelism results in redundant computation

size: 4 sec
slide: 1 sec

Task T1

Task T2

Output window results 
in order
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Problem: Window semantics affect system 
throughput and latency

– Pick task size based on window size?
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On window slide?

How to Parallelise Window Computation?

…

Slide-based parallelism limits GPU parallelism

123456 size: 4 sec
slide: 1 sec

T1

T2

T3

T4

T5

Compose window results 
from partial results
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Avoid coupling throughput/latency of queries to 
window definition
– e.g. Spark imposes lower bound on window slide:
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Window slide (106 tuples/s)
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Window slide limited by 
min. latency (~500 ms)

Micro-batch size limited 
by window slide

How to Relate Slides to Tasks?

(0.1, 0.2)
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Idea: Decouple task size from window size/slide
– Pick based on underlying hardware features

• e.g. PCIe throughput

16

10 9 8 7 6 5 4 3 2 115 14 13 12 11

– Task contains one or more window fragments
• E.g. closing/pending/opening windows in T2

SABER’s Window Processing Model

T1T2T3

w1
w2

w3
w4

w5

size: 7 rows
slide: 2 rows

5 tuples/task
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Idea: Decouple task size from window size/slide
– Assemble window fragment results
– Output them in correct order
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Worker B: T2

w1
w2
w3

w4
w5

Worker A: T1

w1
w2

w3

w1
result

w2
result

Result Stage
Slot 2 Slot 1

Output result 
circular buffer

Worker B stores T2 results and exits (nothing to forward)Worker A stores T1 results, merges window fragment results 
and forwards complete windows downstream

Merging Window Fragment Results
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Operator Implementations / API

Fragment function, ff
Processes window fragments

Assembly function, fa
Merges partial window results

Batch function, fb
Composes fragment functions 
within a task
Allows incremental processing

10 9 8 7 6 5 4 3 2 1

T1T2

w1
w2

size: 7 rows
slide: 2 rows

5 tuples/sec

fa fa

ff ff

w2 results

ff ff

w1 results

output

fb
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How to Pick the Task Size?
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How Does Window Slide Affect Performance?

Performance of window-based queries remains predictable

Aggregationavg 
[rows 1024, slide x]
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Challenges & Contributions
1. How to parallelise sliding-window queries across CPU and GPU?
Decouple query semantics from system parameters

2. When to use CPU or GPU for a CQL operator?
Hybrid processing: offload tasks to both CPU and GPU

3. How to reduce GPU data movement costs?
Amortise data movement delays with deep pipelining

21

SABER
Window-Based Hybrid Stream Processing Engine for CPUs & GPUs
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Idea: Enable tasks to run on both processors
– Scheduler assigns tasks to idle processors

22

CPU GPU
QA 3 ms 2 ms
QB 3 ms 1 ms

T2 T1T3T4T5T6T7T8T9

QBQAQBQBQBQBQAQBQA

T10

QA

Task Queue: CPU

GPU

0 3 6 9 12

CPU
GPU

First-Come First-Served

T1 T4 T8

T2 T3 T5 T6 T7 T9

T10

SABER’s Hybrid Stream Processing Model

FCFS ignores effectiveness of processor for given task

Past behavior:
comes first

Idle
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Idea: Idle processor skips tasks that could be 
executed faster by another processor

– Decision based on observed query task throughput

23

T2 T1T3T4T5T6T7T8T9

QBQAQBQBQBQBQAQBQA

T10

QA

Task Queue:

0 3 6 9 12

CPU
GPU

HLS

T3

T2T1

T7 T10

T4 T5 T6

CPU

GPU
CPU GPU

QA 3 ms 2 ms
QB 3 ms 1 ms

0 3 6 9 12

Heterogeneous Look-Ahead Scheduler (HLS)

HLS fully utilises processors

T9T8

Past behavior:
comes first
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T1

T2

T2 T1

op

αα
op

CPU

GPU

T1 T2

The SABER Architecture

1
2 3 4

5
6

Scheduling & execution stage

Dequeue tasks 
based on HLS

Dispatching stage

Dispatch 
fixed-size tasks

Merge & forward partial 
window results

Result stage

Java
15K LOC

C & OpenCL
4K LOC
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Ubuntu Linux 14.04 NVIDIA driver 346.47

Intel Xeon 
2.6 GHz

NVIDIA Quadro 
K5200

PCIe 3.0 x16

10 Gbps
NIC

Evaluation: Set-up & Workloads

16 
cores

64GB 
RAM

2,304
cores

8GB 
RAM

Google Cluster Data 
144M jobs events from Google infrastructure

SmartGrid Measurements
974M plug measurements from houses

Linear Road Benchmark
11M car positions and speed on highway
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SABER (CPU contrib.)

SABER (GPU contrib.)

Cluster Mgmt. Smart Grid LRB

Is Hybrid Stream Processing Effective?

Different queries result in different CPU:GPU processing 
split that is hard to predict offline

aggravg group-byavg select

group-byavg group-bycnt

group-bycntgroup-byavg

select

Intel Xeon 2.6 GHz

NVIDIA Quadro K5200

16 cores

2,304 cores
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Is Hybrid Stream Processing Effective?

Aggregate throughput of CPU and GPU always higher 
than its counterparts 

Aggregation Group-by θ-join

GPU is faster CPU is faster Not additive due to queue 
contention
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Dispatch 
bound

0
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0.4

1 4 16 64

# join predicates

[rows 1024, slide 1024]

What is the CPU/GPU Trade-Off?

Hybrid processing model benefits from GPU ability to 
process complex predicates fast

[rows 1024, slide 1024] 
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W1 benefits from static scheduling but HLS fully utilises GPU:
– GPU also runs ~%1 of of γ tasks

W2 benefits from FCFS but HLS better utilises GPU:
– HLS CPU:GPU split is 1:2.5 for π and 1:0.5 for α

Is Heterogeneous Look-Ahead Scheduling Effective?
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) FCFS

Static

HLS

π

γ
[rows 1024, slide 512]

π

α
[rows 1024, slide 1024]

CPU GPU

π 5x

γ 6x

CPU GPU

π 1.5x

α 1.5x W1 W2

W1 W2
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Example: higher selectivity, more predicates evaluated, 
GPU is preferred

Is Heterogeneous Look-Ahead Scheduling Adaptive?

SABER SABER (GPU contrib.)

HLS periodically uses idle, non-preferred processor 
to run tasks to update query task throughput
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H/W-Oblivious Tasks, H/W-Conscious Operators

To begin with, can SABER compete with popular 
distributed stream processing systems?

31

https://lsds.doc.ic.ac.uk/blog/do-we-need-distributed-stream-processing

https://lsds.doc.ic.ac.uk/blog/do-we-need-distributed-stream-processing
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Enter Yahoo! Stream Benchmark

An industry standard (wannabe)
Storm, Flink, Spark, Apex, Drizzle, Diff. Dataflow

Tumbling-window query, bottlenecked by factors 
other than computation

32

π γcntσ

R

Ad Click Events

Campaigns

How many times a campaign has been seen in a tumbling window
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Systems Compared

Apache Flink (1.3.2)

Apache Spark Streaming (2.4.0)

SABER (1.0), without GPU support

StreamBox: a single-server system with emphasis 
on out-of-order processing

33
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Experimental Setup

6 servers (1 master and 5 slaves): 2 Intel Xeon E5-
2660 v3 2.60 GHz CPUs
○ 20 physical CPU cores
○ 25 MB LLC

32 GB of memory

10 GigE connection between the nodes

In-memory generation

8 cores per node

34
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On a Single Server…

35

Reduced serialization costs; keeping data in LLC

3.4×

1.9×

6.6×
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On Multiple Servers…

36
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On Multiple Servers…

37

3.4×
1.2×

64 millions/sec with 6 cores!

Flink 
outperforms 
Spark!
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COST [HotOS’15]

38

Spark Flink SABER Handwritten C++

Throughput (million tuples/ 
sec)

2 4.8 11.8 39

Pipeline Strategy [Hyper, VLDB’11]:
● keep data in CPU registers
● as many sequential operations as possible per tuple
● maximize data locality

Do better than LLC?

With a compiler-based approach to generate custom code based 
on a set of hardware-specific optimisations for any given query
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H/W-Efficient Streaming Operators

Hammer Slide: Work- and CPU-efficient Streaming 
Window Aggregation [ADMS’18]

● Incremental computation for both invertible and 
non-invertible functions

● Parallel processing within a slide (>1) with SIMD 
instructions

● Bridge the gap between sliding and tumbling 
window computation

39
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HammerSlide + SABER

40
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Window processing model
Decouples query semantics from system parameters

Hybrid stream processing model 
Can achieve aggregate throughput of heterogeneous processors

Hybrid Look-ahead Scheduling (HLS) 
Allows use of both CPU and GPU opportunistically for arbitrary 
workloads

41

Alexandros Koliousis
github.com/lsds/saber

Thank you! Any Questions?

Summary


