
LSDS Cambridge, October 31

Alexandros Koliousis
a.koliousis@imperial.ac.uk

Joint work with Matthias Weidlich, Raul Castro Fernandez, Alexander L. Wolf, Paolo Costa,
Peter Pietzuch and, more recently, George Theodorakis, Panos Garefalakis and Holger Pirk

Large-Scale Data & Systems Group
Department of Computing, Imperial College London
http://lsds.doc.ic.ac.uk

Large-Scale Data & Systems Group

The design of a hybrid stream processing
system for heterogeneous servers

LSDS Cambridge, October 31

Streams of Data Everywhere

2

Many new data sources are now available:

Linear access patterns make data processing a streaming problem

LSDS Cambridge, October 31

High-Throughput Low-Latency Analytics

3

Google Zeitgeist
40K
user queries/s
Within ms

Feedzai
40K
card trans/s
In 25 ms

NovaSparks
150M
stock options/s
In less than 1 ms

Facebook Insights
9GB
of page metrics/s
In less than 10 s

tt+1

window

LSDS Cambridge, October 31

Algorithmic Complexity Increases

4

…
Share state

Aggregate

Iterate…

Pre-process

Parallelize
…

Online machine
learning, data

mining

Topic-
based
filtering

Content-
based
filtering

Complex
pattern

matching
Stream
queries

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

T1

T2

T3

T1(a, b, c)

T2(c, d, e)

T3(g, i, h)

Publish/Subscribe Complex Event
Processing (CEP)

Stream
processing

LSDS Cambridge, October 31

Design Space for Data-Intensive Systems

5

Tension between performance & algorithmic complexity

Easy for
most
algorithms

Hard for
machine
learning
algorithms

Hard for
all
algorithms

Result latency

D
at

a
am

ou
nt

MBs

GBs

TBs

10s 1s 100ms 10ms 1ms

LSDS Cambridge, October 31

Scale Out in Data Centres

6

LSDS Cambridge, October 31 7

Input data ...
Servers in

data centre

Results

select highway, segment, direction, AVG(speed)
from Vehicles[range 5 seconds slide 1 second]
group by highway, segment, direction
having avg < 40

Task parallelism:
Multiple data processing jobs

Data parallelism:
Single data processing job

select distinct W.cid
From Payments [range 300 seconds] as W,

Payments [partition-by 1 row] as L
where W.cid = L.cid and W.region != L.region

select distinct W.cid
From Payments [range 300 seconds] as W,

Payments [partition-by 1 row] as L
where W.cid = L.cid and W.region != L.region

select distinct W.cid
From Payments [range 300 seconds] as W,

Payments [partition-by 1 row] as L
where W.cid = L.cid and W.region != L.region

select highway, segment, direction, AVG(speed)
from Vehicles[range 5 seconds slide 1 second]
group by highway, segment, direction
having avg < 40

Task vs Data Parallelism

LSDS Cambridge, October 31

Idea:
Execute data-parallel tasks
on cluster nodes

Tasks organised as dataflow graph

Almost all big data systems do this:
– Apache Hadoop, Apache Spark, Apache

Storm, Apache Flink,
Google TensorFlow, ...

Peter Pietzuch - Imperial College London

8

parallelism
degree 3

parallelism
degree 2

Distributed Dataflow Systems

LSDS Cambridge, October 31

“Nobody Ever Got Fired for Using a Hadoop Cluster” [HotCDP’12]

Or Flink or Spark ;)

9

• 2012 study of MapReduce workloads
– Microsoft: median job size < 14 GB
– Yahoo: median job size < 12.5 GB
– Facebook: 90% of jobs < 100 GB

Many data-intensive jobs easily fit into memory
It’s expensive to scale-out in terms of hardware and engineering!

☛ In many cases a single server is cheaper/more efficient than a cluster

The size of the workloads has changed,
but so has the size/price of memory!

LSDS Cambridge, October 31 10

L3

C1

C2

C3

C4

C5

C6

C7

C8

L3

C1

C2

C3

C4

C5

C6

C7

C8

L2 Cache

DRAM DRAM

Processor1 ... N

So
ck

et
 1

So
ck

et
 2

Command Queue
PCIe Bus

DMA

10s of

streaming processors

Exploit Single-Node Heterogeneous Hardware

Servers with CPUs and GPUs now common
– 10x higher linear memory access throughput
– Limited data transfer throughput

1000s of

cores

10s GB of

RAM

Use both CPU & GPU resources for stream processing

LSDS Cambridge, October 31

CQL: SQL-based declarative language for
continuous queries [Arasu et al., VLDBJ’06]

Credit card fraud detection example:
– Find attempts to use same card in different regions

within 5-min window

11

select distinct W.cid
from Payments [range 300 seconds] as W,

Payments [partition-by 1 row] as L
where W.cid = L.cid and W.region != L.region

CQL offers correct window semantics

With Well-Defined High-Level Queries

<\>

Self-join

LSDS Cambridge, October 31

Challenges & Contributions
1. How to parallelise sliding-window queries across CPU and GPU?
Decouple query semantics from system parameters

2. When to use CPU or GPU for a CQL operator?
Hybrid processing: offload tasks to both CPU and GPU

3. How to reduce GPU data movement costs?
Amortise data movement delays with deep pipelining

12

SABER
Window-Based Hybrid Stream Processing Engine for CPUs & GPUs

Details omitted

LSDS Cambridge, October 31

Problem: Window semantics affect system
throughput and latency

– Pick task size based on window size?

13

123456

How to Parallelise Window Computation?

Window-based parallelism results in redundant computation

size: 4 sec
slide: 1 sec

Task T1

Task T2

Output window results
in order

LSDS Cambridge, October 31

Problem: Window semantics affect system
throughput and latency

– Pick task size based on window size?

14

On window slide?

How to Parallelise Window Computation?

…

Slide-based parallelism limits GPU parallelism

123456 size: 4 sec
slide: 1 sec

T1

T2

T3

T4

T5

Compose window results
from partial results

LSDS Cambridge, October 31

Avoid coupling throughput/latency of queries to
window definition
– e.g. Spark imposes lower bound on window slide:

15

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8 9

T
h
ro

u
g

h
p

u
t

(1
0

6
tu

p
le

s/
s)

Window slide (106 tuples/s)

1s 2s 3s 4s 5s

Window slide limited by
min. latency (~500 ms)

Micro-batch size limited
by window slide

How to Relate Slides to Tasks?

(0.1, 0.2)

LSDS Cambridge, October 31

Idea: Decouple task size from window size/slide
– Pick based on underlying hardware features

• e.g. PCIe throughput

16

10 9 8 7 6 5 4 3 2 115 14 13 12 11

– Task contains one or more window fragments
• E.g. closing/pending/opening windows in T2

SABER’s Window Processing Model

T1T2T3

w1
w2

w3
w4

w5

size: 7 rows
slide: 2 rows

5 tuples/task

LSDS Cambridge, October 31

Idea: Decouple task size from window size/slide
– Assemble window fragment results
– Output them in correct order

17

Worker B: T2

w1
w2
w3

w4
w5

Worker A: T1

w1
w2

w3

w1
result

w2
result

Result Stage
Slot 2 Slot 1

Output result
circular buffer

Worker B stores T2 results and exits (nothing to forward)Worker A stores T1 results, merges window fragment results
and forwards complete windows downstream

Merging Window Fragment Results

LSDS Cambridge, October 31 18

Operator Implementations / API

Fragment function, ff
Processes window fragments

Assembly function, fa
Merges partial window results

Batch function, fb
Composes fragment functions
within a task
Allows incremental processing

10 9 8 7 6 5 4 3 2 1

T1T2

w1
w2

size: 7 rows
slide: 2 rows

5 tuples/sec

fa fa

ff ff

w2 results

ff ff

w1 results

output

fb

LSDS Cambridge, October 31

How to Pick the Task Size?

19

0

2

4

6

8

32 64 128 256 512 1024 2048 4096

Th
ro

ug
hp

ut
 (G

B/
s)

Task Size (KB)

CPU GPU

LSDS Cambridge, October 31 20

0

0.05

0.1

0.15

0.2

0

2

4

6

8

64 256 1024 4096 16384

L
a
te

n
c
y

(s
e
c
)

T
h
ro

u
g
h
p

u
t

(G
B

/s
)

Window Slide (Bytes)

SABER

SABER Latency

How Does Window Slide Affect Performance?

Performance of window-based queries remains predictable

Aggregationavg
[rows 1024, slide x]

LSDS Cambridge, October 31

Challenges & Contributions
1. How to parallelise sliding-window queries across CPU and GPU?
Decouple query semantics from system parameters

2. When to use CPU or GPU for a CQL operator?
Hybrid processing: offload tasks to both CPU and GPU

3. How to reduce GPU data movement costs?
Amortise data movement delays with deep pipelining

21

SABER
Window-Based Hybrid Stream Processing Engine for CPUs & GPUs

LSDS Cambridge, October 31

Idea: Enable tasks to run on both processors
– Scheduler assigns tasks to idle processors

22

CPU GPU
QA 3 ms 2 ms
QB 3 ms 1 ms

T2 T1T3T4T5T6T7T8T9

QBQAQBQBQBQBQAQBQA

T10

QA

Task Queue: CPU

GPU

0 3 6 9 12

CPU
GPU

First-Come First-Served

T1 T4 T8

T2 T3 T5 T6 T7 T9

T10

SABER’s Hybrid Stream Processing Model

FCFS ignores effectiveness of processor for given task

Past behavior:
comes first

Idle

LSDS Cambridge, October 31

Idea: Idle processor skips tasks that could be
executed faster by another processor

– Decision based on observed query task throughput

23

T2 T1T3T4T5T6T7T8T9

QBQAQBQBQBQBQAQBQA

T10

QA

Task Queue:

0 3 6 9 12

CPU
GPU

HLS

T3

T2T1

T7 T10

T4 T5 T6

CPU

GPU
CPU GPU

QA 3 ms 2 ms
QB 3 ms 1 ms

0 3 6 9 12

Heterogeneous Look-Ahead Scheduler (HLS)

HLS fully utilises processors

T9T8

Past behavior:
comes first

LSDS Cambridge, October 31 24

T1

T2

T2 T1

op

αα
op

CPU

GPU

T1 T2

The SABER Architecture

1
2 3 4

5
6

Scheduling & execution stage

Dequeue tasks
based on HLS

Dispatching stage

Dispatch
fixed-size tasks

Merge & forward partial
window results

Result stage

Java
15K LOC

C & OpenCL
4K LOC

LSDS Cambridge, October 31 25

Ubuntu Linux 14.04 NVIDIA driver 346.47

Intel Xeon
2.6 GHz

NVIDIA Quadro
K5200

PCIe 3.0 x16

10 Gbps
NIC

Evaluation: Set-up & Workloads

16
cores

64GB
RAM

2,304
cores

8GB
RAM

Google Cluster Data
144M jobs events from Google infrastructure

SmartGrid Measurements
974M plug measurements from houses

Linear Road Benchmark
11M car positions and speed on highway

LSDS Cambridge, October 31 26

0

10

20

30

40

50

CM2 SG1 SG2 LRB3 LRB4Th
ro

ug
hp

ut
 (1

06
tu

pl
es

/s
)

SABER (CPU contrib.)

SABER (GPU contrib.)

Cluster Mgmt. Smart Grid LRB

Is Hybrid Stream Processing Effective?

Different queries result in different CPU:GPU processing
split that is hard to predict offline

aggravg group-byavg select

group-byavg group-bycnt

group-bycntgroup-byavg

select

Intel Xeon 2.6 GHz

NVIDIA Quadro K5200

16 cores

2,304 cores

LSDS Cambridge, October 31 27

0

2

4

6

T
h
ro

u
g

h
p

u
t

(G
B

/s
)

0

0.1

0.2

0.3 SABER (CPU only)

SABER (GPU only)

SABER

Is Hybrid Stream Processing Effective?

Aggregate throughput of CPU and GPU always higher
than its counterparts

Aggregation Group-by θ-join

GPU is faster CPU is faster Not additive due to queue
contention

LSDS Cambridge, October 31

0

2

4

6

8

1 4 16 64

T
h
ro

u
g

h
p

u
t

(G
B

/s
)

selection predicates

SABER (CPU only) SABER (GPU only) SABER

28

Dispatch
bound

0

0.1

0.2

0.3

0.4

1 4 16 64

join predicates

[rows 1024, slide 1024]

What is the CPU/GPU Trade-Off?

Hybrid processing model benefits from GPU ability to
process complex predicates fast

[rows 1024, slide 1024]

LSDS Cambridge, October 31 29

W1 benefits from static scheduling but HLS fully utilises GPU:
– GPU also runs ~%1 of of γ tasks

W2 benefits from FCFS but HLS better utilises GPU:
– HLS CPU:GPU split is 1:2.5 for π and 1:0.5 for α

Is Heterogeneous Look-Ahead Scheduling Effective?

0

1

2

3

4

5

W1 W2

Th
ro

ug
hp

ut
 (G

B
/s

) FCFS

Static

HLS

π

γ
[rows 1024, slide 512]

π

α
[rows 1024, slide 1024]

CPU GPU

π 5x

γ 6x

CPU GPU

π 1.5x

α 1.5x W1 W2

W1 W2

LSDS Cambridge, October 31

0

2

4

6

8

20 30 40T
h
ro

u
g

h
p

u
t

(G
B

/s
)

Time (seconds)

0

0.1

0.2

20 30 40

S
e
le

c
tiv

ity

30

Example: higher selectivity, more predicates evaluated,
GPU is preferred

Is Heterogeneous Look-Ahead Scheduling Adaptive?

SABER SABER (GPU contrib.)

HLS periodically uses idle, non-preferred processor
to run tasks to update query task throughput

LSDS Cambridge, October 31

H/W-Oblivious Tasks, H/W-Conscious Operators

To begin with, can SABER compete with popular
distributed stream processing systems?

31

https://lsds.doc.ic.ac.uk/blog/do-we-need-distributed-stream-processing

https://lsds.doc.ic.ac.uk/blog/do-we-need-distributed-stream-processing

LSDS Cambridge, October 31

Enter Yahoo! Stream Benchmark

An industry standard (wannabe)
Storm, Flink, Spark, Apex, Drizzle, Diff. Dataflow

Tumbling-window query, bottlenecked by factors
other than computation

32

π γcntσ

R

Ad Click Events

Campaigns

How many times a campaign has been seen in a tumbling window

LSDS Cambridge, October 31

Systems Compared

Apache Flink (1.3.2)

Apache Spark Streaming (2.4.0)

SABER (1.0), without GPU support

StreamBox: a single-server system with emphasis
on out-of-order processing

33

LSDS Cambridge, October 31

Experimental Setup

6 servers (1 master and 5 slaves): 2 Intel Xeon E5-
2660 v3 2.60 GHz CPUs
○ 20 physical CPU cores
○ 25 MB LLC

32 GB of memory

10 GigE connection between the nodes

In-memory generation

8 cores per node

34

LSDS Cambridge, October 31

On a Single Server…

35

Reduced serialization costs; keeping data in LLC

3.4×

1.9×

6.6×

LSDS Cambridge, October 31

On Multiple Servers…

36

LSDS Cambridge, October 31

On Multiple Servers…

37

3.4×
1.2×

64 millions/sec with 6 cores!

Flink
outperforms
Spark!

LSDS Cambridge, October 31

COST [HotOS’15]

38

Spark Flink SABER Handwritten C++

Throughput (million tuples/
sec)

2 4.8 11.8 39

Pipeline Strategy [Hyper, VLDB’11]:
● keep data in CPU registers
● as many sequential operations as possible per tuple
● maximize data locality

Do better than LLC?

With a compiler-based approach to generate custom code based
on a set of hardware-specific optimisations for any given query

LSDS Cambridge, October 31

H/W-Efficient Streaming Operators

Hammer Slide: Work- and CPU-efficient Streaming
Window Aggregation [ADMS’18]

● Incremental computation for both invertible and
non-invertible functions

● Parallel processing within a slide (>1) with SIMD
instructions

● Bridge the gap between sliding and tumbling
window computation

39

LSDS Cambridge, October 31

HammerSlide + SABER

40

LSDS Cambridge, October 31

Window processing model
Decouples query semantics from system parameters

Hybrid stream processing model
Can achieve aggregate throughput of heterogeneous processors

Hybrid Look-ahead Scheduling (HLS)
Allows use of both CPU and GPU opportunistically for arbitrary
workloads

41

Alexandros Koliousis
github.com/lsds/saber

Thank you! Any Questions?

Summary

