6@ LSDS Imperial College

Large-Scale Data & Systems Group London

A B E The design of a hybrid stream processing
system for heterogeneous servers

Alexandros Koliousis

a.koliousis@imperial.ac.uk

Joint work with Matthias Weidlich, Raul Castro Fernandez, Alexander L. Wolf, Paolo Costa,
Peter Pietzuch and, more recently, George Theodorakis, Panos Garefalakis and Holger Pirk

Large-Scale Data & Systems Group
Department of Computing, Imperial College London

http://Isds.doc.ic.ac.uk

Streams of Data Everywhere
Many new data sources are now available:

- vy 02y _’-\\
/7~ GETAULTHE (((’)) B\\
{ INFORMATION Yoo €AN, | A
|\‘~'€.'u- THINK ¢oF A |
-, “;/ "'.‘ - @ \\Aa’
.. Ty ? — V/

@ Linear access patterns make data processing a streaming problem

@ Lsps ASABER| 2

High-Throughput Low-Latency Analytics

Facebook Insights
9GB

of page metrics/s
In less than 10 s

™ Lsps

Google Zeitgeist
40K

user queries/s
Within ms

O

Feedzai NovaSparks
40K 150M

card trans/s stock options/s
In 25 ms In less than 1 ms

b

adlal.,

Algorithmic Complexity Increases

T1 T1(a, b, ©) . . . SEE E_rre]:—pr)roctefs
T2 T26,d,9) w T A A A UUE s j
Aggregate
T3 T3(g, i, h)
Topic- Content- Complex : :
bazed :: > based :]] > pattern :: > Stream Online machine
. ' learning, data
filtering filtering matching quenes "9
mining
Publish/Subscribe Complex Event Stream

Processing (CEP) processing

¢ Lsps

Design Space for Data-Intensive Systems

Tension between performance & algorithmic complexity

£ TBs

>

g Hard for

© all

&£ GBs algorithms

8 Hard for
machine
learning

MBs algorithms

Easy for
most
algorithms

10s 1s 100ms 10ms Tms
Result latency

{(® Lsps a5 5

Scale Out in Data Centres

Q

]

N

LSDS

Task vs Data Parallelism

Input data

Results

Servers in
data centre

H-Y * \AL ~icl I

icktinat \AlL ~idl I

elect highway, segment, direction, AVG(speed)
from Vehicles[range 5 seconds slide 1 second]
group by highway, segment, direction
having avg < 40

H-Y + \AL il I
Fr Select highway, segment, direction, AVG(speed)
from Vehicles[range 5 seconds slide 1 second]
group by highway, segment, direction
having avg < 40

Task parallelism: Data parallelism:
Multiple data processing jobs Single data processing job

ASABER| 7

parallelism
degree 2

parallelism
degree 3

™ LSDs

s 1N

Distributed Dataflow Systems

Idea:
Execute data-parallel tasks
on cluster nodes

Tasks organised as dataflow graph

Almost all big data systems do this:
— Apache Hadoop, Apache Spark, Apache

Storm, Apache Flink,
Google TensorFlow, ...

ASABER| 8

“Nobody Ever Got Fired for Using a Hadoop Cluster” \,,.cpp12;

Or Flink or Spark ;)

2012 study of MapReduce workloads
— Microsoft: median job size < 14 GB
— Yahoo: median job size < 12.5 GB :>
— Facebook: 90% of jobs < 100 GB

The size of the workloads has changed,
but so has the size/price of memory!

Many data-intensive jobs easily fit into memory
It’s expensive to scale-out in terms of hardware and engineering!

w In many cases a single server is cheaper/more efficient than a cluster

{(® Lsps ASABER| 9

Exploit Single-Node Heterogeneous Hardware

Servers with CPUs and GPUs now common

— 10x higher linear memory access throughput
— Limited data transfer throughput

PCle Bus
Command Queue —
Processory ... N
. > SESEEEEEEEEEEEaEEES
© C, C | C C
% 1 s % il S mm mm 1 mm ® 10s of
S| le @l | 8 le o =2 o=@ o=3oEs trami
9 %) H = H H streaming processors
Cs Gy Cs G == == == ==
17 1 T 1] of
Cs GCg Cy GCg 1 1 =1 1
HE 17 T 17 cores
L3 L3 (5
- - L2 Cache e 1OS GB of
RAM
DRAM DMA DRAM
e

@ Use both CPU & GPU resources for stream processing

With Well-Defined High-Level Queries

CQL: SQL-based declarative language for
continuous QUETIES [arasy et al., VLDBJ06]

Credit card fraud detection example:

— Find attempts to use same card in different regions
within 5-min window

CQL offers correct window semantics

Seéf:/’o[m,

select distinct
from

o
Payments [range 300 seconds] as W,
ments [partition-by 1 row] as L
W.cid = L@l TEgTON 1= L.region

where

{ Lsps ASABER | 11

SABER

Window-Based Hybrid Stream Processing Engine for CPUs & GPUs

Challenges & Contributions

1. How to parallelise sliding-window queries across CPU and GPU?
Decouple query semantics from system parameters

2. When to use CPU or GPU for a CQL operator?
Hybrid processing: offload tasks to both CPU and GPU

Details omitted

@ Lsps ASABER |12

How to Parallelise Window Computation?

Problem: Window semantics affect system
throughput and latency

— Pick task size based on window size?

6 5 4 13 2 A /—@size:4sec

e — . slide: 1 sec
| II=
Task T, =®
% Output window results
Task T, - @ in order

@ Window-based parallelism results in redundant computation

(& Lsps 4SABER |13

How to Parallelise Window Computation?

Problem: Window semantics affect system
throughput and latency

— Pick task size based on window size? On window slide?

6 5 4 3 2 1 /—@size:4sec

slide: 1 sec
T ——
T :@ Compose window results
T, ;@ from partial results
T, -
T O

@ Slide-based parallelism limits GPU parallelism

{® Lsps 4SABER | 14

How to Relate Slides to Tasks?

Avoid coupling throughput/latency of queries to
window definition

— e.g. Spark imposes lower bound on window slide:

1s 23S 3s 4s 5s

Window slide limited by
1.5 min. latency (~500 ms)

05 Micro-batch size limited
| (0.1, 0.2 by window slide

Throughput
(1086 tuples/s)

0 1 2 3 4 5 6 / 8 9
Window slide (108 tuples/s)

(& Lsps ASABER |15

SABER’s Window Processing Model

|dea: Decouple task size from window size/slide

— Pick based on underlying hardware features
 e.g. PCle throughput

T Ts T ——@® 5 tuples/task
15114 (1312 | 11 1019|1876 514132]|1 ,
/ (® size: 7 rows
4 N\ w; slide:2 rows
W2
W3
I | VY
I _ Ws .

— Task contains one or more window fragments
» E.g. closing/pending/opening windows in T,

™ Lsps ASABER | 16

Merging Window Fragment Results

|dea: Decouple task size from window size/slide

— Assemble window fragment results
— Output them in correct order

Worker A: T,

W4 W
result
V\/3]

(| 1 o
"] result
W; [
[WJ Slot 1

Slot 2
I V- Output result
Result Stage

s circular buffer

Worker B: T,

Worker B stores T, results, andrgxitsyimatbindréy foewardsults
and forwards complete windows downstream

¢ Lsps

Operator Implementations / API

Ts T ® 5 tuples/sec
Fragment function, f. [o[e[e[7]e] [s[<]s]z '] osie: 710ms
Processes window fragments " W+ slide: 2 rows
2

Assembly function, f, [fi n}[fi L }fb

Merges partial window results

Wo results Wy results

Batch function, f,

Composes fragment functions fa fa
within a task

Allows incremental processing

output

@ Lsps ASABER 18

How to Pick the Task Size?

(00)
)

0=CPU <3=GPU |

(o)}
1

Throughput (GB/s)
N

32 64 128 256 512 1024 2048 4096
Task Size (KB)

Q

4

(> LsDs ASABER 19

-l

N\

How Does Window Slide Affect Performance?

@ Performance of window-based queries remains predictable

Throughput (GB/s)
(@)
H»
>3
[»2
[

4 1\
\ ——SABER
> ‘\ ---SABER Latency
\
Y
o L TTmsmeeeeoe oo
64 256 1024 4096 16384

Window Slide (Bytes)

Aggregation,, . [rows 1024, slide x]

¢ Lsps

0.2

0.15 —

0.1

Latency (sec

0.05

JASABER |20

SABER

Window-Based Hybrid Stream Processing Engine for CPUs & GPUs

Challenges & Contributions

2. When to use CPU or GPU for a CQL operator?
Hybrid processing: offload tasks to both CPU and GPU

{ Lsps ASABER | 21

SABER’s Hybrid Stream Processing Model

|dea: Enable tasks to run on both processors
— Scheduler assigns tasks to idle processors

Past behavior: Task Queue: P
v v RRERRERRERER
Qa 3ms 2 ms GPU
Qp 3ms 1ms Qv Qu Qs Qy Qg Qs Qg Qs Qn Qg

0 3 6 9 12

First-Come First-Served

cru T T ETE me—
GPU | I I I T Idle

@ FCFS ignores effectiveness of processor for given task

™ Lsps ASABER | 22

Heterogeneous Look-Ahead Scheduler (HLS)

|dea: |Idle processor skips tasks that could be
executed faster by another processor
— Decision based on observed query task throughput

Past behavior: Task Queue: CPU
v v RNEEREEEEERN- o
Qa 3 ms 2ms GPU
o | 3me | 1me . & O % QO QG Q% Qs Q O G
B

0 3 6 9 12

HLS

cru N T ST——
GPU | TN (NN [NNTE (RNER N

@ HLS fully utilises processors

™ Lsps ASABER |23

The SABER Architecture

Java C & OpenCL
15K Loc 4K Loc

4 N

h 3
=1

GPU —t

S

O

S

£)

® Dispatching stage ® Scheduling & execution stage Result stage
Dispatch Dequeue tasks Merge & forward partial
fixed-size tasks based on HLS window results

@ Lsps ASABER | 24

Evaluation: Set-up & Workloads

PCle 3.0 x16
Intel Xeon NVIDIA Quadro
2.6 GHz K5200
16 64GB 2,304 8GB
10 Gbps cores RAM cores RAM
NIC Ubuntu Linux 14.04 NVIDIA driver 346.47
=== Google Cluster Data
S=J= 144M jobs events from Google infrastructure
6 SmartGrid Measurements
974M plug measurements from houses
» Linear Road Benchmark
Q 11M car positions and speed on highway
@ Lsps ASABER |25

Is Hybrid Stream Processing Effective?

@ Different queries result in different CPU:GPU processing
split that is hard to predict offline

select group-by.., group-bye.

|

group-bya.e aggr.e group-by., select group-byey

50 m SABER (CPU contrib.)
40 Intel Xeon 2.6 GHz

16 cores
s | N
20 . . SABER (GPU contrib.)

10 2,304 cores
0

A A
Y Y Y

Throughput (108 tuples/s)

Cluster Mgmt. Smart Grid LRB

@ Lsps ASABER |26

-l

Is Hybrid Stream Processing Effective?

@ Aggregate throughput of CPU and GPU always higher

than its counterparts

GPU is faster ® CPU is faster

— b
L
M
S 4
5
Q
>
2 2
o
= 0
Aggregation Group-by
{ Lsps

0.3

0.2

0.1

Not additive due to queue
contention

m SABER (CPU only)
SABER (GPU only)
m SABER

B-join

ASABER |27

What is the CPU/GPU Trade-Off?

@ Hybrid processing model benefits from GPU ability to
process complex predicates fast

O-SABER (CPUonly) SABER (GPU only) -~-SABER

8 0.4
@
Mm 6 0.3 ¢
O}
3 4r 0.2 «
£
= Dispatch
o 5 -
= 2 | bound 0.1 03 ~
I_
0 0
1 4 16 64 1 4 16 64
selection predicates # join predicates
[rows 1024, slide 1024 [rows 1024, slide 1024]

@ Lsps ASABER | 28

Is Heterogeneous Look-Ahead Scheduling Effective?

W1 W2
5
T T
w m FCFS
| | 3
0] Static
Y o S S | mHs
e
[rows 1024, slide 512] [rows 1024, slide 1024] 2 2
O
CPU | GPU CPU | GPU = 1
T 5X T 1.5% 0
Y BX o | 1.5x

@ W, benefits from static scheduling but HLS fully utilises GPU:
— GPU also runs ~%1 of of y tasks

& Lsps 4SABER 129

Is Heterogeneous Look-Ahead Scheduling Adaptive?

@ HLS periodically uses idle, non-preferred processor
to run tasks to update query task throughput

Example: higher selectivity, more predicates evaluated,
GPU is preferred

Selectivity
© O
o =+ DN

20 30 40
o 8

) 5 | —SABER SABER (GPU contrib.)

0

5 4 \/\/\/\\/\/\/\’\/\/\’\/\/\/\
e o

(@)

s O

E 20 30 40

Time (seconds)

{(® Lsps ASABER | 30

H/W-Oblivious Tasks, H/'W-Conscious Operators

To begin with, can SABER compete with popular
distributed stream processing systems?

A Do We Need Distributed Stream Processing? (ic.ac.uk)

129 points by domargan 4 months ago | hide | past | web | favorite | 31 comments

https://Isds.doc.ic.ac.uk/blog/do-we-need-distributed-stream-processing

™ Lsps ASABER | 31

https://lsds.doc.ic.ac.uk/blog/do-we-need-distributed-stream-processing

Enter Yahoo! Stream Benchmark

An industry standard (wannabe)
Storm, Flink, Spark, Apex, Drizzle, Diff. Dataflow

Tumbling-window query, bottlenecked by factors
other than computation

R

Campaigns

How many times a campaign has been seen in a tumbling window

(& Lsps a5

32

Systems Compared

Apache Flink (1.3.2)
Apache Spark Streaming (2.4.0)
SABER (1.0), without GPU support

StreamBox: a single-server system with emphasis
on out-of-order processing

{® Lsps 45 33

Experimental Setup

6 servers (1 master and 5 slaves): 2 Intel Xeon E5-
2660 v3 2.60 GHz CPUs

o 20 physical CPU cores
o 25MB LLC

32 GB of memory
10 GigE connection between the nodes

In-memory generation

8 cores per node

{® Lsps a5

34

On a Single Server...

Reduced serialization costs; keeping data in LLC

@ 100 Flink = + - |

& SABER -3 - |

= 80} Spark | il

= __ StreamBox —&— | - i 4
o 60 | 2 ~

g o E2 3.4x%

- " - b 4

é— 40 o 6.6x

= v

g 20 _":;'E] """"" ;‘_‘ g T o = — =T .

= (H R e s 4A-—-'_“—_'_A e %
A=A |

Threads

@ Lsps ASABER |35

On Multiple Servers...

Nodes
= 1 2 3 4 5
2100 . . . :
o
g— 80 } [—PE]
og 60 |
S sl
- 2 Flink =+ - |
o 20 |@ At SABER -[3 - | |
= +-P+ Spark
g 0 ! ___StreamBox
& 8 16 24 32 40
Threads

Q

4

™ Lsps ASABER |36

-l

N\

On Multiple Servers...

Nodes
o 1 2 3 4 5
g 100 ' ‘ , , |
D 64 millions/sec with 6 cores!
9 80|] J *
o I | USRI s ¥
© 60| EP—T +___+——‘ ﬂI1.2><
e 3.4x g ™ ' Flink
4 40 | G B . ‘ 1 outperforms
= o @ Flink = 4 - Spark!
S 20 |8 ¢ SABER -3 - ||
ar
_CE) 0 EM 1 Streampox —AH—
= 8 16 24 32 40
Threads

@ Lsps ASABER |37

COST iot0s'15

Spark Flink SABER Handwritten C++

Throughput (million tuples/ 2 4.8 11.8 39

sec)

Pipeline Strategy [Hyper, VLDB’11]:

Do better than LLC? |:> ® keep data in CPU registers
® as many sequential operations as possible per tuple

® maximize data locality

With a compiler-based approach to generate custom code based
on a set of hardware-specific optimisations for any given query

{(® Lsps ASABER |38

H/W-Efficient Streaming Operators

Hammer Slide: Work- and CPU-efficient Streaming
Window Aggregation japms'1s

e Incremental computation for both invertible and
non-invertible functions

e Parallel processing within a slide (>1) with SIMD
iInstructions

e Bridge the gap between sliding and tumbling
window computation

{(® Lsps a5 39

HammerSlide + SABER

MIN - Window Suze 1024

w80
%) SABER - + -
@© 70 || SABER (direct buffers) =[3 -
S 60| SABER (simd)
© 50 |
Z 40} *
5 30} .
o - 44
g 10 nE J»IF .
S O --a=m=====-°@"°
1 32 64 128 256 5121024
Window Slide

@ Lsps ASABER | 40

Summary

Window processing model
Decouples query semantics from system parameters

Hybrid stream processing model
Can achieve aggregate throughput of heterogeneous processors

Hybrid Look-ahead Scheduling (HLS)

Allows use of both CPU and GPU opportunistically for arbitrary
workloads

9 Thank you! Any Questions?

Alexandros Koliousis

github.com/Isds/saber

QUESTIONS

™ Lsps ASABER |41

