Challenges for Large-scale Data Processing

Eiko Yoneki

University of Cambridge Computer Laboratory

2010s: Big Data
= Why Big Data now?

Increase of Storage Capacity
Increase of Processing Capacity
Availability of Data

Hardware and software technologies
can manage ocean of data

up to 2003 5 exabytes
> 2012 2.7 zettabytes (500 x more)
- 2015 ~8 zettabytes (3 x more than 2012)

\aristy

Varacity

Massive Data: Scale-Up vs Scale-Out

= Popular solution for massive data processing

- scale and build distribution, combine theoretically unlimited
number of machines in single distributed storage

- Parallelisable data distribution and processing is key

= Scale-up: add resources to single node (many cores) in system
(e.g. HPC)

= Scale-out: add more nodes to system (e.g. Amazon EC2)

Typical Operation with Big Data

Find similar items 2 efficient multidimensional
indexing

Incremental updating of models =» support
streaming

Distributed linear algebra & dealing with large
sparse matrices

Plus usual data mining, machine learning and
statistics

= Supervised (e.g. classification, regression)

= Non-supervised (e.qg. clustering..)

Technologies

» Distributed infrastructure

= Cloud (e.g. Infrastructure as a service, Amazon EC2, Google App
Engine, Elastic, Azure)

cf. Many core (parallel computing)

= Storage

= Distributed storage (e.g. Amazon S3, Hadoop Distributed File System
(HDFS), Google File System (GFS))

= Data model/indexing

= High-performance schema-free database (e.g. NoSQL DB - Redis,
BigTable, Hbase, Neo4J)

= Programming model
= Distributed processing (e.g. MapReduce)

NoSQL (Schema Free) Database

NoSQL database

= Operate on distributed infrastructure
= Based on key-value pairs (no predefined schema)
= Fast and flexible

Pros: Scalable and fast
Cons: Fewer consistency/concurrency guarantees and

weaker queries support

Implementations
= MongoDB, CouchDB, Cassandra, Redis, BigTable, Hibase ...

MapReduce Programming

= Target problem needs to be parallelisable
= Split into a set of smaller code (map)
= Next small piece of code executed in parallel

= Results from map operation get synthesised into a result of
original problem (reduce)

Input data
s
i
L
=
i
=

Cutput data

Data Flow Programming

= Non standard programming models

= Data (flow) parallel programming
= e.g. MapReduce, Dryad/LINQ, NAIAD, Spark, Tensorflow...

MapReduce: DAG (Directed Acyclic Graph) Flow
Hadoop based: Dryad/Spark... \ Relu

Add

32 |-14 (50| ..
1.0 -2 | 24| ..

b Matmul

ofo

Two-Stage fixed dataflow

More flexible dataflow model

"Data Processing Stack

Programming
gy

Data Processing Layer

Streaming Graph Processing

- Query Language Machine Learning _
PRGN Pig, Hive, SparkSQL,|| Tensorflow, Caffe, torch, Pregel, Giraph,
Storm, SEEP, Naiad, DryadLINO MLIib GraphLab, PowerGraph,
Spark Streaming, Flink, (Dato), GraphX,
Milwheel, Google Execution Engine X-Stream...
Dataflow... MapReduce, Spark, Dryad, Flumejava...

Storage Layer

Distributed Operational Store/NoSQL DB Logging System/Distributed
File Systems Big Table, Hbase, Dynamo, Messaging Systems
GFS, HDFS, Amazon S3, Flat FS.. Cassandra, Redis, Mongo, Kafka, Flume...
Spanner...

Resource Management Layer

Resource Management Tools
Mesos, YARN, Borg, Kubernetes, EC2, OpenStack... 9

"Data Processing Stack

Programming
gy

Data Processing Layer

Streaming
Processing
Storm, SEEP, Naiad,

Query Language
Pig, Hive, SparkSQL,
DryadLINQ...

Machine Learning

MLIib...

Tensorflow, Caffe, torch,

Graph Processing
Pregel, Giraph,

GraphLab, PowerGraph,

Spark Streaming, Flink,

(Dato), GraphX,

Milwheel, Google

Execution Engine

X-Stream...

Dataflow... MapReduce, Spark, Dryad, Flumejava...
Storage Layer
Distributed Operational Store/NoSQL DB Logging System/Distributed

File Systems
GFS, HDFS, Amazon S3, Flat FS..

Big Table, Hbase, Dynamo,
Cassandra, Redis, Mongo,

Messaging Systems
Kafka, Flume...

Spanner...

Resource Management Layer

Resource Management Tools

Mesos, YARN, Borg, Kubernetes, EC2, OpenStack...

10

0 6 ‘\/;_,,,J,%/. Brain Networks:
=", 58 100B neurons(700T
§ links) requires 100s

GB memory

tumor specimens

Bipartite graph of
phrases in
documents

Airline Graphs

Web 1.4B

Protein Interactions @a%emedia data pages(6.68
[genomebiology.com] 4! o links)

.........

11

Graph Computation Challenges

Graph algorithms (BFS, Shortest path)
Query on connectivity (Triangle, Pattern)
Structure (Community, Centrality)

. ML & Optimisation (Regression, SGD) y

D WDNPER

_

= Data driven computation: dictated by graph’s structure and
parallelism based on partitioning is difficult

= Poor locality: graph can represent relationships between irregular
entries and access patterns tend to have little locality

= High data access to computation ratio: graph algorithms are often

based on exploring graph structure leading to a large access rate to

computation ratio

12

Data-Parallel vs. Graph-Parallel

= Data-Parallel for all? Graph-Parallel is hard!
= Data-Parallel (sort/search - randomly split data to feed MapReduce)

= Not every graph algorithm is parallelisable (interdependent
computation)

= Not much data access locality
= High data access to computation ratio

Data-Parallel

Table /

+ 3

Graph-Parallel
| Dependency Graph |

J0GE

13

Graph-Parallel

= Graph-Parallel (Graph Specific Data Parallel)

= Vertex-based iterative computation model

= Use of iterative Bulk Synchronous Parallel Model

> Pregel (Google), Giraph (Apache), Graphlab,
GraphChi (CMU - Dato)

= Optimisation over data parallel
=» GraphX/Spark (U.C. Berkeley)

= Data-flow programming — more general framework
= NAIAD (MSR), TensorFlow..

14

Bulk synchronous parallel: Example

= Finding the largest value in a connected graph

Local Computation j
-

Communication

Message

.

Local Computation

.

Communication

.

15

Large Clusters and Many cores Efficient?

= Brute force approach really efficiently works?
= Increase of number of cores (including use of GPU)

= Increase of nodes in clusters
Big Iron

P

Large Cluster

-

ﬁPC/GraphSOO benchmarks

Graph Edges Hardware Avery Ching,

A billion edges isn’t r.oo’l- Facebook
You know what’s cool? @Strata, 2/13/2014

A TRILLION edges.
1 trillion Tsubame e

1 trillion Cray

1 trillion Blue Gene

K 1 trillion NEC
-

Yes, using 3940 machines

Do we really need large clusters?

= |Laptops are sufficient?

Twenty pagerank iterations

System cores twitter_rv uk_2007_05
Spark 128 857s 1759s
Giraph 128 596s 1235s
GraphLab 128 Q49s 833s
GraphX 128 419s E 462s)
Single thread 1 C300sD 651s D

Label propagation to fixed-point (graph connectivity)

System cores twitter_rv | uk_2007_05
Spark 128 1784s 8000s+
Giraph 128 200s 8000s+
GraphLab 128 242s 714s
GraphX 128 251s 800s

Single thread

1

C 1535P

C417sD

from Frank McSherry HotOS 2015

(Fixed-point iteration \

All vertices active in
each iteration
(50% computation, 50%

\communication) y

(Traversal: Search
proceeds in a frontier
(90% computation, 10%

communication)

17

"Data Processing Stack

Programming
gy

Data Procgssing Layer

Streaming
Processing
Storm, SEEP, Naiad,

Query Language
Pig, Hive, SparkSQL,
DryadLINQ...

MLIib...

Machine Learning
ensorflow, Caffe, torch,

Graph Processing
Pregel, Giraph,
GraphLab, PowerGraph,

Spark Streaming, Flink,

Milwheel, Google

Execution Engineé

(Dato), GraphX,

X-Stream...

Dataflow... MapReduce, Spark, Dryad, Flumejava...
Storage Layer
Distributed Operational Store/NoSQL DB Logging System/Distributed

File Systems
GFS, HDFS, Amazon S3, Flat FS..

Big Table, Hbase, Dynamo,
Cassandra, Redis, Mongo,

Spanner...

Messaging Systems
Kafka, Flume...

Resource Management Layer

Resource Management Tools

Mesos, YARN, Borg, Kubernetes, EC2, OpenStack...

18

" Data Processing for Neural Networks

= Practicalities of training Neural Networks
= Leveraging heterogeneous hardware

Modern Neural Networks Applications:

Image Classification

airplane ﬁy*’..a;‘.
automonite [1 SO PN 50 Sl g B ot &
bird ?:; ﬁ:‘\ '!H
« EEOHSEREsP

WS
- EESHSDANT)R
oo 1 A

horse

ML P
v EECEeEEE
o e 0 D L

Reinforcement Learning

19

i

Traning Procedure
= Optimise the weights of the neurons to yield good
predictions

= Use minibatches of inputs to estimate the gradient

20

o j Machine Setup

= One or more beefy GPUs

21

| ribution: Parameter Server Architecture

, —
Parameter Server W = W - WAW

C)0)t)0] = Can exploit both

UJO Data Parallelism and
W//Aw l T \\ Model Parallelism

7

Model
Replicas |

Data
Shards

Source: Dean et al.: Large Scale Distributed Deep Networks

22

Software Platform for ML Applications

L Lasagne J { Keras J

Torch Theano Tensorflow
(Lua) (Python) (Python/C++)

Ray

23

= OQur group’s work

j Dataflow Composition

API, Component configuration

RLgraph component graph

TensorFlow PyTorch

Distributed TF Horovod Ray

Hardware: CPU, GPU, TPU, FPGAs...

Prebuilt models,
inference

Model design,
dataflow composition

Local backends
variables/operations

Distributed
execution engine

Execution,
orchestration

24

Owl

Composable Services

‘ ML & NLP] [Nauramamm] [Zoo System]

Classic Analytics

Algarithmic .] . -
[Differentiation | [Linear Algebra [Visualisation }
[Maths & Stats “ [Regrassion { Optimisation W

Core

Ndara " CBLAS, LAPACKE | [Eval & Memory
¥ Interface Management

__

j Architecture for OCaml/

Actor

GFGFU

Map-Reduce
Engine

=

Parameter Server
Erigire

-~

Pear-to-Peer
Engine

Synchronous
Farallel Machine

|

Owl + Actor = Distributed & Parallel Analytics

Owl provides numerical backend; whereas
Actor implements the mechanisms of
distributed and parallel computing. Two parts
are connected with functors.

Various system backends allows us to write
code once, then run it from cloud to edge
devices, even in browsers.

Same code can run in both sequential and
parallel mode with Actor engine.

By Liang Wang in 2018

25

| puter Systems Optimisation

= What is performance?
= Resource usage (e.g. time, power)
= Computational properties (e.g. accuracy, fairness, latency)

= How do we improve it:
= Manual tuning
= Runtime autotuning
= Static time autotuning

/ Build a scheduler for a distributed system \

o \What heuristics to use?
e How to detect failed workers?

// \

Use a Black-box optimization tool

Manually tune the system

v/ Uses programmer understanding v/ Can surpass human tuning
X Takes time X Does not scale to large parameter spaces

X Specific to a single environment X Can only handle simple parameters /

26

j Tuning: Profiling

= Always the first step
= Simplest case: Poor man’s profiler

= Debugger + Pause

= Higher level tools
= Perf, Vtune, Gprof...

= Distributed profiling: a difficult active research area
= No clock synchronisation guarantee

= Many resources to consider
= System logs can be leveraged

- tune implementation based on profiling (never captures all
interactions) 27

Auto-tuning systems

Application

I

[Input data

J

System

= Properties:
= Many dimensions

= Expensive objective
function

= Understanding of the
underlying behaviour

Flags

H

Hardware

e

J

28

"Runtime Autotuning

= Plug and play to respond to a changing environment

For parameters that:

= Can dynamically change

= Can leverage runtime measurement
= E.g. Locking strategy

= Often grounded in Control Theory

29

L Scheduling on Heterogeneous Cluster

= Which machines to use as workers? As parameter servers?
= /workers => /computational power & /communication

= How much work to schedule on each worker?
= Must load balance

, —
Parameter Server W — W - UAW

OO0

//a 1T\
Model DD DD DD
Replicas DD DD DD

Data
Shards

30

Static time Autotuning

Especially useful when:
= There is a variety of environments (hardware, input distributions)
= The parameter space is difficult to explore manually

= Defining a parameter space
= e.g. Petabricks: A language and compiler for algorithmic choice (2009)
= BNF-like language for parameter space
= Uses an evolutionary algorithm for optimisation

= Applied to Sort, matrix multiplication Parameter Space

L - [R
Objective
function

31

Ways to do an Optimisation

Random search: No risk of 'getting stuck’
potentially many samples required

Evolution strategies: Evaluate

permutations against fitness function =~ Bayes Opt: Sample efficient, requires
continuous function, some configuration

Genetic
Random Search algorithm / Bayesian
Simulated Optimisation
annealing

No overhead Slight overhead High overhead

High #evaluation Medium-high Low #evaluation
#evaluation

32

Bayesian optimisation

= For when Objective function is expensive (e.g. NN hyper-parameter)
—>Iteratively build a probabilistic model of objective function

Predicted (1) Find promising point (parameter values with
Performance high performance value in the model)
(2) Evaluate the objective function at that point

Objective Performance (3) Update the model to reflect this new
Function measurement
Pros:

v Data efficient: converges in few iterations
v Able to deal with noisy observations

Domain Gaussian process

Cons:
X In many dimensions, model does not converge to the objective function

Solution: Use the known structure of the optimisation problem 33

Structured Bayesian Optimisation

@ (

Domain ©@—

Structured

probabilistic model

_

_
h ©,
@ Objective
Function

v/ Better convergence
v/ Use all measurements

Predicted
Performance

Performance &
Runtime properties

e BOAT: a framework to build BespOke Auto-Tuners

e It includes a probabilistic library to express these models

Three desirable properties:

= Able to use many
measurements

= Understand the trend of
the objective function

= High precision in the
region of the optimum

e V. Dalibard, M. Schaarschmidt, and E. Yoneki: BOAT: Building Auto-
Tuners with Structured Bayesian Optimization, WWW 2017. (Morning

Paper on May 18, 2017)

34

abi/istic Model for Bayesian optimisation

Gaussian processes: ” |
----- flz) =z sin(x)
*Do regression: R"—R |+ - observations
—— Prediction
.O(N3) I 95% confidence interval

=Allow for uncertainty

35

" Probabilistic Model

= Probabilistic models incorporate random variables and
probability distributions into the model

= Deterministic model gives a single possible outcome
= Probabilistic model gives a probability distribution

= Used for various probabilistic logic inference (e.g.
MCMC-based inference, Bayesian inference...)

36

2010

2000

1990

Probabilistic Programming

ML

Factorie

PL Al
Figaro Venture
HANSAI Chureh
Problog
Blog
IBAL
Prism
1]
Discrete RV'’s
Only
Simula Prolog

Vem kg

STATS

JAGS

WinBUGS

Bounded
Recursion

BUGS

Edward based on
Python

ﬁ Probabilistic C++
STAN

Improbable - Java a7

" Computer Systems Optimisation Models

= Long-term planning: requires model of how actions affect future states.
Only a few system optimisations fall into this category, e.g. network routing
optimisation.

= Short-term dynamic control: major system components are under dynamic
load, such as resource allocation and stream processing, where the future
load is not statistically dependent on the current load. Bayesian
optimisation is sufficient to optimise distinct workloads. For dynamic
workload, Reinforcement Learning would perform better.

= Combinatorial optimisation: a set of options must be selected from a large
set under potential rules of combination. For this situation, one can either
learn online if the task is cheap via random sampling, or via RL and pre-
training if the task is expensive, or massively parallel online training given
sufficient resources.

38

| j Reinforcement Learning

= Given a set of actions with some unknown reward distributions, maximise
the cumulative reward by taking the actions sequentially, one action at
each time step and obtaining a reward immediately.

= To find the optimal action, one needs to explore all the actions but not too
much. At the same time, one needs to exploit the best action found so-far
by exploring.
= What makes reinforcement learning different from other machine learning
paradigms?
= There is no supervisor, only a reward signal
= Feedback is delayed, not instantaneous
= Time really matters (sequential)

= Agent’s actions affect the subsequent data "i- Ak 1
it receives e FOITT

Image courtesy: The Guardia Image courtesy: Tusfter - Dezp 39

AlphaGo defeating the Go World Champion

Problem: Controlling dynamic behaviour

Many systems problems are combinatorial in nature

Assume workload dynamic,
e.g. seasonality, load spikes,

shared resources, failures.. 4 T ? ? ?
Scheduler
« Algorithm: workload — A
behavior distribution % 5

* |Involves approximations to o
NP-complete problems,
e.g. bin packing, sub-
graph isomorphism, ..

Source: firmament.io

40

Trade-offs in dynamic control

Single static configuration/rule: E.q.
FIFO scheduler

Online estimate of distributions: E.g.
join-order in query planning

Workload clustering: Identify distinct
classes, e.g. write-heavy, read-heavy
workloads, per-class decisions

Fully adaptive: Optimal per-task
behavior, unrealistic in practice

Robust, predictable,
low deployment cost

Analytical overhead

Training/deployment
cost factor

41

Practical Issues continued...

Many deep learning tools, no standard library for
modern RL (~2014-2018)

Exploration in production system not a good idea

« Unstable, unpredictable

Simulations can oversimplify problem

« Expensive to build, not justified versus gain

Online steps take too long

42

Data Processing Stack

Programming
gy

Data Processing Layer

Streaming Graph Processing

- Query Language Machine Learning _
PRGN Pig, Hive, SparkSQL,|| Tensorflow, Caffe, torch, Pregel, Giraph,
Storm, SEEP, Naiad, DryadLINO MLIib GraphLab, PowerGraph,
Spark Streaming, Flink, (Dato), GraphX,
Milwheel, Google Execution Engine X-Stream...
Dataflow... MapReduce, Spark, Dryad, Flumejava...

Storage Layer

Distributed Operational Store/NoSQL DB Logging System/Distributed
File Systems Big Table, Hbase, Dynamo, Messaging Systems
GFS, HDFS, Amazon S3, Flat FS.. Cassandra, Redis, Mongo, Kafka, Flume...
Spanner...

Resource Management Layer

Resource Management Tools
Mesos, YARN, Borg, Kubernetes, EC2, OpenStack... 43

[Application]

[arr |

Parallel Processing Stack

[Algorithmic Parameters]

g

Physics/Biology Apps | | Commercial Apps

Social media analysis

T -

<

Efficient, Declarative, Expressive Programming Language

[High-level]

<L =

Parallel Programming: lang. (OpenMP, Eigen..) lib. (TensorFlow..)

[Low-level]

< =

Low-Level APIs (MPI, OpenCL...), Vector-Compiler, SIMD, SPMD...

[Hardware]

-

Heterogeneous Hardware (CPU/GPU/ASIC, Memory, Disks), VM

Cluster (Amazon)

u

GPU cluster

buiunj-oiny + NOILVSIWILAO

between Research and Practice

Device Placement Optimization with Reinforcement Learning

Azalia Mirhoseini“'? Hieu Pham “'2 Quoc V. Le! Benoit Steiner ' Rasmus Larsen' Yuefeng Zhou'
Naveen Kumar® Mohammad Norouzi' Samy Bengio' Jeff Dean'

45

Topic Areas

Session 1: Introduction

Session 2: Data flow programming: Map/Reduce to TensorFlow
Session 3: Large-scale graph data processing

Session 4: Stream Data Processing + Guest lecture

Session 5: Hands-on Tutorial: Map/Reduce and Deep Neural Network
Session 6: Machine Learning for Optimisation of Computer Systems
Session 7: Task scheduling, Performance, and Resource Optimisation

Session 8: Project Study Presentation

46

Summary

= R244 course web page:

www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2018 2019

= Enjoy the course!

47

