
Challenges for Large-scale Data Processing

Eiko Yoneki

University of Cambridge Computer Laboratory

2010s: Big Data

 Why Big Data now?

 Increase of Storage Capacity

 Increase of Processing Capacity

 Availability of Data

 Hardware and software technologies

can manage ocean of data

up to 2003 5 exabytes
 2012 2.7 zettabytes (500 x more)
 2015 ~8 zettabytes (3 x more than 2012)

2

Massive Data: Scale-Up vs Scale-Out

 Popular solution for massive data processing

 scale and build distribution, combine theoretically unlimited
number of machines in single distributed storage

 Parallelisable data distribution and processing is key

 Scale-up: add resources to single node (many cores) in system
(e.g. HPC)

 Scale-out: add more nodes to system (e.g. Amazon EC2)

3

Typical Operation with Big Data

6

 Find similar items efficient multidimensional
indexing

 Incremental updating of models support
streaming

 Distributed linear algebra dealing with large
sparse matrices

 Plus usual data mining, machine learning and
statistics
 Supervised (e.g. classification, regression)

 Non-supervised (e.g. clustering..)

Technologies

 Distributed infrastructure
 Cloud (e.g. Infrastructure as a service, Amazon EC2, Google App

Engine, Elastic, Azure)

cf. Many core (parallel computing)

 Storage
 Distributed storage (e.g. Amazon S3, Hadoop Distributed File System

(HDFS), Google File System (GFS))

 Data model/indexing
 High-performance schema-free database (e.g. NoSQL DB - Redis,

BigTable, Hbase, Neo4J)

 Programming model
 Distributed processing (e.g. MapReduce)

5

NoSQL (Schema Free) Database

 NoSQL database

 Operate on distributed infrastructure
 Based on key-value pairs (no predefined schema)
 Fast and flexible

 Pros: Scalable and fast
 Cons: Fewer consistency/concurrency guarantees and

weaker queries support

 Implementations
 MongoDB, CouchDB, Cassandra, Redis, BigTable, Hibase …

6

MapReduce Programming

 Target problem needs to be parallelisable

 Split into a set of smaller code (map)

 Next small piece of code executed in parallel

 Results from map operation get synthesised into a result of
original problem (reduce)

7

Data Flow Programming

 Non standard programming models

 Data (flow) parallel programming
 e.g. MapReduce, Dryad/LINQ, NAIAD, Spark, Tensorflow…

MapReduce:
Hadoop

More flexible dataflow model

Two-Stage fixed dataflow

DAG (Directed Acyclic Graph)
based: Dryad/Spark…

8

Data Processing Stack

Resource Management Layer

Storage Layer

Data Processing Layer

Resource Management Tools
Mesos, YARN, Borg, Kubernetes, EC2, OpenStack…

Distributed
File Systems

GFS, HDFS, Amazon S3, Flat FS..

Operational Store/NoSQL DB
Big Table, Hbase, Dynamo,
Cassandra, Redis, Mongo,

Spanner…

Logging System/Distributed
Messaging Systems

Kafka, Flume…

Execution Engine
MapReduce, Spark, Dryad, Flumejava…

Streaming
Processing

Storm, SEEP, Naiad,
Spark Streaming, Flink,

Milwheel, Google
Dataflow...

Graph Processing
Pregel, Giraph,

GraphLab, PowerGraph,
(Dato), GraphX,

X-Stream...

Query Language
Pig, Hive, SparkSQL,

DryadLINQ…

Machine Learning
Tensorflow, Caffe, torch,

MLlib…

Programming

9

Data Processing Stack

Resource Management Layer

Storage Layer

Data Processing Layer

Resource Management Tools
Mesos, YARN, Borg, Kubernetes, EC2, OpenStack…

Distributed
File Systems

GFS, HDFS, Amazon S3, Flat FS..

Operational Store/NoSQL DB
Big Table, Hbase, Dynamo,
Cassandra, Redis, Mongo,

Spanner…

Logging System/Distributed
Messaging Systems

Kafka, Flume…

Execution Engine
MapReduce, Spark, Dryad, Flumejava…

Streaming
Processing

Storm, SEEP, Naiad,
Spark Streaming, Flink,

Milwheel, Google
Dataflow...

Graph Processing
Pregel, Giraph,

GraphLab, PowerGraph,
(Dato), GraphX,

X-Stream...

Query Language
Pig, Hive, SparkSQL,

DryadLINQ…

Machine Learning
Tensorflow, Caffe, torch,

MLlib…

Programming

10

Brain Networks:
100B neurons(700T
links) requires 100s
GB memory

Emerging Massive-Scale Graph Data

Protein Interactions
[genomebiology.com]

Gene expression
data

Bipartite graph of
phrases in
documents Airline Graphs

Social media data

Web 1.4B
pages(6.6B
links)

11

Graph Computation Challenges

 Data driven computation: dictated by graph’s structure and
parallelism based on partitioning is difficult

 Poor locality: graph can represent relationships between irregular
entries and access patterns tend to have little locality

 High data access to computation ratio: graph algorithms are often
based on exploring graph structure leading to a large access rate to
computation ratio

1. Graph algorithms (BFS, Shortest path)

2. Query on connectivity (Triangle, Pattern)

3. Structure (Community, Centrality)

4. ML & Optimisation (Regression, SGD)

12

Data-Parallel vs. Graph-Parallel

 Data-Parallel for all? Graph-Parallel is hard!
 Data-Parallel (sort/search - randomly split data to feed MapReduce)

 Not every graph algorithm is parallelisable (interdependent
computation)

 Not much data access locality

 High data access to computation ratio

13

Graph-Parallel

 Graph-Parallel (Graph Specific Data Parallel)

 Vertex-based iterative computation model

 Use of iterative Bulk Synchronous Parallel Model

Pregel (Google), Giraph (Apache), Graphlab,

GraphChi (CMU - Dato)

 Optimisation over data parallel

GraphX/Spark (U.C. Berkeley)

 Data-flow programming – more general framework

NAIAD (MSR), TensorFlow..

14

Bulk synchronous parallel: Example

 Finding the largest value in a connected graph

Message

Local Computation

Communication

Local Computation

Communication

…

15

Are Large Clusters and Many cores Efficient?

 Brute force approach really efficiently works?

 Increase of number of cores (including use of GPU)

 Increase of nodes in clusters

16

Do we really need large clusters?

 Laptops are sufficient?

from Frank McSherry HotOS 2015

Fixed-point iteration:
All vertices active in
each iteration
(50% computation, 50%

communication)

Traversal: Search
proceeds in a frontier
(90% computation, 10%

communication)

17

Data Processing Stack

Resource Management Layer

Storage Layer

Data Processing Layer

Resource Management Tools
Mesos, YARN, Borg, Kubernetes, EC2, OpenStack…

Distributed
File Systems

GFS, HDFS, Amazon S3, Flat FS..

Operational Store/NoSQL DB
Big Table, Hbase, Dynamo,
Cassandra, Redis, Mongo,

Spanner…

Logging System/Distributed
Messaging Systems

Kafka, Flume…

Execution Engine
MapReduce, Spark, Dryad, Flumejava…

Streaming
Processing

Storm, SEEP, Naiad,
Spark Streaming, Flink,

Milwheel, Google
Dataflow...

Graph Processing
Pregel, Giraph,

GraphLab, PowerGraph,
(Dato), GraphX,

X-Stream...

Query Language
Pig, Hive, SparkSQL,

DryadLINQ…

Machine Learning
Tensorflow, Caffe, torch,

MLlib…

Programming

18

Data Processing for Neural Networks

 Practicalities of training Neural Networks
 Leveraging heterogeneous hardware

Modern Neural Networks Applications:

Image Classification Reinforcement Learning

19

Training Procedure

 Optimise the weights of the neurons to yield good
predictions

 Use minibatches of inputs to estimate the gradient

20

Single Machine Setup

 One or more beefy GPUs

21

Distribution: Parameter Server Architecture

Source: Dean et al.: Large Scale Distributed Deep Networks

22

 Can exploit both
Data Parallelism and
Model Parallelism

Software Platform for ML Applications

Torch

(Lua)

Theano

(Python)

Tensorflow

(Python/C++)
Ray

KerasLasagne

23

RLgraph: Dataflow Composition

 Our group’s work

24

OWL Architecture for OCaml

By Liang Wang in 2018

25

Computer Systems Optimisation

 What is performance?
 Resource usage (e.g. time, power)
 Computational properties (e.g. accuracy, fairness, latency)

 How do we improve it:
 Manual tuning
 Runtime autotuning
 Static time autotuning

26

Manual Tuning: Profiling

 Always the first step

 Simplest case: Poor man’s profiler

 Debugger + Pause

 Higher level tools

 Perf, Vtune, Gprof…

 Distributed profiling: a difficult active research area

 No clock synchronisation guarantee

 Many resources to consider

 System logs can be leveraged

 tune implementation based on profiling (never captures all

interactions) 27

Auto-tuning systems

 Properties:
 Many dimensions

 Expensive objective
function

 Understanding of the
underlying behaviour

Hardware

System

ApplicationInput data

Flags

28

Runtime Autotuning

 Plug and play to respond to a changing environment

For parameters that:

 Can dynamically change

 Can leverage runtime measurement

 E.g. Locking strategy

 Often grounded in Control Theory

29

Optimising Scheduling on Heterogeneous Cluster

 Which machines to use as workers? As parameter servers?

 ↗workers => ↗computational power & ↗communication

 How much work to schedule on each worker?

 Must load balance

30

Static time Autotuning

Especially useful when:

 There is a variety of environments (hardware, input distributions)

 The parameter space is difficult to explore manually

 Defining a parameter space

 e.g. Petabricks: A language and compiler for algorithmic choice (2009)

 BNF-like language for parameter space

 Uses an evolutionary algorithm for optimisation

 Applied to Sort, matrix multiplication

31

Ways to do an Optimisation

Random Search
Genetic

algorithm /
Simulated
annealing

Bayesian
Optimisation

No overhead Slight overhead High overhead

High #evaluation Medium-high
#evaluation

Low #evaluation

32

Bayesian optimisation

Predicted

Performance
Domain

Objective

Function
Performance

Gaussian process
①

②
③

① Find promising point (parameter values with

high performance value in the model)

② Evaluate the objective function at that point

③ Update the model to reflect this new

measurement

Pros:

✓ Data efficient: converges in few iterations

✓ Able to deal with noisy observations

Cons:

✗ In many dimensions, model does not converge to the objective function

Solution: Use the known structure of the optimisation problem

 For when Objective function is expensive (e.g. NN hyper-parameter)

Iteratively build a probabilistic model of objective function

33

Structured Bayesian Optimisation

Predicted

Performance
Domain

Objective

Function

Performance &

Runtime properties

Structured

probabilistic model

①

②

③

✓ Better convergence

✓ Use all measurements

● BOAT: a framework to build BespOke Auto-Tuners

● It includes a probabilistic library to express these models

● V. Dalibard, M. Schaarschmidt, and E. Yoneki: BOAT: Building Auto-
Tuners with Structured Bayesian Optimization, WWW 2017. (Morning
Paper on May 18, 2017)

Three desirable properties:

 Able to use many
measurements

 Understand the trend of
the objective function

 High precision in the
region of the optimum

34

Probabilistic Model for Bayesian optimisation

Gaussian processes:

Do regression: ℝn→ℝ
O(N3)
Allow for uncertainty

35

Probabilistic Model

 Probabilistic models incorporate random variables and
probability distributions into the model

 Deterministic model gives a single possible outcome

 Probabilistic model gives a probability distribution

 Used for various probabilistic logic inference (e.g.
MCMC-based inference, Bayesian inference…)

36

Probabilistic Programming

Edward based on
Python

Probabilistic C++

Improbable – Java 37

Computer Systems Optimisation Models

 Long-term planning: requires model of how actions affect future states.
Only a few system optimisations fall into this category, e.g. network routing
optimisation.

 Short-term dynamic control: major system components are under dynamic
load, such as resource allocation and stream processing, where the future
load is not statistically dependent on the current load. Bayesian
optimisation is sufficient to optimise distinct workloads. For dynamic
workload, Reinforcement Learning would perform better.

 Combinatorial optimisation: a set of options must be selected from a large
set under potential rules of combination. For this situation, one can either
learn online if the task is cheap via random sampling, or via RL and pre-
training if the task is expensive, or massively parallel online training given
sufficient resources.

38

Deep Reinforcement Learning

 Given a set of actions with some unknown reward distributions, maximise
the cumulative reward by taking the actions sequentially, one action at
each time step and obtaining a reward immediately.

 To find the optimal action, one needs to explore all the actions but not too
much. At the same time, one needs to exploit the best action found so-far
by exploring.

 What makes reinforcement learning different from other machine learning
paradigms?

 There is no supervisor, only a reward signal

 Feedback is delayed, not instantaneous

 Time really matters (sequential)

 Agent’s actions affect the subsequent data

it receives

AlphaGo defeating the Go World Champion
39

Problem: Controlling dynamic behaviour

40

Trade-offs in dynamic control

41

Practical Issues continued…

42

Data Processing Stack

Resource Management Layer

Storage Layer

Data Processing Layer

Resource Management Tools
Mesos, YARN, Borg, Kubernetes, EC2, OpenStack…

Distributed
File Systems

GFS, HDFS, Amazon S3, Flat FS..

Operational Store/NoSQL DB
Big Table, Hbase, Dynamo,
Cassandra, Redis, Mongo,

Spanner…

Logging System/Distributed
Messaging Systems

Kafka, Flume…

Execution Engine
MapReduce, Spark, Dryad, Flumejava…

Streaming
Processing

Storm, SEEP, Naiad,
Spark Streaming, Flink,

Milwheel, Google
Dataflow...

Graph Processing
Pregel, Giraph,

GraphLab, PowerGraph,
(Dato), GraphX,

X-Stream...

Query Language
Pig, Hive, SparkSQL,

DryadLINQ…

Machine Learning
Tensorflow, Caffe, torch,

MLlib…

Programming

43

Parallel Processing Stack Algorithmic Parameters

44

Gap between Research and Practice

45

Topic Areas

Session 1: Introduction

Session 2: Data flow programming: Map/Reduce to TensorFlow

Session 3: Large-scale graph data processing

Session 4: Stream Data Processing + Guest lecture

Session 5: Hands-on Tutorial: Map/Reduce and Deep Neural Network

Session 6: Machine Learning for Optimisation of Computer Systems

Session 7: Task scheduling, Performance, and Resource Optimisation

Session 8: Project Study Presentation

46

Summary

 R244 course web page:

www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2018_2019

 Enjoy the course!

47

