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2010s: Big Data

 Why Big Data now?

 Increase of Storage Capacity

 Increase of Processing Capacity

 Availability of Data

 Hardware and software technologies 

can manage ocean of data

up to 2003 5 exabytes
 2012 2.7 zettabytes (500 x more)
 2015 ~8 zettabytes (3 x more than 2012)
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Massive Data: Scale-Up vs Scale-Out

 Popular solution for massive data processing

 scale and build distribution, combine theoretically unlimited 
number of machines in single distributed storage 

 Parallelisable data distribution and processing is key

 Scale-up: add resources to single node (many cores) in system 
(e.g. HPC)

 Scale-out: add more nodes to system (e.g. Amazon EC2)
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Typical Operation with Big Data
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 Find similar items    efficient multidimensional 
indexing

 Incremental updating of models     support 
streaming

 Distributed linear algebra     dealing with large 
sparse matrices

 Plus usual data mining, machine learning and 
statistics
 Supervised (e.g. classification, regression)

 Non-supervised (e.g. clustering..)



Technologies 

 Distributed infrastructure
 Cloud (e.g. Infrastructure as a service, Amazon EC2, Google App 

Engine, Elastic, Azure)

cf. Many core (parallel computing)

 Storage
 Distributed storage (e.g. Amazon S3, Hadoop Distributed File System 

(HDFS), Google File System (GFS))

 Data model/indexing
 High-performance schema-free database (e.g. NoSQL DB - Redis, 

BigTable, Hbase, Neo4J)

 Programming model
 Distributed processing (e.g. MapReduce)
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NoSQL (Schema Free) Database

 NoSQL database

 Operate on distributed infrastructure 
 Based on key-value pairs (no predefined schema)
 Fast and flexible

 Pros: Scalable and fast
 Cons: Fewer consistency/concurrency guarantees and 

weaker queries support

 Implementations
 MongoDB, CouchDB, Cassandra, Redis, BigTable, Hibase …
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MapReduce Programming 

 Target problem needs to be parallelisable

 Split into a set of smaller code (map)

 Next small piece of code executed in parallel 

 Results from map operation get synthesised into a result of 
original problem (reduce)
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Data Flow Programming 

 Non standard programming models

 Data (flow) parallel programming 
 e.g. MapReduce, Dryad/LINQ, NAIAD, Spark, Tensorflow…

MapReduce: 
Hadoop

More flexible dataflow model

Two-Stage fixed dataflow

DAG (Directed Acyclic Graph) 
based: Dryad/Spark…
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Data Processing Stack

Resource Management Layer

Storage Layer

Data Processing Layer

Resource Management Tools
Mesos, YARN, Borg, Kubernetes, EC2, OpenStack…

Distributed
File Systems

GFS, HDFS, Amazon S3, Flat FS..

Operational Store/NoSQL DB
Big Table, Hbase, Dynamo, 
Cassandra, Redis, Mongo, 

Spanner…

Logging System/Distributed 
Messaging Systems

Kafka, Flume…

Execution Engine
MapReduce, Spark, Dryad, Flumejava…

Streaming 
Processing

Storm, SEEP, Naiad, 
Spark Streaming, Flink, 

Milwheel, Google 
Dataflow...

Graph Processing
Pregel, Giraph, 

GraphLab, PowerGraph, 
(Dato), GraphX,          

X-Stream...

Query Language
Pig, Hive, SparkSQL,  

DryadLINQ…

Machine Learning
Tensorflow, Caffe, torch, 

MLlib…

Programming
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Brain Networks: 
100B neurons(700T  
links) requires 100s 
GB memory

Emerging Massive-Scale Graph Data

Protein Interactions 
[genomebiology.com]

Gene expression 
data

Bipartite graph of 
phrases in 
documents Airline Graphs

Social media data

Web 1.4B 
pages(6.6B 
links) 
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Graph Computation Challenges

 Data driven computation: dictated by graph’s structure and 
parallelism based on partitioning is difficult

 Poor locality: graph can represent relationships between irregular 
entries and access patterns tend to have little locality

 High data access to computation ratio: graph algorithms are often 
based on exploring graph structure leading to a large access rate to 
computation ratio

1. Graph algorithms (BFS, Shortest path)

2. Query on connectivity (Triangle, Pattern)

3. Structure (Community, Centrality)

4. ML & Optimisation (Regression, SGD)
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Data-Parallel vs. Graph-Parallel

 Data-Parallel for all? Graph-Parallel is hard!
 Data-Parallel (sort/search - randomly split data to feed MapReduce) 

 Not every graph algorithm is parallelisable (interdependent 
computation) 

 Not much data access locality

 High data access to computation ratio
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Graph-Parallel

 Graph-Parallel (Graph Specific Data Parallel)

 Vertex-based iterative computation model

 Use of iterative Bulk Synchronous Parallel Model  

Pregel (Google), Giraph (Apache), Graphlab, 

GraphChi (CMU - Dato)

 Optimisation over data parallel

GraphX/Spark (U.C. Berkeley)

 Data-flow programming – more general framework  

NAIAD (MSR), TensorFlow..
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Bulk synchronous parallel: Example

 Finding the largest value in a connected graph

Message

Local Computation

Communication

Local Computation

Communication

…
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Are Large Clusters and Many cores Efficient?   

 Brute force approach really efficiently works?

 Increase of number of cores (including use of GPU)

 Increase of nodes in clusters
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Do we really need large clusters?

 Laptops are sufficient?

from Frank McSherry HotOS 2015

Fixed-point iteration: 
All vertices active in 
each iteration
(50% computation, 50% 

communication)

Traversal: Search 
proceeds in a frontier
(90% computation, 10% 

communication)
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Data Processing for Neural Networks

 Practicalities of training Neural Networks
 Leveraging heterogeneous hardware

Modern Neural Networks Applications:

Image Classification            Reinforcement Learning
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Training Procedure

 Optimise the weights of the neurons to yield good 
predictions

 Use minibatches of inputs to estimate the gradient
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Single Machine Setup

 One or more beefy GPUs
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Distribution: Parameter Server Architecture

Source: Dean et al.: Large Scale Distributed Deep Networks
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 Can exploit both    
Data Parallelism and 
Model Parallelism



Software Platform for ML Applications

Torch

(Lua)

Theano

(Python)

Tensorflow

(Python/C++)
Ray

KerasLasagne
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RLgraph: Dataflow Composition

 Our group’s work
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OWL Architecture for OCaml  

By Liang Wang in 2018
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Computer Systems Optimisation

 What is performance? 
 Resource usage (e.g. time, power)
 Computational properties (e.g. accuracy, fairness, latency)

 How do we improve it:
 Manual tuning
 Runtime autotuning
 Static time autotuning 
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Manual Tuning: Profiling

 Always the first step

 Simplest case: Poor man’s profiler

 Debugger + Pause

 Higher level tools

 Perf, Vtune, Gprof…

 Distributed profiling: a difficult active research area

 No clock synchronisation guarantee

 Many resources to consider

 System logs can be leveraged

 tune implementation based on profiling (never captures all 

interactions) 27



Auto-tuning systems

 Properties:
 Many dimensions 

 Expensive objective 
function

 Understanding of the 
underlying behaviour

Hardware

System

ApplicationInput data

Flags
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Runtime Autotuning

 Plug and play to respond to a changing environment 

For parameters that:

 Can dynamically change

 Can leverage runtime measurement

 E.g. Locking strategy

 Often grounded in Control Theory
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Optimising Scheduling on Heterogeneous Cluster 

 Which machines to use as workers? As parameter servers?

 ↗workers => ↗computational power & ↗communication

 How much work to schedule on each worker?

 Must load balance
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Static time Autotuning

Especially useful when: 

 There is a variety of environments (hardware, input distributions)

 The parameter space is difficult to explore manually

 Defining a parameter space

 e.g. Petabricks: A language and compiler for algorithmic choice (2009)

 BNF-like language for parameter space

 Uses an evolutionary algorithm for optimisation

 Applied to Sort, matrix multiplication

31



Ways to do an Optimisation

Random Search
Genetic 

algorithm /
Simulated 
annealing

Bayesian 
Optimisation

No overhead Slight overhead High overhead

High #evaluation Medium-high 
#evaluation

Low #evaluation
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Bayesian optimisation

Predicted 

Performance
Domain

Objective 

Function
Performance

Gaussian process 
①

②
③

① Find promising point (parameter values with   

high performance value in the model)

② Evaluate the objective function at that point

③ Update the model to reflect this new 

measurement

Pros:

✓ Data efficient: converges in few iterations

✓ Able to deal with noisy observations

Cons:

✗ In many dimensions, model does not converge to the objective function

Solution: Use the known structure of the optimisation problem

 For when Objective function is expensive (e.g. NN hyper-parameter)

Iteratively build a probabilistic model of objective function
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Structured Bayesian Optimisation

Predicted 

Performance
Domain

Objective 

Function

Performance &

Runtime properties

Structured 

probabilistic model

①

②

③

✓ Better convergence

✓ Use all measurements

● BOAT: a framework to build BespOke Auto-Tuners

● It includes a probabilistic library to express these models

● V. Dalibard, M. Schaarschmidt, and E. Yoneki: BOAT: Building Auto-
Tuners with Structured Bayesian Optimization, WWW 2017. (Morning 
Paper on May 18, 2017)

Three desirable properties:

 Able to use many 
measurements

 Understand the trend of 
the objective function

 High precision in the 
region of the optimum
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Probabilistic Model for Bayesian optimisation

Gaussian processes: 

Do regression: ℝn→ℝ
O(N3)
Allow for uncertainty
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Probabilistic Model

 Probabilistic models incorporate random variables and 
probability distributions into the model 

 Deterministic model gives a single possible outcome 

 Probabilistic model gives a probability distribution

 Used for various probabilistic logic inference (e.g. 
MCMC-based inference, Bayesian inference…)
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Probabilistic Programming

Edward based on 
Python

Probabilistic C++

Improbable – Java 37



Computer Systems Optimisation Models

 Long-term planning: requires model of how actions affect future states. 
Only a few system optimisations fall into this category, e.g. network routing 
optimisation.

 Short-term dynamic control: major system components are under dynamic 
load, such as resource allocation and stream processing, where the future 
load is not statistically dependent on the current load. Bayesian 
optimisation is sufficient to optimise distinct workloads. For dynamic 
workload, Reinforcement Learning would perform better.

 Combinatorial optimisation: a set of options must be selected from a large 
set under potential rules of combination. For this situation, one can either 
learn online if the task is cheap via random sampling, or via RL and pre-
training if the task is expensive, or massively parallel online training given 
sufficient resources.
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Deep Reinforcement Learning

 Given a set of  actions with some unknown reward distributions, maximise 
the cumulative reward by taking the actions sequentially, one action at 
each time step and obtaining a reward immediately. 

 To find the optimal action, one needs to explore all the actions but not too 
much. At the same time, one needs to exploit the best action found so-far 
by exploring.

 What makes reinforcement learning different from other machine learning 
paradigms?

 There is no supervisor, only a reward signal

 Feedback is delayed, not instantaneous

 Time really matters (sequential)

 Agent’s actions affect the subsequent data

it receives

AlphaGo defeating the Go World Champion
39



Problem: Controlling dynamic behaviour
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Trade-offs in dynamic control
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Practical Issues continued…
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Parallel Processing Stack Algorithmic Parameters
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Gap between Research and Practice
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Topic Areas

Session 1: Introduction 

Session 2: Data flow programming: Map/Reduce to TensorFlow 

Session 3: Large-scale graph data processing

Session 4: Stream Data Processing + Guest lecture

Session 5: Hands-on Tutorial: Map/Reduce and Deep Neural Network

Session 6: Machine Learning for Optimisation of Computer Systems

Session 7: Task scheduling, Performance, and Resource Optimisation

Session 8: Project Study Presentation
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Summary

 R244 course web page:

www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2018_2019 

 Enjoy the course!
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