

Challenges for Large-scale Data Processing

Eiko Yoneki

University of Cambridge Computer Laboratory

2010s: Big Data

- Why Big Data now?
 - Increase of Storage Capacity
 - Increase of Processing Capacity
 - Availability of Data
 - Hardware and software technologies can manage ocean of data

up to 2003 5 exabytes \rightarrow 2012 2.7 zettabytes (500 x more) \rightarrow 2015 ~8 zettabytes (3 x more than 2012)

Massive Data: Scale-Up vs Scale-Out

- Popular solution for massive data processing

 → scale and build distribution, combine theoretically unlimited number of machines in single distributed storage
 → Parallelisable data distribution and processing is key
- Scale-up: add resources to single node (many cores) in system (e.g. HPC)
- Scale-out: add more nodes to system (e.g. Amazon EC2)

Typical Operation with Big Data

- Find similar items -> efficient multidimensional indexing
- Incremental updating of models -> support streaming
- Distributed linear algebra
 dealing with large sparse matrices
- Plus usual data mining, machine learning and statistics
 - Supervised (e.g. classification, regression)
 - Non-supervised (e.g. clustering..)

Technologies

- Distributed infrastructure
 - Cloud (e.g. Infrastructure as a service, Amazon EC2, Google App Engine, Elastic, Azure)
 - cf. Many core (parallel computing)
- Storage
 - Distributed storage (e.g. Amazon S3, Hadoop Distributed File System (HDFS), Google File System (GFS))
- Data model/indexing
 - High-performance schema-free database (e.g. NoSQL DB Redis, BigTable, Hbase, Neo4J)
- Programming model
 - Distributed processing (e.g. MapReduce)

NoSQL (Schema Free) Database

- NoSQL database
 - Operate on distributed infrastructure
 - Based on key-value pairs (no predefined schema)
 - Fast and flexible
- Pros: Scalable and fast
- Cons: Fewer consistency/concurrency guarantees and weaker queries support
- Implementations
 - MongoDB, CouchDB, Cassandra, Redis, BigTable, Hibase ...

MapReduce Programming

- Target problem needs to be parallelisable
- Split into a set of smaller code (map)
- Next small piece of code executed in parallel
- Results from map operation get synthesised into a result of original problem (reduce)

Data Flow Programming

BIGDATA

- Non standard programming models
- Data (flow) parallel programming
 - e.g. MapReduce, Dryad/LINQ, NAIAD, Spark, Tensorflow...

Two-Stage fixed dataflow

More flexible dataflow model

File Systems

GFS, HDFS, Amazon S3, Flat FS..

Resource Management Layer

Big Table, Hbase, Dynamo,

Cassandra, Redis, Mongo,

Spanner...

Resource Management Tools

Mesos, YARN, Borg, Kubernetes, EC2, OpenStack...

Messaging Systems

Kafka, Flume...

Storage	Layer
---------	-------

Distributed	Operational Store/NoSQL DB	Logging System/Distributed
File Systems	Big Table, Hbase, Dynamo, Cassandra, Redis, Mongo	Messaging Systems
013, HD13, And201133, Hdt 131	Spanner	Karka, Hume

Resource Management Layer

Resource Management Tools

Mesos, YARN, Borg, Kubernetes, EC2, OpenStack...

Emerging Massive-Scale Graph Data

Graph Computation Challenges

- 1. Graph algorithms (BFS, Shortest path)
- 2. Query on connectivity (Triangle, Pattern)
- 3. Structure (Community, Centrality)
- 4. ML & Optimisation (Regression, SGD)

- Data driven computation: dictated by graph's structure and parallelism based on partitioning is difficult
- Poor locality: graph can represent relationships between irregular entries and access patterns tend to have little locality
- High data access to computation ratio: graph algorithms are often based on exploring graph structure leading to a large access rate to computation ratio

Data-Parallel vs. Graph-Parallel

- Data-Parallel for all? Graph-Parallel is hard!
 - Data-Parallel (sort/search randomly split data to feed MapReduce)
 - Not every graph algorithm is parallelisable (interdependent computation)
 - Not much data access locality
 - High data access to computation ratio

Graph-Parallel

- Graph-Parallel (Graph Specific Data Parallel)
 - Vertex-based iterative computation model
 - Use of iterative Bulk Synchronous Parallel Model
 - Pregel (Google), Giraph (Apache), Graphlab, GraphChi (CMU - Dato)
 - Optimisation over data parallel
 GraphX/Spark (U.C. Berkeley)
 - Data-flow programming more general framework
 NAIAD (MSR), TensorFlow...

Bulk synchronous parallel: Example

Finding the largest value in a connected graph

Are Large Clusters and Many cores Efficient?

- Brute force approach really efficiently works?
 - Increase of number of cores (including use of GPU)
 - Increase of nodes in clusters
 Big Iron

HPC/Graph500 benchmarks (June 2014)

Graph Edges	Hardware
1 trillion	Tsubame
1 trillion	Cray
1 trillion	Blue Gene
1 trillion	NEC

Large Cluster

A billion edges isn't cool. You know what's cool? A <u>TRILLION</u> edges. Avery Ching, Facebook @Strata, 2/13/2014

Yes, using 3940 machines

Do we really need large clusters?

Laptops are sufficient?

Twenty pagerank iterations		J	
System	cores	twitter_rv	uk_2007_05
Spark	128	857s	1759s
Giraph	128	596s	1235s
GraphLab	128	2495	833s
GraphX	128	419s	462s
Single thread	1	300s	651s

Fixed-point iteration: All vertices active in each iteration (50% computation, 50% communication)

Label pro	opagation to fiv	ked-point (graph co	nnectivity)
System	cores	twitter_rv	uk_2007_05
Spark	128	1784s	8000s+
Giraph	128	200s	8000s+
GraphLab	128	242s	714s
GraphX	128	251s	800s
Single thread	1	153s	417s

Traversal: Search proceeds in a frontier (90% computation, 10% communication)

Storage Layer			
Distributed	Operational Store/NoSQL DB	Logging System/Distributed	
File Systems	Big Table, Hbase, Dynamo,	Messaging Systems	
GFS, HDFS, Amazon S3, Flat FS	Cassandra, Redis, Mongo,	Kafka, Flume	
	Spanner		

Resource Management Layer

Resource Management Tools

Mesos, YARN, Borg, Kubernetes, EC2, OpenStack...

Data Processing for Neural Networks

- Practicalities of training Neural Networks
- Leveraging heterogeneous hardware

Modern Neural Networks Applications:

Image Classification

Reinforcement Learning

Image courtesy: The Guardian

Image courtesy: Twitter - Deeo Mind Al

Training Procedure

- Optimise the weights of the neurons to yield good predictions
- Use minibatches of inputs to estimate the gradient

Single Machine Setup

One or more beefy GPUs

Distribution: Parameter Server Architecture

Can exploit both
 Data Parallelism and
 Model Parallelism

Source: Dean et al.: Large Scale Distributed Deep Networks

Software Platform for ML Applications

RLgraph: Dataflow Composition

Our group's work

API, Component configuration	Prebuilt models, inference
RLgraph component graph	Model design, dataflow composition
TensorFlow PyTorch	Local backends variables/operations
Distributed TF Horovod Ray	Distributed execution engine
Hardware: CPU, GPU, TPU, FPGAs	Execution, orchestration

OWL Architecture for OCaml

Owl + Actor = Distributed & Parallel Analytics

Owl provides numerical backend; whereas Actor implements the mechanisms of distributed and parallel computing. Two parts are connected with functors.

Various system backends allows us to write code once, then run it from cloud to edge devices, even in browsers.

Same code can run in both sequential and parallel mode with Actor engine.

By Liang Wang in 2018

Computer Systems Optimisation

What is performance?

- Resource usage (e.g. time, power)
- Computational properties (e.g. accuracy, fairness, latency)
- How do we improve it:
 - Manual tuning
 - Runtime autotuning
 - Static time autotuning

Manual Tuning: Profiling

- Always the first step
- Simplest case: Poor man's profiler
 - Debugger + Pause
- Higher level tools
 - Perf, Vtune, Gprof...
- Distributed profiling: a difficult active research area
 - No clock synchronisation guarantee
 - Many resources to consider
 - System logs can be leveraged
 - → tune implementation based on profiling (never captures all interactions)

Auto-tuning systems

Properties:

- Many dimensions
- Expensive objective function
- Understanding of the underlying behaviour

Runtime Autotuning

- Plug and play to respond to a changing environment For parameters that:
 - Can dynamically change
 - Can leverage runtime measurement
 - E.g. Locking strategy
- Often grounded in Control Theory

Optimising Scheduling on Heterogeneous Cluster

- Which machines to use as workers? As parameter servers?
 - /workers => /computational power & /communication
- How much work to schedule on each worker?
 - Must load balance

Static time Autotuning

Especially useful when:

- There is a variety of environments (hardware, input distributions)
- The parameter space is difficult to explore manually
- Defining a parameter space
 - e.g. Petabricks: A language and compiler for algorithmic choice (2009)
 - BNF-like language for parameter space
 - Uses an evolutionary algorithm for optimisation
 - Applied to Sort, matrix multiplication

Ways to do an Optimisation

Random search: No risk of 'getting stuck' potentially many samples required

Evolution strategies: Evaluate permutations against fitness function

Bayes Opt: Sample efficient, requires continuous function, some configuration

Random Search	Genetic algorithm / Simulated annealing	Bayesian Optimisation
No overhead	Slight overhead	High overhead
High #evaluation	Medium-high #evaluation	Low #evaluation

Bayesian optimisation

For when Objective function is expensive (e.g. NN hyper-parameter)
 →Iteratively build a probabilistic model of objective function

- 1) Find promising point (parameter values with high performance value in the model)
- (2) Evaluate the objective function at that point
- ③ Update the model to reflect this new

measurement

Pros:

- Data efficient: converges in few iterations
- ✓ Able to deal with noisy observations

Cons:

X In many dimensions, model does not converge to the objective function

Solution: Use the known structure of the optimisation problem

Structured Bayesian Optimisation

Three desirable properties:

- Able to use many measurements
- Understand the trend of the objective function
- High precision in the region of the optimum

- ✓ Better convergence
- ✓ Use all measurements
- **BOAT:** a framework to build **B**esp**O**ke **A**uto-**T**uners
- It includes a probabilistic library to express these models
- V. Dalibard, M. Schaarschmidt, and E. Yoneki: BOAT: Building Auto-Tuners with Structured Bayesian Optimization, WWW 2017. (Morning Paper on May 18, 2017)

Probabilistic Model for Bayesian optimisation

Gaussian processes:

Do regression: ℝⁿ→ℝ
O(N³)
Allow for uncertainty

Probabilistic Model

- Probabilistic models incorporate random variables and probability distributions into the model
 - Deterministic model gives a single possible outcome
 - Probabilistic model gives a probability distribution
- Used for various probabilistic logic inference (e.g. MCMC-based inference, Bayesian inference...)

Probabilistic Programming

Edward based on Python

Probabilistic C++

Simula

Prolog

Computer Systems Optimisation Models

- Long-term planning: requires model of how actions affect future states.
 Only a few system optimisations fall into this category, e.g. network routing optimisation.
- Short-term dynamic control: major system components are under dynamic load, such as resource allocation and stream processing, where the future load is not statistically dependent on the current load. Bayesian optimisation is sufficient to optimise distinct workloads. For dynamic workload, Reinforcement Learning would perform better.
- Combinatorial optimisation: a set of options must be selected from a large set under potential rules of combination. For this situation, one can either learn online if the task is cheap via random sampling, or via RL and pretraining if the task is expensive, or massively parallel online training given sufficient resources.

Deep Reinforcement Learning

- Given a set of actions with some unknown reward distributions, maximise the cumulative reward by taking the actions sequentially, one action at each time step and obtaining a reward immediately.
- To find the optimal action, one needs to explore all the actions but not too much. At the same time, one needs to exploit the best action found so-far by exploring.
- What makes reinforcement learning different from other machine learning paradigms?
 - There is no supervisor, only a reward signal
 - Feedback is delayed, not instantaneous
 - Time really matters (sequential)
 - Agent's actions affect the subsequent data it receives

AlphaGo defeating the Go World Champion

Problem: Controlling dynamic behaviour

Many systems problems are combinatorial in nature

Assume workload dynamic, e.g. seasonality, load spikes, shared resources, failures..

- Algorithm: workload → behavior distribution
- Involves approximations to NP-complete problems,
 e.g. bin packing, subgraph isomorphism, ..

Source: firmament.io

Trade-offs in dynamic control

Single static configuration/rule: E.g. FIFO scheduler

Online estimate of distributions: E.g. join-order in query planning

Workload clustering: Identify distinct classes, e.g. write-heavy, read-heavy workloads, per-class decisions

Fully adaptive: Optimal per-task behavior, unrealistic in practice

Robust, predictable, low deployment cost

Analytical overhead

Training/deployment cost factor

Practical Issues continued...

- Many deep learning tools, no standard library for modern RL (~2014-2018)
- Exploration in production system not a good idea
 - Unstable, unpredictable
- Simulations can oversimplify problem
 - Expensive to build, not justified versus gain
- Online steps take too long

Data Processing Stack

Distributed	Operational Store/NoSQL DB	Logging System/Distributed
File Systems	Big Table, Hbase, Dynamo,	Messaging Systems
GFS, HDFS, Amazon S3, Flat FS	Cassandra, Redis, Mongo,	Kafka, Flume
	Spanner	

Resource Management Layer

Resource Management Tools

Mesos, YARN, Borg, Kubernetes, EC2, OpenStack...

Programming

Gap between Research and Practice

Topic Areas

Session 1: Introduction

- Session 2: Data flow programming: Map/Reduce to TensorFlow
- Session 3: Large-scale graph data processing
- Session 4: Stream Data Processing + Guest lecture
- Session 5: Hands-on Tutorial: Map/Reduce and Deep Neural Network
- Session 6: Machine Learning for Optimisation of Computer Systems
- Session 7: Task scheduling, Performance, and Resource Optimisation
- Session 8: Project Study Presentation

Summary

R244 course web page:

www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2018_2019

Enjoy the course!