
Leveraging in-memory 
computation: Using 
Spark for textual queries

Presented by: Tejas Kannan

Date: 28/11/2018



Traditional Applications

Presentation 
Logic

Business Logic
Data Access 

Layer (RDBMS, 
NoSQL)

Client

Client

Client

Client

2

Complex textual queries are generally expensive to run on traditional 
database platforms



Elasticsearch1 Background

Elasticsearch relies on inverted indexes to enhance search efficiency

3

1. winter is coming

2. yours is the fury

3. the choice is yours

Term Frequency Documents

choice 1 3

coming 1 1

fury 1 2

is 3 1,2,3

the 2 2

winter 1 1

yours 2 2,3

1Elasticsearch, https://www.elastic.co/
Example from: https://www.elastic.co/blog/found-elasticsearch-from-the-bottom-up



Elasticsearch requires…

…explicitly marking searchable fields at ingestion time

…dedicated index for each searchable field

4



0

20

40

60

80

100

120

140

160

180

Q
u

er
y 

La
te

n
cy

 (
m

s)

Suffix Query Latency on Elasticsearch

Initial Elasticsearch Benchmark

Inverted 
Index

5

Without 
Inverted Index

Inverted indexes provide large performance improvements at the 
expense of additional storage 

Raw Data Size Elasticsearch Size with Inverted Index

12.25 MB 56.73 MB

Notes on Experiment:

• 600,000 documents of actor/actress names 
from IMDb dataset1

• Queries were 2 character strings based on 
common English names

• Error bars represent 25th-50th-75th

percentiles; data collected from 1000 trials

1IMDb Dataset, https://www.imdb.com/interfaces/



Using Spark1 for Query Execution

Instead of requiring explicit indexes, we can try and use Spark as a 
computation engine for executing complex textual queries

6

Presentation 
Logic

Business 
Logic

Data Access 
Layer

Spark

Redis2

Data Access Layer must use a persistent SparkContext to reduce job 
overhead
1Zaharia, Matei, et al. "Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing." Proceedings of the 9th USENIX conference on 
Networked Systems Design and Implementation. USENIX Association, 2012.
2Redis, https://redis.io/



Why might using Spark + Redis be a good 
idea?
• FiloDB is an open-source database which uses Spark as a computation 

engine on top of Cassandra for real-time stream analysis1

• Using Spark with Redis can provide over a 45x increase in performance 
over Spark + HDFS2,3

• Spark as a computation engine provides flexibility of query execution

• By not requiring indexes for every searchable field, such a system can 
reduce the memory footprint

7

1FiloDB, https://velvia.github.io/Introducing-FiloDB/
2Shvachko, Konstantin, et al. "The hadoop distributed file system." Mass storage systems and technologies (MSST), 2010 IEEE 26th symposium on. Ieee, 2010.
3Redis Accelerates Spark by over 100 times, https://redislabs.com/press/redis-accelerates-spark-by-over-100-times/



Caching Intermediate Results

SELECT * FROM Hospitals WHERE name ends with “ity”

8

Redis 
Database

RDD RDD

Redis 
Cache

T1: filter(h => 
h.name.endsWith(‘y’))

T2: filter(h => 
h.name.endsWith(‘ity’))

Cache of all 
documents with 
name ending with ‘y’

Using some additional memory, we can cache intermediate results to 
speed up future queries



Caching Intermediate Results

SELECT * FROM Hospitals WHERE name ends with “ity”

9

Redis 
Database

RDD RDD

Redis 
Cache

T1: filter(h => 
h.name.endsWith(‘ty’))

T2: filter(h => 
h.name.endsWith(‘ity’))

Cache of all 
documents with 
name ending with ‘ty’

Caching patterns can be chosen based on common phrases to maximize 
effectiveness with limited memory



0

20

40

60

80

100

120

140

160

180

Q
u

er
y 

La
te

n
cy

 (
m

s)

Suffix Query Latency on Elasticsearch

Goals of this Project

Can Spark + Redis fit into here 
while saving on storage?

10

Inverted 
Index

Without 
Inverted Index

• Create a Spark + Redis 
platform which can 
handle “prefix,” “suffix,” 
and “contains” queries

• Implement a caching 
feature using a 
configurable memory limit

• Benchmark the results 
against Elasticsearch to 
compare query latency 
and memory usage



Questions?

11



References

1. Elasticsearch, https://www.elastic.co/

2. Elasticsearch from the Bottom Up, https://www.elastic.co/blog/found-
elasticsearch-from-the-bottom-up

3. FiloDB, https://velvia.github.io/Introducing-FiloDB/

4. IMDb Dataset, https://www.imdb.com/interfaces/

5. Redis, https://redis.io/

6. Redis Accelerates Spark by over 100 times, https://redislabs.com/press/redis-
accelerates-spark-by-over-100-times/

7. Shvachko, Konstantin, et al. "The hadoop distributed file system." Mass storage 
systems and technologies (MSST), 2010 IEEE 26th symposium on. Ieee, 2010.

8. Zaharia, Matei, et al. "Resilient distributed datasets: A fault-tolerant abstraction 
for in-memory cluster computing." Proceedings of the 9th USENIX conference on 
Networked Systems Design and Implementation. USENIX Association, 2012.

12


