


Fast decoding in neural machine translation with Ray

MAREK STRELEC

Time cost statistics for decoding

	GPU		CPU	
Calculation Units	Time(s)	Percentage	Time(s)	Percentage
Eq. (6): $s_j = f(e_{y_{j-1}^*}, s_{j-1}, c_j)$	551.07	75.73%	1370.92	19.42%
Eq. (7): $t_j = g(e_{y_{j-1}^*}, c_j, s_j)$	88.25	12.13%	277.76	3.93%
Eq. (8): $o_j = \mathbf{W}_o t_j$	25.33	3.48%	2342.53	33.18%
Eq. (9): $\mathcal{D}_j = \operatorname{softmax}(o_j)$	63.00	8.66%	3069.25	43.47%

Ray

- ☐ "A flexible, high-performance distributed execution framework"
- ☐ Implements a dynamic task graph computation model
- ☐ Global Control Store
- ☐ Bottom-up distributed scheduler
- ☐ Actor abstraction

Steps

- ☐ Implement an NMT model in TensorFlow
- ☐ Train the model on a subset of parallel data (Europarl)
- Experiments
 - Distributed batched translation
 - ☐ Distributed Beam Search
 - Dynamic Beam Search
 - ☐ Heterogeneous environment
- Compare times and BLEU score

Thank you!