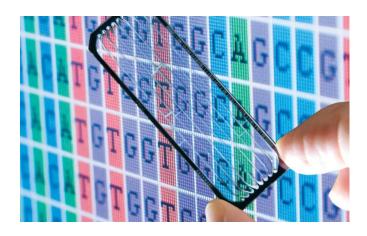
Parallel Graph Genome Assembly

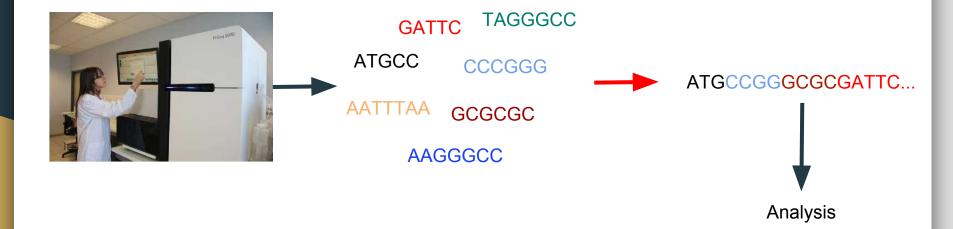
Aaron Solomon


Genomics - what is it?

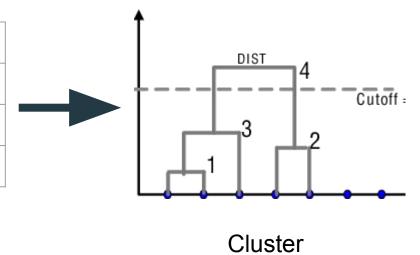
- DNA life instructions
- Four bases: A, T, G, C
- 6,000,000,000 base pairs/cell
- Uniquely identifies
 - Individuals
 - Species

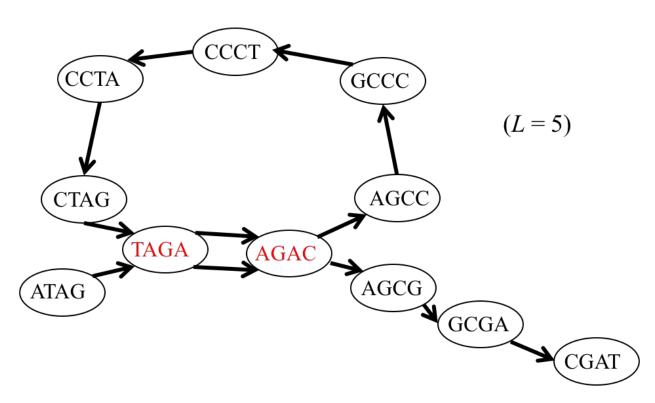
Genomics - why do we care?

- Disease
 - Cancer
 - Hereditary Disease
 - Therapeutic/Drug Targeting
- Ancestry
 - Paternity
 - Heritage
- Organism Identification
 - Pathogen Identification/Monitoring
 - Epidemic Tracking
 - Conservation/Speciation



Sequencing Changes


Process


Assembly: Greedy

ATGCC AATTTAA GATTC TAGGGCC

ATGCC	X	X	X	X
AATTTAA	Х	X	X	Х
GATTC	X	X	X	X
TAGGGCC	Х	Х	X	X

Assembly 2.0 - Euler Paths

Current Technology

- No or weak parallelism
 - Examples
 - Velvet
 - ABySS
 - SOAPdenovo
- Parallel graph construction
 - Examples
 - ABySS 2.0
 - Ray
- Streaming graph construction
 - Faucet

Proposed Integrations

- Streaming Graph Generation (Faucet)
 - Minimize memory utilization
- Parallel Eulerian Tour Selection (ABySS 2.0)
 - Reduce computation time
- Probabilistic Error Avoidance (LightAssembler)
 - Eliminate fitting error on bad reads

Challenges

- Sequencing Errors
 - Bubbles
 - Dead-End Branches
- Graph Parallelism
 - High connectivity
 - Genomic repeats

Naiad vs GiRaph Comparisons

- Timing
 - Graph construction
 - Tour selection
- Memory utilization
- Parallel efficiency
- Constructed sequence accuracy

Timeline

- Naiad implementation of streaming graph generation, parallel tour selection, and Bloom filters
- GiRaph implementation of streaming graph generation, parallel tour selection, and Bloom filters
- Benchmarking on current standards (ABySS 2.0, GiGA, Faucet)
- Benchmarking on Illumina HiSeq Data
- Benchmarking on Oxford Nanopore Data
- Write Report