
TVM: An Automated End-to-End
Optimizing Compiler

for Deep Learning
Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng,
Eddie Yan, Meghan Cowan, Haichen Shen, Leyuan Wang,

Yuwei Hu, Luis Ceze, Carlos Guestrin, Arvind Krishnamurthy

Presented by Aaron Solomon

Deep Learning - everywhere!

Old School: Today:

CPU

CPU

GPU

TPU

Fundamentally different memory architectures

Challenges for Generalized Deep Learning

● Numerous hardware devices

○ GPUs, CPUs, TPUs, etc

● Bespoke low-level implementation needed to maximize efficiency

on each ASIC/chip

● Many DL software solutions

○ Keras, TensorFlow, PyTorch, etc

● Lots of tuning

● Manual optimization is time intensive

Current Optimization

● Keras

● TensorFlow

● MXNet

● Caffe

But graph

optimization does not

help low-level

hardware efficiency!

Current architectures may perform

high-level graph optimization and

bespoke kernels

TVM
● Current SOA:

○ Each DL package implements bespoke code for kernels

○ High-level graph optim

● Goal: automate generation of optimized low-level code for many backends

without human intervention by providing high-level (graph) and low-level

optimizations

● Contributions

○ Graph Rewriter

○ Tensor Expression Language

○ Automated Program Optimization

○ Overall: automates time intensive process

TVM

Graph Level Modifications

● Operator Fusion

○ Combines many small ops

● Constant Folding

○ Pre-computes static graphs

● Static Memory Planning Pass

○ Pre-allocates memory for needed tensors

● Data Layout Transformations

○ Optimize data storage for each backend

● Operator Types

○ One to one (addition)

○ Reduction (sum)

○ Complex-Out-Fusable (fuse element-wise)

○ Opaque (not-fusable)

● Specify rules for combining operators

● Avoids intermediate memory storage

Operator Fusion

Data Layout Transforms
● Many possible storage options

○ What does the kernel use? 4 x 4 matrix or length 16 vector?

● Considers hardware-preferred data layout and optimizes if possible

● Transforms data between producer and consumer if unequivalent

CPU TPU

Transforms if needed

Tensor Expression Language

● Specify products and operation, let TVM decide how to accomplish it

● Many schedules proposed, inefficient ones culled

Nested Parallelism and Tensorization

● Nested Parallelism

○ Explicit memory scopes enable multiple threads to share the same

reference memory

○ Reduces fetch and mem transfer time

● Tensorization (compute primitives for tensors)

○ Uses specific language

○ Extensible - just specify hardware and the data representation it

wants

Latency Hiding

● Simultaneous memory and compute ops to maximize efficiency

● CPUs

○ Multithreading

● GPUs

○ Context switching

● TPUs

○ Decoupled access/execute

● Virtual threading to control latency hiding

Automated Program Optimization
● So many pieces of code and scheduling primitives!

● Adversarial System

○ Part 1: Proposes new schedule configuration

○ Part 2: Predicts cost of proposed configuration

Automated Program Optimization

● Schedule Template Specification

○ Schedule = possible configuration

● One Hot Encoding of program features (loop elements, etc)

● Cost Model

● Simulated Annealing, Random Walks

● Gradient Tree Boosting

○ Input: Low Level Code

○ Output: Estimated (relative) time

Operator Fusion

Mem Loading

Speed Up

Conv Net Results

TVM MultiThread Capability

Mobile

VDLA/FPGA

Critique

● Good performance relative to baseline

● Not clear how much is actually novel

○ Other autotuners exist (ATLAS, FFTW, OpenTuner)

○ “Larger search space”

● Lack comparisons that actually demonstrate device generalizability that

they seek

○ Should show TVM optimized systems vs. optimized package specific

● Automated work is sparse

○ Presented as “optimization with a side of automation” rather than

an automation paper

Thank You!

