Snorkel: Rapid Training Data Creation with Weak Supervision

RATNER, A., BACH, S. H., EHRENBERG, H., FRIES, J., WU, S., & RÉ, C. (2017) PRESENTED BY: MAREK STRELEC

Motivation

Problem: Users struggle to write good features

- DNNs to rescue:
 - perform well without any hand-engineered features
- State-of-the-art machine learning models require massive labeled training sets
 - Often do not exist for real-world applications
- Hand-labeled training data is expensive and slow to collect
- A common scenario
 - access to tons of unlabeled training data, and have some idea of how to label it programmatically
- Key idea: model the process of training set creation

Weak Supervision

- Generate training data using heuristics, rules-of-thumb, existing databases, ontologies, ...
- It isn't perfectly accurate, possibly consists overlapping and conflicting signals
- Sources of weak supervision
 - Domain heuristics (e.g. common patterns, rules of thumb, etc.)
 - Distant supervision Existing ground-truth data that is not an exact fit for the specific task
 - Weak classifiers (boosting)
 - Unreliable non-expert annotators (e.g. crowdsourcing)
- Data programming (Ratner, Alexander J., et al., 2016)
 - Domain experts encode various weak supervision signals as *labeling functions*
 - These labeling functions can be noisy but can be reconciled and denoised automatically
 - Used to train a discriminative model

Extracting Spouse Relations - Preprocessing

Process documents into sentences and tokens

Define Candidate Schema

Spouse = candidate_subclass('Spouse', ['person1', 'person2'])

Define Candidate Extractor

Named Entity Recognition - PersonMatcher

Extract Candidate objects for all pairs of n-grams that were tagged as people

CandidateExtractor(Spouse, [ngrams, ngrams], [person_matcher, person_matcher])

Apply Candidate Extractor to all preprocessed documents

Extracting spouse relations - Generating and modeling noisy training labels

Create Labeling Functions		j	Coverage	Overlaps	Conflicts
 Marks each Candidate as 'true, 'false', or 'abstain' 	LF_distant_supervision	0	0.001481	0.001481	0.000628
 Pattern-based 	LF_distant_supervision_last_names	1	0.008080	0.007856	0.004758
	LF_husband_wife	2	0.104642	0.066798	0.017867
E.g. Checking whether the last names match	LF_husband_wife_left_window	3	0.078021	0.057910	0.010774
 Distant Supervision 	LF_same_last_name	4	0.016700	0.014994	0.010011
 E.g. DB of known spouse pairs 	LF_no_spouse_in_sentence	5	0.603026	0.081657	0.009472
- Apply over all training condidates	LF_and_married	6	0.000673	0.000539	0.000404
Apply over all training candidates	LF_familial_relationship	7	0.104283	0.091489	0.021413
Fit the Generative Model	LF_family_left_window	8	0.073352	0.067651	0.012076
 Train a model of the LFs to estimate their accuracies 	LF_other_relationship	9	0.009337	0.006868	0.001122

• Once the model is trained, outputs of the LFs are combined into a single, noise-aware training label set

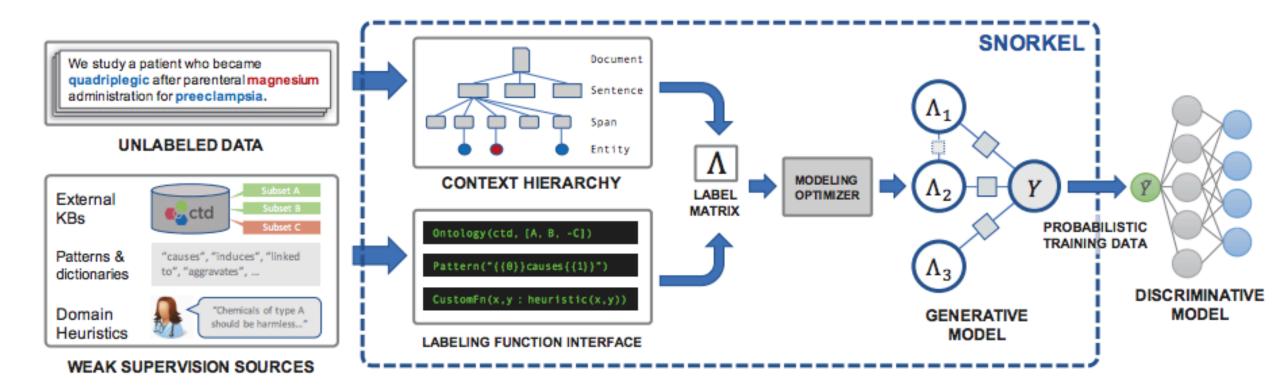
[0.07592901, 0.07395425, 0.11954169, 0.11397737, 0.07065144, 0.6901572, 0.07358515, 0.15698341, 0.13658573, 0.08221857]

Extracting spouse relations - Generating and modeling noisy training labels

Results on the dev set:		Accuracy	Coverage	Precision	Recall
	0	0.534134	0.6665	0.541630	0.360980
	1	0.532118	0.6694	0.539711	0.358431
	2	0.565538	0.6645	0.574173	0.380980
	3	0.565055	0.6702	0.574157	0.377255
	4	0.543329	0.6716	0.553972	0.358235
	5	0.796530	0.7146	0.804610	0.574902
	6	0.526747	0.6711	0.535660	0.343137
	7	0.577701	0.6673	0.588448	0.383529
	8	0.568233	0.6661	0.572989	0.370196
	9	0.540609	0.6698	0.551551	0.366078

Extracting spouse relations - Training an End Extraction Mode

- Train a predictive model
 - A state-of-the-art deep neural network
- Snorkel provides API for frameworks such as TensorFlow, PyTorch
- Uses probabilistic training labels from the generative model
- Binary output spouse/non-spouse candidate



USER:

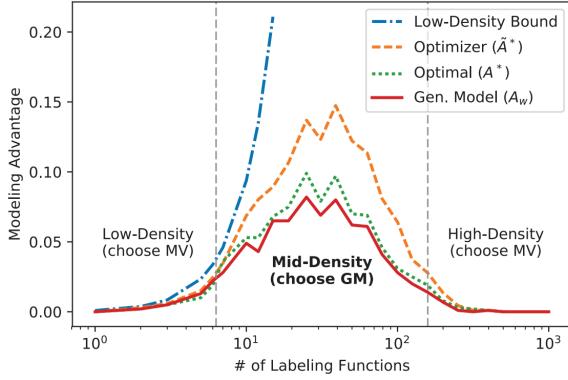
- Provide unlabeled data
- Writes labeling functions
- Chooses a discriminative model (e.g. Bi-LSTM)

SNORKEL:

- Creates a noisy training data
- Learns a model of this noise
- Trains a noise-aware discriminative model

Generative Model or Majority Voting?

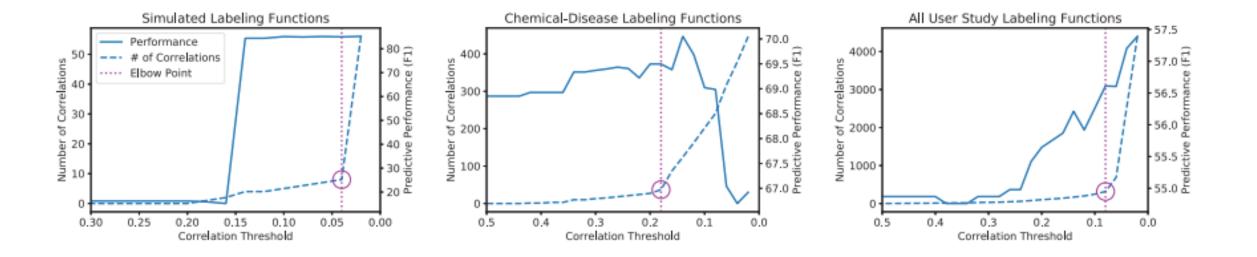
- "When does modeling the accuracies of sources improve end-to-end predictive performance?"
- Heuristic ratio of positive to negative labels



Correlated labels

- Snorkel users writing labeling functions that are statistically dependent.
 - LF are variations of each other
 - LF operate on correlated inputs
 - LF use correlated sources of knowledge
- This affects estimates of the true labels
- Getting users to somehow indicate dependencies by hand is difficult and error-prone
- Pseudo-likelihood estimator
 - Selecting which dependencies to model
 - Hyper-parameter e: trades-off between predictive performance and computational cost
 - Large e = no correlations included
 - Choice of e determines the model's complexity

Correlated labels



Evaluation – User Study

- How quickly subject-matter experts could learn to write labelling functions
- 4.5 hours of instruction on how to use and evaluate models developed using Snorkel
- 2.5 hours to write labelling functions
- Snorkel users: 30.4 F1 average score
- The average hand-supervision: 20.9 F1 average score

Evaluation - Applications

Task	# LFs	% Pos.	# Docs	# Candidates
Chem	16	4.1	1,753	65,398
EHR	24	36.8	$47,\!827$	$225,\!607$
CDR	33	24.6	900	$8,\!272$
Spouses	11	8.3	$2,\!073$	$22,\!195$
Radiology	18	36.0	$3,\!851$	$3,\!851$
Crowd	102	-	505	505

Eva	luation

	Distant Supervision		Snorkel (Gen.)				
Task	Р	\mathbf{R}	$\mathbf{F1}$	Р	R	$\mathbf{F1}$	\mathbf{Lift}
Chem	11.2	41.2	17.6	78.6	21.6	33.8	+16.2
EHR	81.4	64.8	72.2	77.1	72.9	74.9	+2.7
CDR	25.5	34.8	29.4	52.3	30.4	38.5	+9.1
Spouses	9.9	34.8	15.4	53.5	62.1	57.4	+42.0
							_
	Snorke	el (Disc	.)	Hand	l Supe	rvision	
					1		•
Р	R	$\mathbf{F1}$	Ĺift	Р	Ŕ	F1	
Р 87.0			/		_		
	R	F1	Lift		_		
87.0	R 39.2	F1 54.1	Lift +36.5		_		
87.0 80.2	R 39.2 82.6	F1 54.1 81.4	Lift +36.5 +9.2	P - -	R - -	F1 - -	

Effect of Generative Modeling

Task	Disc. Model on Unweighted LFs	Disc. Model	Lift
Chem	48.6	54.1	+5.5
EHR	80.9	81.4	+0.5
CDR	42.0	45.3	+3.3
Spouses	52.8	54.2	+1.4
Crowd (Acc)	62.5	65.6	+3.1
Rad. (AUC)	67.0	72.0	+5.0

Conclusion

- Snorkel provides a new paradigm for managing weak supervision to create training data sets
- Users provide Labeling Functions that capture domain knowledge and resources
- Discriminative models trained on Snorkel's probabilistic labels produce consistently better labeling
- Labeling functions written in Snorkel, even by SME users, can match or exceed a traditional hand-labeling approach

Thank you!