
Device Placement Optimization using
Reinforcement Learning
By Mirhoseini et al.

Shyam Tailor
21/11/18

1



The Problem

• Neural Networks are getting bigger
and require greater resources for
training and inference.

• Want to schedule in a
heterogeneous distributed
environment.

• CPUs and GPUs in the paper.
• All benchmarks run on a single

machine.

• Traditionally: use heuristics
• Previous automated approaches

e.g. Scotch [3] do not work too
well.

Figure from TensorFlow
website.

2



This Paper’s Approach

• Use Reinforcement Learning to create the placements.
• Run placements in the real environment and measure their

execution time as a reward signal.
• Use the evaluated reward signals to improve placement policy.

3



Revision: Policy Gradients

• We have parameterised policies πθ, where θ is the parameter
• We want to pick a policy π∗ that maximises our reward R(τ).

• With policy gradients, we have an objective J(θ).

J(θ) = Eτ∼πθ(·)[R(τ)]

• Use gradient descent to optimise J(θ) to find π∗.
• Details out of scope but can be done using Monte Carlo

Sampling.

4



The Reward Signal

R(P) = Square root of total time for forward pass, backward pass,
and parameter update.

• Sometimes placements just don’t run — have a large constant
representing a failed placement.

• Square root to make training more robust.
• Variance reduction: take ten runs and discard the first.

5



The Policy

• Use an attentional sequence-to-sequence model which knows
about devices that can be used for placements.

• Input: sequence of operations in the computation graph.
• Output: sequence of placements for the input operations.

6



Cutting Down the Search Space

• Problem: the computation graph can be very big.
• Solution: try to fuse portions of the graph as a pre-processing

step where possible.

• Co-locate operations when it makes sense to.
• e.g. if an operation’s output only goes to one other operation,

keep them together.
• Can be architecture specific too e.g. keeping LSTM cells

together or keeping convolution / pool layers together.

• On evaluated networks, fused graph is around 1% the size of
the original.

7



Training Setup

• To avoid bottleneck, distribute parameters to controllers.
• Controllers take samples, and instruct workers to run them.

8



Evaluation: Architectures and Machines

• Experiments involved 3 popular network architectures:
1. Recurrent Neural Network Language Model [5, 2].
2. Neural Machine Translation with Attention Mechanism [1].
3. Inception-V3 [4].

• Single machine used to run experiments.
• Either 2 or 4 GPUs per machine for experiment purposes.

9



Evaluation: Baselines for Comparison

1. Run entire network on the CPU.
2. Run entire network on a single GPU.
3. Use Scotch to create a placement over the CPU and GPU.

• Also run experiment without allowing the CPU.

4. Expert-designed placements from the literature.

10



Evaluation: How Fast are the RL Placements?

• Took between 12-27 hours to find placements.

11



Evaluation: How Fast are the RL Placements? continued

12



Analysis: Why are the Placements Chosen Faster?

• The RL placements generally do a better job of distributing
computation load and minimising copying costs.

• This is tricky — and it’s different for different architectures!
• Inception — it’s hard to exploit model parallelism due to

dependencies restricting parallelism so try to minimise copying
• NMT — the opposite applies, so balance computation load.

13



Authors’ Conclusions

• It looks like RL can optimise around the tradeoff between
computation and copying.

• The policy is learnt with nothing except the computation
graph and the number of available devices.

14



Opinion: Positives

• This method shows promise, as it learns simple baselines
automatically, and can exceed human performance where
more advanced setup is required.

• At least on the networks they tested it on.

• The technique was applied to different architectures, and
positive results were obtained for each one.

• The technique should be generalisable to other system
optimisation problems, in principle.

15



Opinion: Flaws in Evaluation

• Policy gradients are stochastic — so why haven’t multiple
runs been reported?

• Is there a large variance between solutions found?
• Does the algorithm sometimes fail to converge to anything

useful?

16



Opinion: Improvement — Post-Processing

• Is there low hanging fruit missed by the RL optimisation?
• The authors never attempt to interpret the placements beyond

superficial comments about computation and copying.

17



Opinion: Improvement — Transfer Learning

• Each time the algorithm is run, it is learning about balancing
copying and computation from scratch.

• These concepts are not inherently unique to each network
though — the precise tradeoffs may change, but the general
concepts remain.

18



References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Machine
Translation by Jointly Learning to Align and Translate”. In: (Sept. 1, 2014). url:
https://arxiv.org/abs/1409.0473 (visited on 11/20/2018).

Rafal Jozefowicz et al. “Exploring the Limits of Language Modeling”. In:
arXiv:1602.02410 [cs] (Feb. 7, 2016). arXiv: 1602.02410. url:
http://arxiv.org/abs/1602.02410 (visited on 11/20/2018).

François Pellegrini. “A Parallelisable Multi-level Banded Diffusion Scheme for
Computing Balanced Partitions with Smooth Boundaries”. In: Euro-Par 2007
Parallel Processing. Ed. by Anne-Marie Kermarrec, Luc Bougé, and
Thierry Priol. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2007, pp. 195–204. isbn: 978-3-540-74466-5.

Christian Szegedy et al. “Rethinking the Inception Architecture for Computer
Vision”. In: (Dec. 2, 2015). url: https://arxiv.org/abs/1512.00567 (visited
on 11/20/2018).

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. “Recurrent Neural
Network Regularization”. In: (Sept. 8, 2014). url:
https://arxiv.org/abs/1409.2329 (visited on 11/20/2018). 19

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1602.02410
http://arxiv.org/abs/1602.02410
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1409.2329

	References

