
Zhihao Jia, Matei Zaharia and Alex Aiken

Beyond Data and Model Parallelism for Deep Neural
Networks

Cristian (cb2015@cam.ac.uk)

Content

➢ Types of parallelism
➢ The SOAP space
➢ FlexFlow
➢ Evaluation of FlexFlow
➢ Critique

Types of parallelism

TensorFlow, PyTorch, Caffe2 are mainly based on data and model parallelism.

Data parallelism Model parallelism
Images from Large Scale Distributed Deep Networks (Dean et al., 2012)

Types of parallelism

Something deep learning frameworks don’t exploit is operation level parallelism.
The convolution operation can be distributed along the channel or spatial dimensions.

The SOAP space

An obvious idea is to combine all types of parallelisation. However, one has to
know first all the dimensions which can be parallelised in a Deep Neural Network.

Sample-Operation-Attribute-Parameter

The figure describes how a single operation can be parallelised across the SAP
dimensions. But multiple operations can be executed in parallel if they do not
depend on each other, hence the O dimension.

The SOAP space

How does the SOAP space fit with existing parallelization approaches?

FlexFlow

FlexFlow takes as input a graph of
all the operations in the neural
network and the topology of the
network of devices the neural
network will run on.

The execution optimiser searches
for the best parallelisation strategy
of the operations by using a
simulation of the strategies run by
the execution simulator.

Execution Simulator: The Task Graph

Each operation o[i] in the operations graph has a configuration c[i] that describes
how to split the output tensor in multiple tasks t[i][1],...,t[i][|c[i]|]. The execution
simulator puts all these tasks together to create a task graph using the (o[i], o[j])
links from the input operation graph.

Nodes represent either normal tasks
(square) or data transfer tasks
(hexagon). Edges represent
dependencies between tasks.

Transfer tasks are added if the tasks
are executed by different devices.

Execution Simulator: The Delta Simulation Algorithm

Alternative approaches such as REINFORCE perform an actual execution of the
operations to estimate the running time. However, this is expensive and FlexFlow
simulates the execution of the task graph.

During the search procedure, the
optimiser moves from one strategy
to another by changing a single
configuration. To avoid simulating
everything again on the new graph,
FlexFlow runs Bellman-Ford
starting with a queue initialised with
the new tasks to process only those
tasks affected by the change.

Execution Optimiser and MCMC

Finding the optimal assignment of tasks to devices is an NP-hard problem. As usual,
an approximation method is the way to go. Flex flow uses the Metropolis-Hastings
algorithm by assigning an execution time dependent distribution to the possible
strategies:

 p(S) ∝ exp(− β · cost(S))

FlexFlow Evaluation: Samples / second / GPU

FlexFlow Evaluation: NMT Parallelization performance

FlexFlow Evaluation: Training curve Inception-V3

FlexFlow Evaluation: Throughput comparison

FlexFlow Evaluation: Simulation accuracy

Critique

The Good The Bad

● Hybrid and granular
optimisation

● Portable (just works on any
device topology)

● Great user experience: just
program the model and don’t
worry about optimisation

● Easy way to insert expert
knowledge

● The simulation algorithm is
based on 4 assumptions.
They do not hold for some ML
algorithms.

● Assumption 2 (bandwidth can
be fully utilised) might not
hold in data center scenarios
or from a certain cluster size
in general.

Future work

● Some of the assumptions might be relaxed or even eliminated by combining
simulation and execution. Simulation gives a very good insight on what is worth
spending time on executing.

● Ability to configure the balance between time and the quality of the found
strategy.

The End

Thank you!
Questions?

