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Types of parallelism

TensorFlow, PyTorch, Caffe2 are mainly based on data and model parallelism.

Data parallelism Model parallelism
Images from Large Scale Distributed Deep Networks (Dean et al., 2012)



Types of parallelism

Something deep learning frameworks don’t exploit is operation level parallelism. 
The convolution operation can be distributed along the channel or spatial dimensions.



The SOAP space 

An obvious idea is to combine all types of parallelisation. However, one has to 
know first all the dimensions which can be parallelised in a Deep Neural Network. 

Sample-Operation-Attribute-Parameter

The figure describes how a single operation can be parallelised across the SAP 
dimensions. But multiple operations can be executed in parallel if they do not 
depend on each other, hence the O dimension.



The SOAP space 

How does the SOAP space fit with existing parallelization approaches?



FlexFlow

FlexFlow takes as input a graph of 
all the operations in the neural 
network and the topology of the 
network of devices the neural 
network will run on. 

The execution optimiser searches 
for the best parallelisation strategy 
of the operations by using a 
simulation of the strategies run by 
the execution simulator.



Execution Simulator: The Task Graph 

Each operation o[i] in the operations graph has a configuration c[i] that describes 
how to split the output tensor in multiple tasks t[i][1],...,t[i][|c[i]|]. The execution 
simulator puts all these tasks together to create a task graph using the (o[i], o[j]) 
links from the input operation graph.

Nodes represent either normal tasks 
(square) or data transfer tasks 
(hexagon). Edges represent 
dependencies between tasks.

Transfer tasks are added if the tasks 
are executed by different devices.



Execution Simulator: The Delta Simulation Algorithm

Alternative approaches such as REINFORCE perform an actual execution of the 
operations to estimate the running time. However, this is expensive and FlexFlow 
simulates the execution of the task graph. 

During the search procedure, the 
optimiser moves from one strategy 
to another by changing a single 
configuration. To avoid simulating 
everything again on the new graph, 
FlexFlow runs Bellman-Ford 
starting with a queue initialised with 
the new tasks to process only those 
tasks affected by the change.



Execution Optimiser and MCMC

Finding the optimal assignment of tasks to devices is an NP-hard problem. As usual, 
an approximation method is the way to go. Flex flow uses the Metropolis-Hastings 
algorithm by assigning an execution time dependent distribution to the possible 
strategies:

       p(S) ∝ exp(− β · cost(S))



FlexFlow Evaluation: Samples / second / GPU



FlexFlow Evaluation: NMT Parallelization performance



FlexFlow Evaluation: Training curve Inception-V3



FlexFlow Evaluation: Throughput comparison



FlexFlow Evaluation: Simulation accuracy



Critique

The Good The Bad

● Hybrid and granular 
optimisation

● Portable (just works on any 
device topology)

● Great user experience: just 
program the model and don’t 
worry about optimisation

● Easy way to insert expert 
knowledge

● The simulation algorithm is 
based on 4 assumptions. 
They do not hold for some ML 
algorithms.

● Assumption 2 (bandwidth can 
be fully utilised) might not 
hold in data center scenarios 
or from a certain cluster size 
in general.



Future work

● Some of the assumptions might be relaxed or even eliminated by combining 
simulation and execution. Simulation gives a very good insight on what is worth 
spending time on executing.

● Ability to configure the balance between time and the quality of the found 
strategy. 



The End

Thank you!
Questions?


