
RLlib: Abstractions for Distributed
Reinforcement Learning
Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara,

Roy Fox, Ken Goldberg, Joseph E. Gonzalez, Michael I.
Jordan, and Ion Stoica

R244 Presentation By: Vikash Singh November 14, 2018 Session 6

What is Reinforcement Learning (RL) ?

[4]

Understanding the Goal of RL
● Policy: Strategy used by the agent to determine which action to

take given its current state
● Goal: Learn a policy to optimize long term reward

[2]

Problem with Distributed RL
● Absence of a single dominant computational pattern or

rules of composition (e.g., symbolic differentiation)
● Many different heterogeneous components (deep

neural nets, third party simulators)
● State must be managed across many levels of

parallelism and devices
● People forced to build custom distributed systems to

coordinate without central control!

Nested Parallelism in RL
○
○

●

Opportunities for distributed computation in this nested
structure! How to take advantage of this ?

RLlib: Scalable Software Primitives for RL
● Abstractions encapsulate parallelism and resource

requirements
● Built on top of Ray[1] (task based system for distributed

execution)
● Logically centralized top down hierarchical control
● Reuse of components for rapid prototyping,

development of new RL algorithms

Hierarchical and Logically Centralized Control

Example: Distributed vs Hierarchical Control

Abstractions for RL

● Policy Graph: define policy (could be neural network
in TF, Pytorch), postprocessor (Python function) , and
loss

● Policy Evaluator: wraps policy graph and environment
to sample experience batches (can specify many
replicas)

● Policy Optimizer: extend gradient descent to RL,
operates closely with the policy evaluator

Advantages of Separating Optimization from Policy
● Specialized optimizers can be swapped in to take advantage

of hardware without changing algorithm
● Policy graph encapsulates interaction with deep learning

framework, avoid mixing deep learning with other
components

● Rapidly change between different choices in RL optimization
(synchronous vs. asynchronous, allreduce vs parameter
server, use of GPUs and CPUs, etc)

Common Themes in RL Algorithm Families

Complex RL Architectures using RLlib

RLlib vs Distributed TF Parameter Server
Key Questions:

● Can a centrally controlled policy
optimizer compete in performance
with an implementation in a
specialized system like Distributed
TF[3]?

● Can a single threaded controller
scale to large throughputs?

Scalability of Distributed Policy Evaluation

More Performance Comparisons to Specialized Alternatives

Policy Optimizer Comparison in Multi-GPU Conditions

Minor Criticism

● Comparisons could be more exhaustive to
cover more RL strategies

● Abstractions may be potentially limiting for
newer models that don’t align with this
paradigm

● Unclear how involved developer needs to be
in resource awareness to achieve optimal
performance

Final Thoughts

● RLlib presents a useful set of abstractions that simplify
the development of RL systems, while also ensuring
scalability

● Successfully breaks down RL ‘hodgepodge’ of
components into separate, reusable components

● Logically centralized hierarchical control with parallel
encapsulation prevents messy errors from
coordinating separate distributed components

References
1. Moritz, Philipp, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw,

Eric Liang, William Paul, Michael I. Jordan, and Ion Stoica. "Ray: A Distributed
Framework for Emerging AI Applications." arXiv preprint arXiv:1712.05889(2017).

2. Seo, Jae Duk. "My Journey to Reinforcement Learning - Part 0: Introduction."
Towards Data Science. April 06, 2018. Accessed November 06, 2018.
https://towardsdatascience.com/my-journey-to-reinforcement-learning-part-0-intro
duction-1e3aec1ee5bf.

3. Vishnu, Abhinav, Charles Siegel, and Jeffrey Daily. "Distributed tensorflow with
MPI." arXiv preprint arXiv:1603.02339 (2016).

4. "KDnuggets." KDnuggets Analytics Big Data Data Mining and Data Science.
Accessed November 06, 2018.
https://www.kdnuggets.com/2018/03/5-things-reinforcement-learning.html.

