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What is Reinforcement Learning (RL) ?
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Understanding the Goal of RL
● Policy: Strategy used by the agent to determine which action to 

take given its current state 
● Goal:  Learn a policy to optimize long term reward
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Problem with Distributed RL
● Absence of a single dominant computational pattern or 

rules of composition ( e.g., symbolic differentiation)
● Many different heterogeneous components (deep 

neural nets, third party simulators)
● State must be managed across many levels of 

parallelism and devices 
● People forced to build custom distributed systems to 

coordinate without central control!

 



Nested Parallelism in RL
○
○  

●

Opportunities for distributed computation in this nested 
structure! How to take advantage of this ?



RLlib: Scalable Software Primitives for RL
● Abstractions encapsulate parallelism and resource 

requirements 
● Built on top of Ray[1] (task based system for distributed 

execution) 
● Logically centralized top down hierarchical control
● Reuse of components for rapid prototyping, 

development of new RL algorithms

 



Hierarchical and Logically Centralized Control



Example: Distributed vs Hierarchical Control



Abstractions for RL 

● Policy Graph: define policy (could be neural network 
in TF, Pytorch), postprocessor (Python function) , and 
loss 

● Policy Evaluator: wraps policy graph and environment 
to sample experience batches (can specify many 
replicas)

● Policy Optimizer: extend gradient descent to RL, 
operates closely with the policy evaluator 

 



Advantages of Separating Optimization from Policy 
● Specialized optimizers can be swapped in to take advantage 

of hardware without changing algorithm
● Policy graph encapsulates interaction with deep learning 

framework, avoid mixing deep learning with other 
components 

● Rapidly change between different choices in RL optimization 
(synchronous vs. asynchronous, allreduce vs parameter 
server, use of GPUs and CPUs, etc) 

 



Common Themes in RL Algorithm Families



Complex RL Architectures using RLlib



RLlib vs Distributed TF Parameter Server 
Key Questions:

● Can a centrally controlled policy 
optimizer compete in performance 
with an implementation in a 
specialized system like Distributed 
TF[3]?

● Can a single threaded controller 
scale to large throughputs?



Scalability of Distributed Policy Evaluation



More Performance Comparisons to Specialized Alternatives



Policy Optimizer Comparison in Multi-GPU Conditions



Minor Criticism

● Comparisons could be more exhaustive to 
cover more RL strategies

● Abstractions may be potentially limiting for 
newer models that don’t align with this 
paradigm

● Unclear how involved developer needs to be 
in resource awareness to achieve optimal 
performance



Final Thoughts 

● RLlib presents a useful set of abstractions that simplify 
the development of RL systems, while also ensuring 
scalability

● Successfully breaks down RL ‘hodgepodge’ of 
components into separate, reusable components

● Logically centralized hierarchical control with parallel 
encapsulation prevents messy errors from 
coordinating separate distributed components 
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