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What is Reinforcement Learning (RL) ?
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Understanding the Goal of RL

e Policy: Strategy used by the agent to determine which action to
take given its current state
e Goal: Learn a policy to optimize long term reward
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Problem with Distributed RL

e Absence of a single dominant computational pattern or
rules of composition ( e.g., symbolic differentiation)

e Many different heterogeneous components (deep
neural nets, third party simulators)

e State must be managed across many levels of
parallelism and devices

e People forced to build custom distributed systems to
coordinate without central control!



Nested Parallelism in RL
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Opportunities for distributed computation in this nested
structure! How to take advantage of this ?




RLLib: Scalable Software Primitives for RL

Abstractions encapsulate parallelism and resource
requirements

Built on top of Ray,,, (task based system for distributed
execution)

Logically centralized top down hierarchical control
Reuse of components for rapid prototyping,
development of new RL algorithms



Hierarchical and Logically Centralized Control
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Figure 2. Most RL algorithms today are written in a fully distributed style (a) where replicated processes independently compute and
coordinate with each other according to their roles (if any). We propose a hierarchical control model (c), which extends (b) to support
nesting in RL and hyperparameter tuning workloads, simplifying and unifying the programming models used for implementation.



Example: Distributed vs Hierarchical Control

if mpi.get_rank() <= m:
grid = mpi.comm_world.split(®@)
else:
eval = mpi.comm_world.split(
mpi.get_rank() % n)

if mpi.get_rank() == o:
grid.scatter(
generate_hyperparams(), root=0)
print(grid.gather(root=0))
elif 0 < mpi.get_rank() <= m:
params = grid.scatter(None, root=0)
eval.bcast(
generate_model(params), root=e)
results = eval.gather(
result, root=0)
grid.gather(results, root=0)
elif mpi.get_rank() > m:
model = eval.bcast(None, root=0)
result = rollout(model)
eval.gather(result, root=0)

(a) Distributed Control

@ray.remote

def rollout(model):
# perform a rollout and
# return the result

@ray.remote
def evaluate(params):
model = generate model(params)
results = [rollout.remote(model)
for i in range(n)]
return results

param_grid = generate_hyperparams()
print(ray.get([evaluate.remote(p)
for p in param_grid]))

(b) Hierarchical Control

Figure 3. Composing a distributed hyperparameter search with a
function that also requires distributed computation involves com-
plex nested parallel computation patterns. With MPI (a), a new
program must be written from scratch that mixes elements of both.
With hierarchical control (b), components can remain unchanged
and simply be invoked as remote tasks.



Abstractions for RL

e Policy Graph: define policy (could be neural network
in TF, Pytorch), postprocessor (Python function), and
loss

e Policy Evaluator: wraps policy graph and environment
to sample experience batches (can specify many
replicas)

e Policy Optimizer: extend gradient descent to RL,
operates closely with the policy evaluator




Advantages of Separating Optimization from Policy

e Specialized optimizers can be swapped in to take advantage
of hardware without changing algorithm

e Policy graph encapsulates interaction with deep learning
framework, avoid mixing deep learning with other
components

e Rapidly change between different choices in RL optimization
(synchronous vs. asynchronous, allreduce vs parameter
server, use of GPUs and CPUs, etc)



Common Themes in RL Algorithm Families

Table 2. RLIib’s policy optimizers and evaluators capture common components (Evaluation, Replay, Gradient-based Optimizer) within a
logically centralized control model, and leverages Ray’s hierarchical task model to support other distributed components.

Algorithm Family Policy Evaluation = Replay Buffer = Gradient-Based Optimizer Other Distributed Components
DQNs X X X

Policy Gradient X X

Off-policy PG X X X

Model-Based/Hybrid X X Model-Based Planning
Multi-Agent X X X

Evolutionary Methods X Derivative-Free Optimization
AlphaGo X X X MCTS, Derivative-Free Optimization



Complex RL Architectures using RLLib
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Figure 6. Complex RL architectures are easily captured within RLIib’s hierarchical control model. Here blue lines denote data transfers,
orange lines lighter overhead method calls. Each train() call encompasses a batch of remote calls between components.
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RLLib vs Distributed TF Parameter Server
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Figure 5. RLI1ib’s centrally controlled policy optimizers match or
exceed the performance of implementations in specialized systems.
The RLIib parameter server optimizer using 8 internal shards is
competitive with a Distributed TensorFlow implementation tested
in similar conditions. RLIlib’s Ape-X policy optimizer scales to
160k frames per second with 256 workers at a frameskip of 4,
more than matching a reference throughput of ~45k fps at 256
workers, demonstrating that a single-threaded Python controller
can efficiently scale to high throughputs.

Key Questions:

Can a centrally controlled policy
optimizer compete in performance
with an implementation in a
specialized system like Distributed
TFS?

Can a single threaded controller
scale to large throughputs?



Scalability of Distributed Policy Evaluation
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Figure 7. Policy evaluation throughput scales nearly linearly from
1 to 128 cores. PongNoFrameskip-v4 on GPU scales from 2.4k
to ~200k actions/s, and Pendulum-v0O on CPU from 15k to 1.5M
actions/s. We use a single p3.16x1 AWS instance to evaluate from 1-
16 cores, and a cluster of four p3.16xI1 instances from 32-128 cores,
spreading actors evenly across the cluster. Evaluators compute
actions for 64 agents at a time, and share the GPUs on the machine.



More Performance Comparisons to Specialized Alternatives
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Figure 8. The time required to achieve a reward of 6000 on the
Humanoid-v1 task. RLIib implementations of ES and PPO outper-
form highly optimized reference optimizations.



Policy Optimizer Comparison in Multi-GPU Conditions

Policy Optimizer Gradients computed on Environment SGD throughput

Humanoid-vl 330k samples/s

4 GPUs, Evaluators Pong-v0 23k samples/s

Allreduce-based

Humanoid-vl 440k samples/s

16 GPUs, Evaluators Porg-v0 100k samples/s

Humanoid-vl 2.1M samples/s

4 GPUs, Driver Pong-v0 N/A (out of mem.)

Local Multi-GPU
16 GPUs, Driver

Humanoid-vl 1.7M samples/s
Pong-v0 150k samples/s

Table 3. A specialized multi-GPU policy optimizer outperforms
distributed allreduce when data can fit entirely into GPU memory.
This experiment was done for PPO with 64 Evaluator processes.
The PPO batch size was 320k, The SGD batch size was 32k, and
we used 20 SGD passes per PPO batch.



Minor Criticism

e Comparisons could be more exhaustive to
cover more RL strategies

e Abstractions may be potentially limiting for
newer models that don't align with this
paradigm

e Unclear how involved developer needs to be
in resource awareness to achieve optimal
performance



Final Thoughts

e RLIib presents a useful set of abstractions that simplify
the development of RL systems, while also ensuring
scalability

e Successfully breaks down RL ‘hodgepodge’ of
components into separate, reusable components

e Logically centralized hierarchical control with parallel
encapsulation prevents messy errors from
coordinating separate distributed components
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