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Problem Statement

Problem statement

Neural networks suffer from sensitivity to empirical choices of
hyperparameters

Solution

Asynchronous optimisation algorithm that jointly optimises a
population of models



Key Idea
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Figure 1: Overview of proposed approach



Population Based Training - Algorithm

Algorithm 1 Population Based Training (PBT)

1: procedure TRAIN(P)
2: for (0, h, p, t) € P (asynchronously in parallel) do

° Step - We|ght Update 3 while not end of training do
4 0 < step(0|h) >
o - 5 p + eval(f)
eval - performance p it ready(p. 1. P) then
i 7: I ,0" < exploit(h.0,p,P)
eVaanUon 8: if 0 # 0’ then
- : h,0 W, o,
- ready - current path limit o e 8 P)
. 11: end if
- exploit - compare to 12: end if
. 13: update P with new (0, h,p,t + 1)
population 14: end while
15: end for
o explore - adeSt 16: return 6 with the highest p in P
17: end procedure
hyperparameters

Figure 2: PBT algorithm



Population Base Training - Core

- exploit
- Replace weights and/or
hyperparameters
- T-test selection, truncation
selection, binary tournament
- explore

- Adjust hyperparameters
- Perturb, resample
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Figure 3: PBT dummy example



Implementation Notes

- Asynchronous
- No centralised orchestrator

- Only current performance information, weights,
hyperparameters published

- No synchronisation of population



Experiments conducted in three areas:

- Deep reinforcement learning - Find policy to maximise expected
episodic return

- Neural machine translation - Convert sequence of words from
one language to another

- Generative adversarial networks - Generative models with
competing components, generator and descriminator
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Results - Deep reinforcement learning
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Figure 5: PBT deep reinforcement learning result - DM Lab



Results - Machine translation
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Figure 6: PBT machine translation results



Results - Generative Adversarial Networks
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Figure 7: PBT GAN results
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Figure 8: PBT design space analysis
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Figure 9: PBT lineage analysis
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Figure 10: PBT development as phylogenetic tree 13



Positives Negatives
- Well written - No results showing evidence
- Detailed analysis - although of reduced time
some questions left - Added in additional
unanswered hyperparameters (ready
- Result improvements without steps, perturb, etc)
sacrificing on time - Is susceptible to local minima
- Approximate complex paths - Minimum computational
for hyperparameter tuning requirements (10 workers)

- Improved training stability quite large
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- Unique genetic algorithm approach to implementation - parallel
and sequential
- Author: Max Jaderberg

- Mix&Match: Agent Curricula for Reinforcement Learning -
boostrapping off simpler agents



Conclusion

- Presented algorithm that asynchronously and jointly optimises a
population of models

- Obtained improved results on a range of different algorithms

- Still certain questions unanswered but still a good contribution
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