
Presented by: Devin Taylor

Population Based Training of Neural Networks

M. Jaderberg, V. Dalibard, S. Osindero, W.M. Czarnecki
November 14, 2018

DeepMind, London, United Kingdom



Problem Statement

Problem statement

Neural networks suffer from sensitivity to empirical choices of
hyperparameters

Solution

Asynchronous optimisation algorithm that jointly optimises a
population of models

1



Key Idea

Figure 1: Overview of proposed approach

2



Population Based Training - Algorithm

• step - weight update
• eval - performance
evaluation

• ready - current path limit
• exploit - compare to
population

• explore - adjust
hyperparameters

Figure 2: PBT algorithm

3



Population Base Training - Core

• exploit
• Replace weights and/or
hyperparameters

• T-test selection, truncation
selection, binary tournament

• explore
• Adjust hyperparameters
• Perturb, resample

Figure 3: PBT dummy example

4



Implementation Notes

• Asynchronous
• No centralised orchestrator
• Only current performance information, weights,
hyperparameters published

• No synchronisation of population

5



Experiments

Experiments conducted in three areas:

• Deep reinforcement learning - Find policy to maximise expected
episodic return

• Neural machine translation - Convert sequence of words from
one language to another

• Generative adversarial networks - Generative models with
competing components, generator and descriminator

6



Results - Spoiler

Figure 4: PBT result summary

7



Results - Deep reinforcement learning

Figure 5: PBT deep reinforcement learning result - DM Lab

8



Results - Machine translation

Figure 6: PBT machine translation results

9



Results - Generative Adversarial Networks

Figure 7: PBT GAN results

10



Analysis

Figure 8: PBT design space analysis

11



Analysis

Figure 9: PBT lineage analysis

12



Analysis

Figure 10: PBT development as phylogenetic tree 13



Critique

Positives

• Well written
• Detailed analysis - although
some questions left
unanswered

• Result improvements without
sacrificing on time

• Approximate complex paths
for hyperparameter tuning

• Improved training stability

Negatives

• No results showing evidence
of reduced time

• Added in additional
hyperparameters (ready
steps, perturb, etc)

• Is susceptible to local minima
• Minimum computational
requirements (10 workers)
quite large

14



Related Work

• Unique genetic algorithm approach to implementation - parallel
and sequential

• Author: Max Jaderberg
• Mix&Match: Agent Curricula for Reinforcement Learning -
boostrapping off simpler agents

15



Conclusion

• Presented algorithm that asynchronously and jointly optimises a
population of models

• Obtained improved results on a range of different algorithms
• Still certain questions unanswered but still a good contribution

16


