Petabricks: A language and compiler
for algorithmic choice

J. Ansel et al. ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI, 2009.

Sami (sa894) — R244 Large-Scale Data Processing and Optimisation, sess 6

Motivation — Many algorithms with various trade offs

Sorting
Fast for medium Fastest for Fastest for small Fastest for largest
Size input medium size input input input
Highly Exploit spatial O(1) Memory O(wn) runtime

parallelizable locality

» But gets more complicated!
« Mixing the algorithms yield better results
» e.g QuickSort then cut off to InsertionSort once list is small enough
* Requires knowing an optimal cut-off point!
« Differs from an architecture to an architecture
» Choices are left to the developer, complex, time-consuming, error prone

Hence the need for Autotuning

#@% UNIVERSITY OF

CAMBRIDGE

PetaBricks — A language and a compiler

Self-tuning compiler for bespoke architecture

A language that allow expressing choice in algorithms

Implicitly parallelizable

Auto-select the desired trade-off between accuracy and performance

Sample Code - Sorting

HFdefFinmne SORT Sort

AAHEFEINclude "Bitonicsort_opboo™ ° Define multi Ie
HFinmnclude "Insertionsort._.pbocc™ p

HFinclude "MergesortZ2.pbcocc™ .
Finclude ""QuickscortZ2.pbocc™ functlons
Finclude "Selesctionsort.pbocc™

fFfunction Sort

o Aot Functions have tunable

to owut[m]

Mmoo ont . 1y variables

T or A
Mergesortd{out, in);

¥ er { l
Guicksort2(out, in>; PetaBricks choose

T or i - . .

| InsertionsortCout, ims optimal combination
Selectionsort{ouwut, imn);

g

Ao

P Bitonic{ouwut, imn);

S E

@z UNIVERSITY OF Code Taken from PetaBricks GitHub Repo

PetaBricks effect

* Source code is compiled into a binary
* The binary is auto-tuned on the architecture of the system

« The compiler produces a final binary contains the optimal configuration

Tuned variables - Sample

Branch: master

petabricks / examples / sort / Sort.cfg.X1

Marek Olszewski New cross tuning configs

0 contributors

52 lines (51 sloc) 3.31 KB

CopylD_sequential_cutoff = 1455

1714

valid range:

CopylD_split_size = # valid range: 1 to 2147483647

Copy2D_sequential_ cutoff = 568

91@

valid range:

Copy2D_split_size = # wvalid range: 1 to 2147483647

InsertionsortSubldrray_sequential_ cutoff = @

Insertionsort_sequential_cutoff = @ # valid range:

Mergelt_seguential_ cutoff = 1455 # valid range:
Merge2 Parallel Cutoff = 949 # wvalid range: 18@ to 1000060
Merge2 Parallel_ sequential_cutoff = 1373 # wvalid range:

valid range:
@ to 2147483647

Raw

© to 2147483647

@ to 2147483647

@ to 2147483647

B to 2147483647

8 to 2147483647

Merged sequential_cutoff = 1334 # valid range: © to 2147483647
Merge8_sequential_ cutoff = 569 # wvalid range: @ to 2147483647
Mergesortlt_sequential_cutoff = 1497 # wvalid range: @ to 2147483647
Mergesortd_sequential_cutoff = 1457 # valid range: @ to 2147483647
Mergesort8_sequential_cutoff = 1458 # valid range: @ to 2147483647
MergesortSubfirrayl6_sequential_ cutoff = 1455 # valid range: @ to 2147483647

MergesortSublfrrayd sequential_cutoff = 1497
MergesortSublfrray8_sequential_cutoff = 1497
Parallel MergesortSubArray_sequential_ cutoff = 945
Parallel Mergesort_sequential_ cutoff = 1497
QuickSort_sequential_cutoff = 1497 # wvalid range:
949

1714

QuicksortSublArray_sequential_cutoff = # wvalid range:

RadixsortSublArray_sequential_cutoff =

Code Taken from PetaBricks GitHub Repo

valid range:

. UNIVERSITY OF
CAMBRIDGE

valid range:
valid range:
valid range:
valid range:
© to 2147483647

@ to 2147483647
@ to 2147483647
@ to 2147483647
B to 2147483647

8 to 2147483647
@ to 2147483647

Blame

Find file Copy path

beafeel on Mar 30, 2009

J & W

History

Sorting - Results

0.0025 — | T | T | T
InsertionSort W
QuickSort pre
MergeSort + &
0.002 - RadixSort 1

Autoluned £ -

0.0015

Time (s)

0.001

0.0005

0 250 500 750 1000 1250 1500 1750
Input Size

Figure 14. Performance lor sort on 8 cores.

Figure taken from paper in review

: UNIVERSITY OF

' CAMBRIDGE

PetaBricks Components Graph

<F*etaBrick:5 Source C:}dé)

1'1F

PetaBricks Compiler |

2
¥ 4b

Autotuning Binary | Static Binary
Dependency Graph

|Paral|e| Runtime

Choice
Dependency
Graph

Compiled User Code
w [static choices

Compiled User Code

3 *aa
Choice Configuration File Figure taken from paper in review

. UNIVERSITY OF

CAMBRIDGE

PetaBricks Internals — Source2Source Compiler

Compiles from PetaBricks to C++

Input parsed into syntax tree

Construct a choice grid for matrix type

Build a choice dependency graph

Compilation — Rolling Sum example

transform RollingSum
from Aln]
to B[n]
{
/lruleO: sum all elements to the left
to(B.cell(i) b) from(A.region(0, i) in) {
b=sum(1in);

'

/lrulel : use the previously computed value
to(B.cell(1) b) from(A.cell(1) a,
B.cell(i—1) leftSum) {
b=a+leltSum ;
b
1

Figures taken from paper in review

CAMBRIDGE

Compilation — Applicable Region

&= UNIVERSITY OF

CAMBRIDGE

transform RollingSum
from Aln]

to B[n]

I

L

/lruleO: sum all elements to the left

to(B.cell(i) b) from(A.region(0, i) in) {
b=sum(1in);

¥

}

/lrulel : use the previously computed value
to(B.cell(1) b) from(A.cell(1) a,
B.cell(i—1) leftSum) {
b=a+leltSum ;

'

Figures taken from paper in review

Compilation — Applicable Region

transform RollingSum

from Aln]

to B[n]

{
/lruleO: sum all elements to the left
to(B.cell(i) b) from(A.region(0, i) in) {

b=sum(1in);

h

/lrulel : use the previously computed value
to(B.cell(1) b) from(A.cell(1) a,
B.cell(i—1) leftSum) {

b=a+leltSum ;
3

}

Figures taken from paper in review

&= UNIVERSITY OF

CAMBRIDGE

Compilation - Choice Grid Analysis

Split the data into matrix (grids)

Map data to rules

E.g. [0, 1) = {rule O} only
while [1, n) = {rule O or 1}

Rule priority is applied here as well

Figures taken from paper in review

Compilation - Choice Dependency Graph

(r0.<=).(rl.=) B_region(1, n)

Choices: 10, rl

A region(0, n)

B .region(0, 1)
Choices: 1{)

Figures taken from paper in review

Code Generation

e Two modes

 Default — choices and autotuner information are embeded in the
output code

« Second mode — code generation with all choices eliminated based on
autotuner results

» Second mode is useful to produce an intermediate code for C++ to
compile — it is more efficient when choices are eleminated

#f% UNIVERSITY OF

CAMBRIDGE

Auto Tuning System

« Tuning is done by running search on the available configurations

« The available configuration is described using the choice dependency
graph

» Using bottom-up approach, works on smaller input and works it way up
to large input

Runtime library

« Dynamically schedule tasks to distribute workload

* When task reach tunable cut-off point they stop calling the scheduler
and execute sequentially

« Maximize locality using Cilk, task stealing protocol,
» Thread operates on top of its dequeue
* When it runs out of tasks

« Select a random victim to steal work from bottom of their dequeue

#f% UNIVERSITY OF

CAMBRIDGE

PetaBricks — Other features

» Calling external libraries and other languages

« Template Transformation — Similar to C++

» Rule priorities and where clauses to manual tune edge cases

« Deadlock and race conditions prevention using the dependency graph

» Automated Consistency Checking - advantage of choices, you can run
multiple versions and check their results for consistency

#f% UNIVERSITY OF

CAMBRIDGE

Evaluation - Performance

0.0025 r
InsertionSort W
QuickSort 4
MergeSort i Py
XSort o r_
0.002 Autotluned | + |
g
I‘!]_ |
hh_ :"H-"A". b
0.0015 4% oA -
E : .
.-".-"m'
£ o M
"_ 'H+| [gt
0.001 | “ﬁ'.h{ﬂr{- i
0.0005
0
0 250 500 7a0 1000 1250 1500 1750
Input Size

Figure 14. Performance for sort on 8 cores.

282 UNIVERSITY OF Figure taken from paper in review

%> CAMBRIDGE

Evaluation — Performance other algorithms

10000 ¢ T T T
0 Direcl ------
i Jaecobi 1
1000 F SOR x 3 0.12 . . . —- '
L Multigrid & | + Bisection
100 F Auloluned - . ; 8% |
] ' - 0.1 : Cutoff25 © -
10 F E + Autotuned *
F ; 3 .
@ 1F : & 0.08 | . 7]
o | . .
E 01 |] = ,
I] o 0.06
0.01 | E E
0.001 | . 0.04
0.0001 F]
i v 0.02
t []
16'05 N s+ 0y seal L M | 1 asl L
1 10 100 1000 e
) 0 TR e
Input Size 0 200 400 600 800 1000
" . - i . . Input Size
Figure 11. Performance for algorithms to solve Poisson’s equation
up to an accuracy of 107 using 8 cores. The iterated SOR algorithm Figure 12. Performance for Eigenproblem on 8 cores. “Cutoff 25
uses the corresponding optimal weight w,,, for each of the corresponds to the hard-coded hybrid algorithm found in LAPACK.

different input sizes

UNIVERSITY OF Figures taken from paper in review

» CAMBRIDGE

Evaluation — Parallelism

#8% UNIVERSITY OF

%> CAMBRIDGE

E I I 1 | L] I
Autotuned Matrix Mulliply ---x--- ¥
Autotuned Sort --- -
7k Autoluned Poisson -8 -
Autotuned Eigenvector Solve %
6 -
2 5F el
=
ﬁ -
W 4 -
3 -
2 F -
1 | | 1 | 1 !
1 2 3 4 5 6 7 8

Mumber of Threads

Figure 16. Parallel scalability. Speedup as more worker threads
are added. Run on an 8-way (2 processor x 4 core) x86_64 Intel
Xeon System.

Figure taken from paper in review

Evaluation — Accuracy for performance

POISSON;(z, b)

I: either

2 Solve directly

3 lterate using SOR,,,,,, until accuracy p; is achieved

4 For some j, iterate with MULTIGRID; until accuracy p; is Accuracy

achieved o 1 2 3

5: end either o o |o “G CI
MULTTGRID; (z, b) °lo 1ol Plo|m _

1: if N = 3 then o o |° | B = :

2: Solve directly E °f o| ol™ g | I

3: else El ole u =2

4: Compute one iteration of SOR, 5 o u g’ i

5: Compute the residual and restrict to half resolution °lm =

6: On the coarser grid, call POISSON; o =

7: Interpolate result and add correction term to current solution : X

8: Compute one iteration of SOR 5 Accuracy 11 i tin

9: end if (a) (b)

Figure 10. Pseudo code for family of functions POISSON; and
MULTIGRID; where ¢ is the required accuracy, as used in the
benchmark.

UNIVERSITY OF

" CAMBRIDGE

PetaBricks Today

« 363 citations according to Google Scholar

« Experiments and benchmarked continued for 4 years looking into tuning
variables in algorithms, portability, and study the trade-offs between
accuracy and performance.

« Main author(during his PhD), Jason Ansel, Director of engineering at
GoDaddy since 2013

» GitHub repo, abandoned 6 years ago

* ldeas we can still use, with help of ML
» Auto tuning between accuracy and performance

« Auto tuning variables based on architecture

#f% UNIVERSITY OF

CAMBRIDGE

https://scholar.google.co.uk/scholar?hl=en&as_sdt=0,5&q=petabricks&btnG=
http://jasonansel.com/
https://github.com/petabricks/petabricks

Critique

The Good

The Bad

First language that explores
algorithmic choice with impressive
results

Slow compiling time — impractical
for software engineering tasks
(target success metric)

Ease of selecting the trade-off
between accuracy and performance

Complex code structure — harder to
adhoc debug

Portability across architectures and
future proof

#8z UNIVERSITY OF
“§> CAMBRIDGE

Principles of auto tuning using
simple parameter search might be
too slow

Comment — Working in a heterogenous environment

Changes are built
on a remote
SWE commits machine identical
changes to production in a
container, auto
tuner enabled

Produced binaries
makes it way
through the testing
pipeline until
production

Optimisation could be running a different algorithm choice on a different

machine, storing the metadata of binaries in a key-value store, and

binaries in a replicated store

Not every line of code has to be written in PetaBrick, just the lines that

require high performance — e.g. a simple microservice that has no
complex logic wouldn’t benefit from PetaBrick optimisation

ldeas for Future Work — GPUSs?

« Extract the idea of choice and analysis per hardware architecture.
* Analyse the benefit of running algorithms on GPUs

* GPUs have different memory constraint than what traditional algorithms
were designed for, auto tuning helps!

» Other work in this area already exist using ML for choosing GPU/CPU,
but no (afaik) work exist to choose algorithm and tune it

#f% UNIVERSITY OF

CAMBRIDGE

Questions?

MEMEBASE com

287 UNIVERSITY OF
»§» CAMBRIDGE

