
Petabricks: A language and compiler

for algorithmic choice

J. Ansel et al. ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI, 2009.

Sami (sa894) – R244 Large-Scale Data Processing and Optimisation, sess 6

Motivation – Many algorithms with various trade offs

MergeSort QuickSort InsertionSort RadixSort

Fast for medium

size input

Fastest for

medium size input

Fastest for small

input

Fastest for largest

input

Highly

parallelizable

Exploit spatial

locality

O(1) Memory O(wn) runtime

Sorting

• But gets more complicated!

• Mixing the algorithms yield better results

• e.g QuickSort then cut off to InsertionSort once list is small enough

• Requires knowing an optimal cut-off point!

• Differs from an architecture to an architecture

• Choices are left to the developer, complex, time-consuming, error prone

Hence the need for Autotuning

PetaBricks – A language and a compiler

• Self-tuning compiler for bespoke architecture

• A language that allow expressing choice in algorithms

• Implicitly parallelizable

• Auto-select the desired trade-off between accuracy and performance

Sample Code - Sorting

• Define multiple

functions

• Functions have tunable

variables

• PetaBricks choose

optimal combination

Code Taken from PetaBricks GitHub Repo

PetaBricks effect

• Source code is compiled into a binary

• The binary is auto-tuned on the architecture of the system

• The compiler produces a final binary contains the optimal configuration

Tuned variables - Sample

Code Taken from PetaBricks GitHub Repo

Sorting - Results

Figure taken from paper in review

PetaBricks Components Graph

Figure taken from paper in review

PetaBricks Internals – Source2Source Compiler

• Compiles from PetaBricks to C++

• Input parsed into syntax tree

• Construct a choice grid for matrix type

• Build a choice dependency graph

Compilation – Rolling Sum example

Figures taken from paper in review

Compilation – Applicable Region

Figures taken from paper in review

Compilation – Applicable Region

Figures taken from paper in review

Compilation - Choice Grid Analysis

Figures taken from paper in review

• Split the data into matrix (grids)

• Map data to rules

• E.g. [0, 1) = {rule 0} only

while [1, n) = {rule 0 or 1}

• Rule priority is applied here as well

Compilation - Choice Dependency Graph

Figures taken from paper in review

Code Generation

• Two modes

• Default – choices and autotuner information are embeded in the

output code

• Second mode – code generation with all choices eliminated based on

autotuner results

• Second mode is useful to produce an intermediate code for C++ to

compile – it is more efficient when choices are eleminated

Auto Tuning System

• Tuning is done by running search on the available configurations

• The available configuration is described using the choice dependency

graph

• Using bottom-up approach, works on smaller input and works it way up

to large input

Runtime library

• Dynamically schedule tasks to distribute workload

• When task reach tunable cut-off point they stop calling the scheduler

and execute sequentially

• Maximize locality using Cilk, task stealing protocol;

• Thread operates on top of its dequeue

• When it runs out of tasks

• Select a random victim to steal work from bottom of their dequeue

PetaBricks – Other features

• Calling external libraries and other languages

• Template Transformation – Similar to C++

• Rule priorities and where clauses to manual tune edge cases

• Deadlock and race conditions prevention using the dependency graph

• Automated Consistency Checking - advantage of choices, you can run

multiple versions and check their results for consistency

Evaluation - Performance

Figure taken from paper in review

Evaluation – Performance other algorithms

Figures taken from paper in review

Evaluation – Parallelism

Figure taken from paper in review

Evaluation – Accuracy for performance

PetaBricks Today

• 363 citations according to Google Scholar

• Experiments and benchmarked continued for 4 years looking into tuning

variables in algorithms, portability, and study the trade-offs between

accuracy and performance.

• Main author(during his PhD), Jason Ansel, Director of engineering at

GoDaddy since 2013

• GitHub repo, abandoned 6 years ago

• Ideas we can still use, with help of ML

• Auto tuning between accuracy and performance

• Auto tuning variables based on architecture

https://scholar.google.co.uk/scholar?hl=en&as_sdt=0,5&q=petabricks&btnG=
http://jasonansel.com/
https://github.com/petabricks/petabricks

Critique

The Good The Bad

First language that explores

algorithmic choice with impressive

results

Slow compiling time – impractical

for software engineering tasks

(target success metric)

Ease of selecting the trade-off

between accuracy and performance

Complex code structure – harder to

adhoc debug

Portability across architectures and

future proof

Principles of auto tuning using

simple parameter search might be

too slow

Comment – Working in a heterogenous environment

• Optimisation could be running a different algorithm choice on a different

machine, storing the metadata of binaries in a key-value store, and

binaries in a replicated store

• Not every line of code has to be written in PetaBrick, just the lines that

require high performance – e.g. a simple microservice that has no

complex logic wouldn’t benefit from PetaBrick optimisation

SWE commits
changes

Changes are built
on a remote

machine identical
to production in a
container, auto
tuner enabled

Produced binaries
makes it way

through the testing
pipeline until
production

Ideas for Future Work – GPUs?

• Extract the idea of choice and analysis per hardware architecture.

• Analyse the benefit of running algorithms on GPUs

• GPUs have different memory constraint than what traditional algorithms

were designed for, auto tuning helps!

• Other work in this area already exist using ML for choosing GPU/CPU,

but no (afaik) work exist to choose algorithm and tune it

Questions?

