R244 Michael Chi Ian Tang

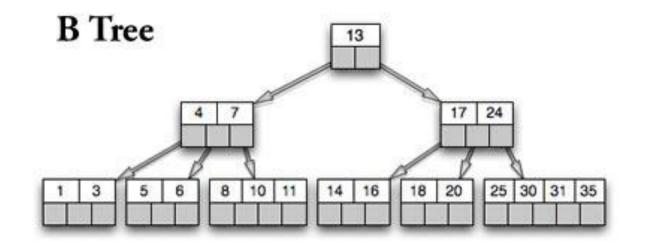
The Case for Learned Index Structures

Kraska, T., Beutel, A., Chi, E. H., Dean, J., & Polyzotis, N.

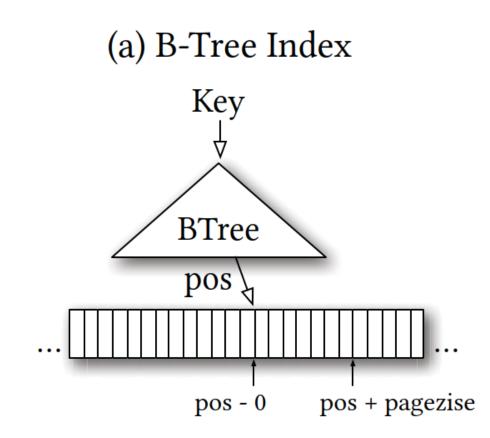
Background

Index Structures

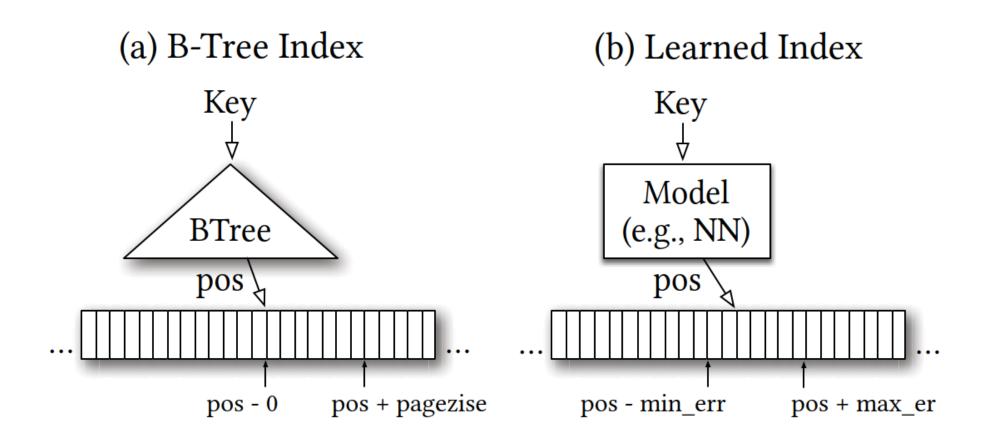
- Index structures are built for efficient data access
- E.g. B-Trees



Index Structures as Models

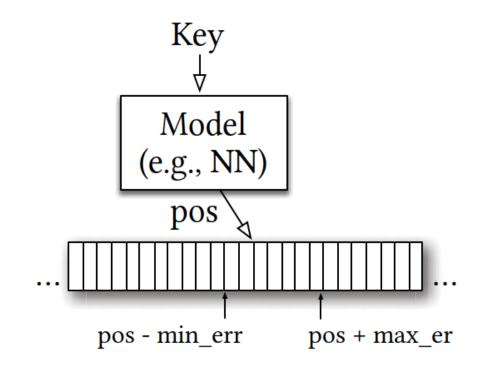


Index Structures as Models



Range Index

Range Index Models = CDF Models

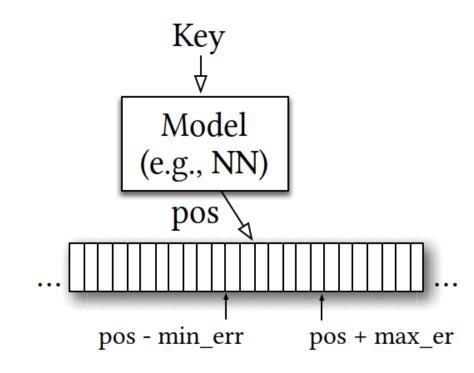


True position
$$p*$$

= $rank(key)$
= $|\{k|k \le key\}|$
= $P(X \le key) * N$

 $P(X \le key)$ is the CDF of keys

Range Index Models = CDF Models



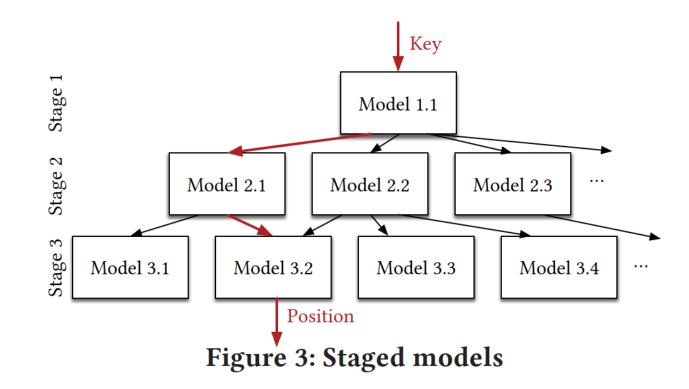
Model:

$$pos = F(key) * N \approx p^*$$

$$F(key) \approx P(X \le key)$$

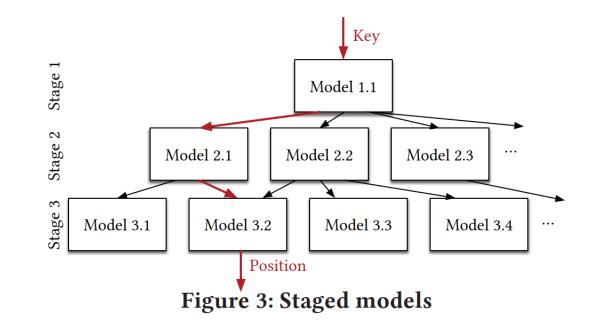
The Recursive Model Index (RMI)

- Prediction from previous stage chooses the next model
- Progressively refine the prediction



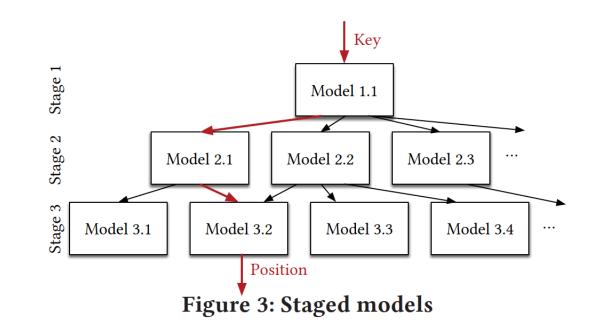
The Recursive Model Index

- Benefits
 - Decouple execution cost & model size
 - Notion of progressively learning the shape of CDF
 - Divide the space into smaller ranges, easier to refine the final prediction



The Recursive Model Index

- Worst case performance
 - If last stage models do not meet error requirement, replace by B-Trees
 - Have same worst case guarantee as B-Trees

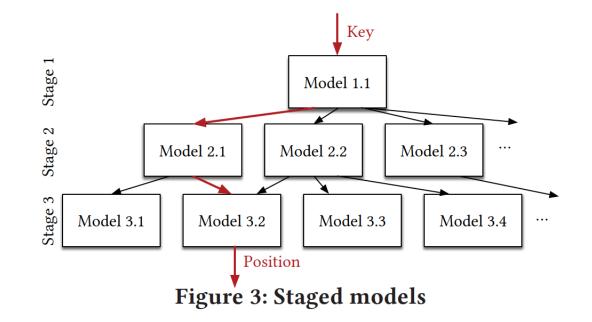


The Recursive Model Index - Training

• Loss defined as:

$$L = \sum_{(x,y)} (f(x) - y)^2$$

• Simple model trained in seconds, Neural Nets in minutes



Experiments

- Integer Datasets
 - Weblogs dataset contains 200M log entries
 - Maps dataset indexed the longitude of \approx 200M user-maintained features
 - Log-normal dataset synthesized by sampling 190M unique values
- Models
 - 2-stage RMI model having second-stage sizes (10k, 50k, 100k, and 200k)
 - Read-optimized B-Tree with different page sizes

Results

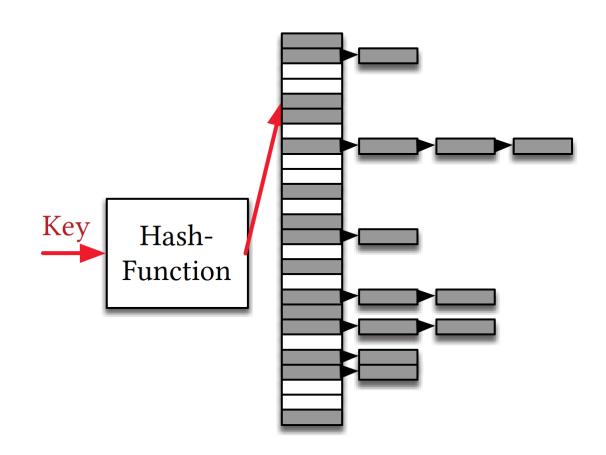
		Map Data			Web Data			Log-Normal Data		
Туре	Config	Size (MB)	Lookup (ns)	Model (ns)	Size (MB)	Lookup (ns)	Model (ns)	Size (MB)	Lookup (ns)	Model (ns)
Btree	page size: 32	52.45 (4.00x)	274 (0.97x)	198 (72.3%)	51.93 (4.00x)	276 (0.94x)	201 (72.7%)	49.83 (4.00x)	274 (0.96x)	198 (72.1%)
	page size: 64	26.23 (2.00x)	277 (0.96x)	172 (62.0%)	25.97 (2.00x)	274 (0.95x)	171 (62.4%)	24.92 (2.00x)	274 (0.96x)	169 (61.7%)
	page size: 128	13.11 (1.00x)	265 (1.00x)	134 (50.8%)	12.98 (1.00x)	260 (1.00x)	132 (50.8%)	12.46 (1.00x)	263 (1.00x)	131 (50.0%)
	page size: 256	6.56 (0.50x)	267 (0.99x)	114 (42.7%)	6.49 (0.50x)	266 (0.98x)	114 (42.9%)	6.23 (0.50x)	271 (0.97x)	117 (43.2%)
	page size: 512	3.28 (0.25x)	286 (0.93x)	101 (35.3%)	3.25 (0.25x)	291 (0.89x)	100 (34.3%)	3.11 (0.25x)	293 (0.90x)	101 (34.5%)
Learned	2nd stage models: 10k	0.15 (0.01x)	98 (2.70x)	31 (31.6%)	0.15 (0.01x)	222 (1.17x)	29 (13.1%)	0.15 (0.01x)	178 (1.47x)	26 (14.6%)
Index	2nd stage models: 50k	0.76 (0.06x)	85 (3.11x)	39 (45.9%)	0.76 (0.06x)	162 (1.60x)	36 (22.2%)	0.76 (0.06x)	162 (1.62x)	35 (21.6%)
	2nd stage models: 100k	1.53 (0.12x)	82 (3.21x)	41 (50.2%)	1.53 (0.12x)	144 (1.81x)	39 (26.9%)	1.53 (0.12x)	152 (1.73x)	36 (23.7%)
	2nd stage models: 200k	3.05 (0.23x)	86 (3.08x)	50 (58.1%)	3.05 (0.24x)	126 (2.07x)	41 (32.5%)	3.05 (0.24x)	146 (1.79x)	40 (27.6%)

Figure 4: Learned Index vs B-Tree

Point Index

Point Index

- Example: hash-map
- Deterministically map keys to positions inside an array

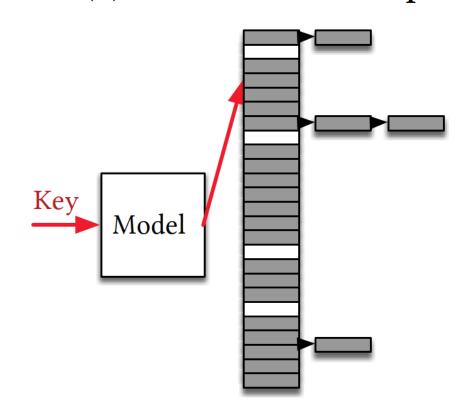


The Hash-Model Index

• Build a hash function based on the CDF of the data (*M* is size of hash-map):

$$h(key) = F(key) * M$$

$$F(key) \approx P(X \le key)$$



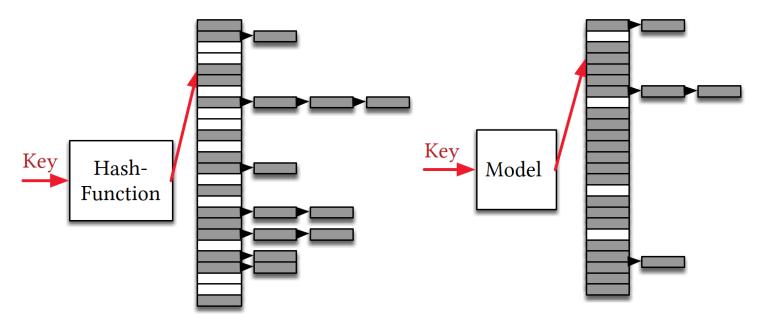
(b) Learned Hash-Map

The Hash-Model Index

- Main objective is to reduce number of conflicts
 - Conflicts could induce high cost depending on architecture (e.g. distributed)

(a) Traditional Hash-Map

(b) Learned Hash-Map



Experiments

- Learned models with same settings as in range index
- Compared against MurmurHash3-like hash-function

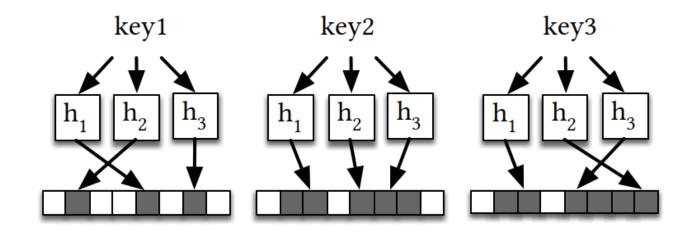
	% Conflicts Hash Map	% Conflicts Model	Reduction
Map Data	35.3%	07.9%	77.5%
Web Data	35.3%	24.7%	30.0%
Log Normal	35.4%	25.9%	26.7%

Figure 8: Reduction of Conflicts

Existence Index

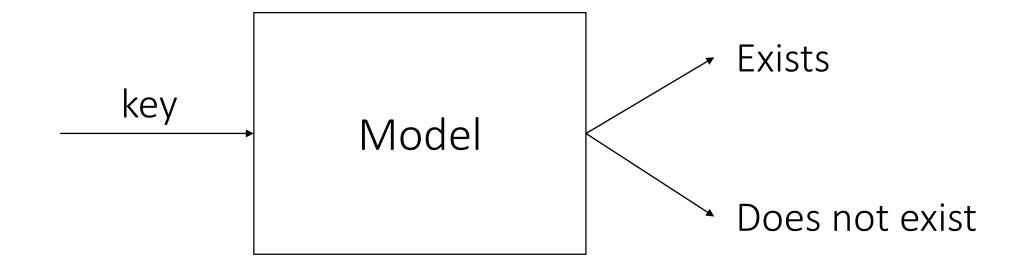
Existence Index

- Example: Bloom filters
- Return whether a key exists in a dataset
- <u>No false negatives</u>, but has <u>potential false positives</u>



Bloom filters as a Classification Problem

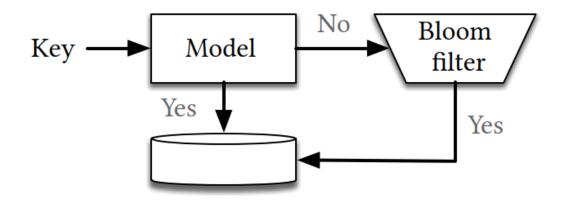
• Binary probabilistic classification task: Whether key exists in dataset



Bloom filters as a Classification Problem

- Guarantee for no false negative
- Overflow bloom filter: remember false negatives from models

(c) Bloom filters as a classification problem



Experiments

- Data
 - 1.7M blacklisted phishing URLs
 - Negative set: random URLs + whitelisted URLs
- Comparison
 - Learned filter: RNN with GRU
 - Normal Bloom filter

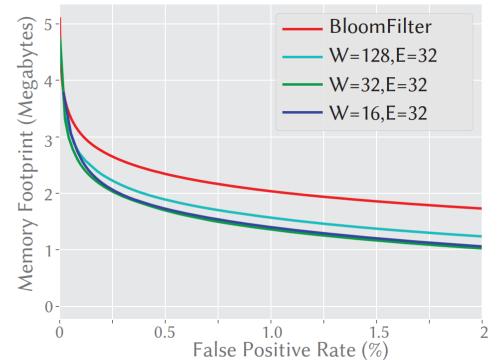


Figure 10: Learned Bloom filter improves memory footprint at a wide range of FPRs. (Here *W* is the RNN width and *E* is the embedding size for each character.)

Critique

- 1. Proposed the idea of applying machine learning in index structures
- Solutions to offering guarantees on performance, determinism with ML models
- 3. Showed significant performance improvements (time and space)
- 4. Inspired new research direction (27 citations since June 2018)

Criticism

- 1. Detail of platform used for experiments not given
- 2. Little discussion on training time
- 3. Experiments on CPU only

Conclusion & Future Direction

- Proposed a new direction in database research that
 - Makes effective use of machine learning methods
 - Shows promising preliminary results
 - Inspired new research work
- Requires more details on performance evaluation

• Potentials in learned algorithms, multi-dimensional indexes