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Increased CPU and memory capabilities of modern devices enables 
processing to occur without offloading to the cloud
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Requirements of an Edge Deployment Model

Requirement Frontier’s Solution

Continuously process streaming data Move computation to edge devices

Data-parallel processing Replicate data operators

Adapt to changing network conditions Backpressure Stream Routing (BSR)

Recover from transient network failures Selective Network Aware rePlay (SNAP)
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Stream Query Computational Model

Queries can be represented by a directed graph where vertices are 
operations and edges are streams
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Frontier’s Replicated Dataflow Graph

Each replica can be placed on a different edge device to enable better 
data parallelism

6

Osource Osink

O2

O1,1

O1,0

O1

O2,1

O2,0



Properties of Stream Query Routing

1. Window-Based: Operators may act on windows of streams

2. Out-of-order: Processing must be able to cope with out-of-order 
delivery to maintain high throughput

3. Multi-Input: Operators may accept multiple input streams, so 
windows from input streams must be sent to same replica

4. Batched Windows: Stream windows may be batched to reduce 
network communication
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Backpressure Stream Routing

Backpressure routing enables adaptability to network conditions
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oi
Outgoing Queue

Queue Rate: qi

dj

Processing Rate: pj

Network Link

Network Rate: rij

Outgoing Queue

Queue Rate: qj

Weight of link is wij = max(0, (qi - qj) x rij x pj)

Downstream replica with highest weight is chosen



Backpressure Stream Routing

To coordinate windows for multi-input operators, routing is based on 
aggregate weights over all destination replicas
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Routing constraints are used to handle out of order arrival



Selective Network-Aware Replay (SNAP)
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Batches are buffered by senders and re-sent upon discovery of a single 
failed node

Osrc

O1,0

O1,1

O2,0

O2,1

Osnk

b1

b2

O1 O2

Diagram from [4]



Selective Network-Aware Replay (SNAP)
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Batches are buffered by senders and re-sent upon discovery of a single 
failed node
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Selective Network-Aware Replay (SNAP)
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Heartbeat messages indicate which batches have been sent 
downstream, batches not replayed if heartbeats continue to be sent
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Experimental Setup

• Experiments run on a wireless network of 
Raspberry Pi’s

• Two different networks created: high and low 
diversity

• CORE/EMANE [3] wireless network emulator 
also used

• Three different queries: Distributed Face 
Recognition, Video Correlation, Heatmap of 
Users in Area
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High-diversity Mesh Network



Experiments: Throughput
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Varying Replication Factor BSR Compared to Baselines

Varying Replication Factor and Batch Size BSR Path Diversity with Different Replication



Experiments: Latency

15

Latency with Varying Replication Factor 
(Error bars show 5/25/50/75/95 percentiles)

Latency of BSR Compared to Baselines



Experiments: Recovering from Failure

Distributed Face Recognition
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Video Correlation Heatmap

Larger replication factors generally lead to higher throughput in the face 
of failure



Experiments: Frontier vs. Apache Flink

Frontier vs Flink [1] and Round Robin on Face Recognition Query
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Frontier generally exhibits a higher throughput than that of other 
stream processing systems



Critique

• Method of computing aggregate BSR weights is never explained

• Experimentation is robust but minimal comparison of Frontier to other 
platforms

• Possible area of future work: making BSR predictive of network 
conditions could ease tension between using larger batches and 
updating network parameters
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Related Work
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Platform Name Description How Frontier is Different

Spark Streaming [7] 
Cluster-based, structures computation 
as stateless batch computations

Spark Streaming assumes wired 
connections between nodes

SBON [5]
Manages operator placement to 
efficiently use network resources

SBON does not replicate 
operators and use backpressure 
to load balance on these replicas

CSA [6]
Stream processing for IoT systems which 
relies on single nodes on network edge

CSA does not distribute 
computation across devices



Conclusion

• Frontier is a stream evaluation platform which performs computation 
on edge devices

• Achieves data-level parallelism by replicating operators and 
distributing execution across devices

• Uses network-aware routing to efficiently use resources in wireless 
settings

• Recovers from transient errors without causing network congestion
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