
Frontier: Resilient 
Edge Processing for 
the Internet of 
Things
Dan O’Keeffe, Theodoros Salonidis, and Peter 
Pietzuch

Presented by Tejas Kannan, 31/10/2018



Motivation

2

Edge 
Device

Edge 
Device

Edge 
Device

IoT systems often offload stream computation to the cloud 

M
ea

su
re

m
en

t 
D

at
a



Motivation

3

Edge 
Device

Edge 
Device

Edge 
Device

Increased CPU and memory capabilities of modern devices enables 
processing to occur without offloading to the cloud

M
ea

su
re

m
en

t 
D

at
a



Requirements of an Edge Deployment Model

Requirement Frontier’s Solution

Continuously process streaming data Move computation to edge devices

Data-parallel processing Replicate data operators

Adapt to changing network conditions Backpressure Stream Routing (BSR)

Recover from transient network failures Selective Network Aware rePlay (SNAP)

4



Stream Query Computational Model

Queries can be represented by a directed graph where vertices are 
operations and edges are streams

5

Osource O1 O2 Osink

S1 S3S2



Frontier’s Replicated Dataflow Graph

Each replica can be placed on a different edge device to enable better 
data parallelism

6

Osource Osink

O2

O1,1

O1,0

O1

O2,1

O2,0



Properties of Stream Query Routing

1. Window-Based: Operators may act on windows of streams

2. Out-of-order: Processing must be able to cope with out-of-order 
delivery to maintain high throughput

3. Multi-Input: Operators may accept multiple input streams, so 
windows from input streams must be sent to same replica

4. Batched Windows: Stream windows may be batched to reduce 
network communication

7



Backpressure Stream Routing

Backpressure routing enables adaptability to network conditions

8

oi
Outgoing Queue

Queue Rate: qi

dj

Processing Rate: pj

Network Link

Network Rate: rij

Outgoing Queue

Queue Rate: qj

Weight of link is wij = max(0, (qi - qj) x rij x pj)

Downstream replica with highest weight is chosen



Backpressure Stream Routing

To coordinate windows for multi-input operators, routing is based on 
aggregate weights over all destination replicas

9

Osrc,1

Osrc,0

Osrc

O1,1

O1,0

O1
wagg[O1,0] > wagg[O1,1] 

Routing constraints are used to handle out of order arrival



Selective Network-Aware Replay (SNAP)

10

Batches are buffered by senders and re-sent upon discovery of a single 
failed node

Osrc

O1,0

O1,1

O2,0

O2,1

Osnk

b1

b2

O1 O2

Diagram from [4]



Selective Network-Aware Replay (SNAP)

11

Batches are buffered by senders and re-sent upon discovery of a single 
failed node

Osrc

O1,0

O1,1

O2,0

O2,1

Osnk

b1

b2

O1 O2
b1

Diagram from [4]



Selective Network-Aware Replay (SNAP)

12

Heartbeat messages indicate which batches have been sent 
downstream, batches not replayed if heartbeats continue to be sent

Osrc

O1,0

O1,1

O2,0

O2,1

Osnk

b2

O1 O2
b1b1

Diagram from [4]



Experimental Setup

• Experiments run on a wireless network of 
Raspberry Pi’s

• Two different networks created: high and low 
diversity

• CORE/EMANE [3] wireless network emulator 
also used

• Three different queries: Distributed Face 
Recognition, Video Correlation, Heatmap of 
Users in Area

13

High-diversity Mesh Network



Experiments: Throughput

14

Varying Replication Factor BSR Compared to Baselines

Varying Replication Factor and Batch Size BSR Path Diversity with Different Replication



Experiments: Latency

15

Latency with Varying Replication Factor 
(Error bars show 5/25/50/75/95 percentiles)

Latency of BSR Compared to Baselines



Experiments: Recovering from Failure

Distributed Face Recognition

16

Video Correlation Heatmap

Larger replication factors generally lead to higher throughput in the face 
of failure



Experiments: Frontier vs. Apache Flink

Frontier vs Flink [1] and Round Robin on Face Recognition Query
17

Frontier generally exhibits a higher throughput than that of other 
stream processing systems



Critique

• Method of computing aggregate BSR weights is never explained

• Experimentation is robust but minimal comparison of Frontier to other 
platforms

• Possible area of future work: making BSR predictive of network 
conditions could ease tension between using larger batches and 
updating network parameters

18



Related Work

19

Platform Name Description How Frontier is Different

Spark Streaming [7] 
Cluster-based, structures computation 
as stateless batch computations

Spark Streaming assumes wired 
connections between nodes

SBON [5]
Manages operator placement to 
efficiently use network resources

SBON does not replicate 
operators and use backpressure 
to load balance on these replicas

CSA [6]
Stream processing for IoT systems which 
relies on single nodes on network edge

CSA does not distribute 
computation across devices



Conclusion

• Frontier is a stream evaluation platform which performs computation 
on edge devices

• Achieves data-level parallelism by replicating operators and 
distributing execution across devices

• Uses network-aware routing to efficiently use resources in wireless 
settings

• Recovers from transient errors without causing network congestion

20



References

[1]  Apache flink. https://flink.apache.org/.

[2]  Apache storm. https://storm.apache.org/.

[3]  Jeff Ahrenholz.  Comparison of core network emulation platforms. In Military Communications 
Conference, 2010-MILCOM 2010, pages 166–171. IEEE, 2010.

[4]  Dan  O’Keeffe,  Theodoros  Salonidis,  and  Peter  Pietzuch. Frontier: resilient edge processing for 
the internet of things. Proceedings of the VLDB Endowment, 11(10):1178–1191, 2018.

[5]  Peter  Pietzuch,  Jonathan  Ledlie,  Jeffrey  Shneidman,  Mema Roussopoulos,  Matt Welsh, and 
Margo Seltzer. Network-aware operator placement for stream-processing systems.  In Data 
Engineering, 2006. ICDE’06. IEEE, 2006.

[6]  Zhitao Shen, Vikram Kumaran, Michael J Franklin, Sailesh Krishnamurthy, Amit Bhat, Madhu 
Kumar,Robert Lerche, and Kim Macpherson. Csa: Streaming engine for internet of things. IEEE Data 
Eng.Bull., 38(4):39–50, 2015.

[7]  Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion Stoica. 
Discretized streams: Fault-tolerant  streaming  computation  at  scale.  In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, pages 423–438. ACM, 2013.

21


