# X-Stream: Edge-centric Graph Processing using Streaming Partitions

AMITABHA ROY, IVO MIHAILOVIC, WILLY ZWAENEPOEL

PRESENTED BY: MAREK STRELEC

#### Motivation

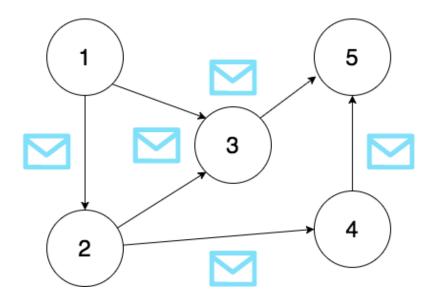
□ Large graphs – billions of vertices and edges

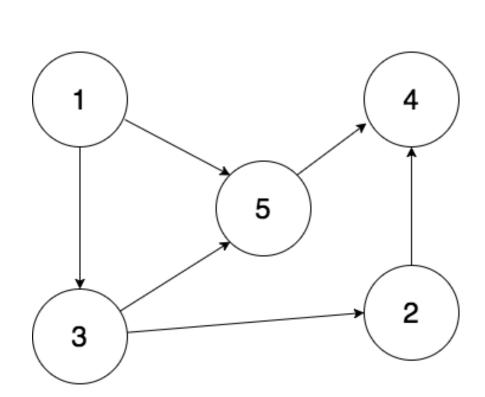
Process on large clusters

- Pregel, GraphLab, PowerGraph, Niad
- Complexity and cost

Process on a single machine

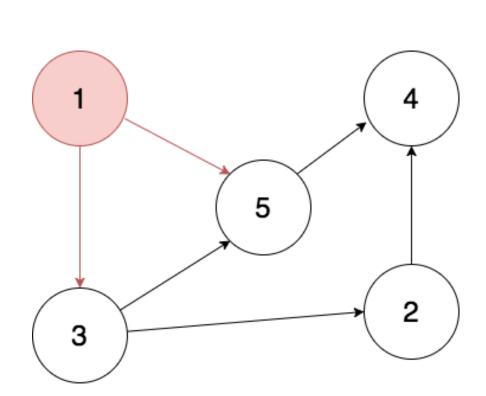
GraphChi, X-Stream


G4 GB RAM, 32 cores, 2 x 200 GB SSD, 3 x 3TB drive


#### Vertex-centric processing model

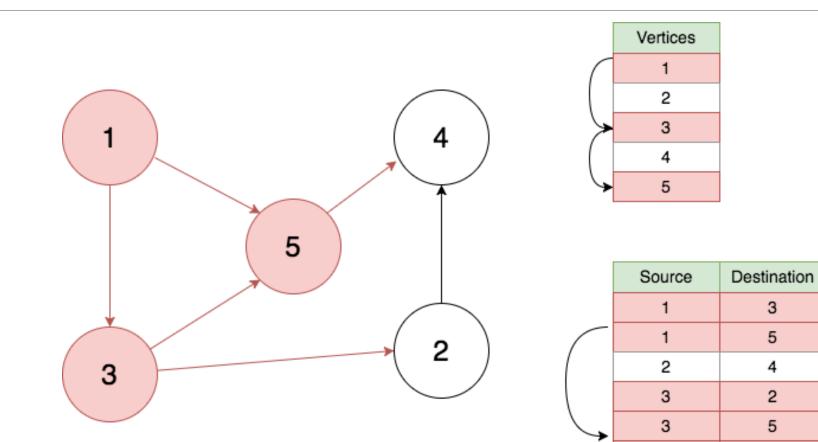
#### "Think like a vertex"

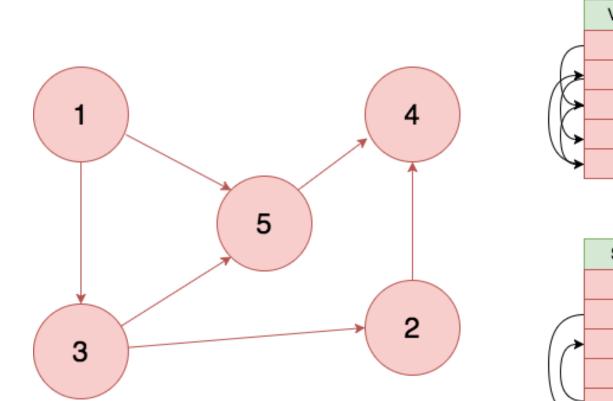
Popularized by the Pregel and GraphLab projects


- Mutable states stored in vertices
- Scatter-Gather model
  - Scatter updates along outgoing edges
  - Gather updates from incoming edges






| Vertices |
|----------|
| 1        |
| 2        |
| 3        |
| 4        |
| 5        |


| Source | Destination |
|--------|-------------|
| 1      | 3           |
| 1      | 5           |
| 2      | 4           |
| 3      | 2           |
| 3      | 5           |
| 5      | 4           |



| Vertices |
|----------|
| 1        |
| 2        |
| 3        |
| 4        |
| 5        |

| Source | Destination |
|--------|-------------|
| 1      | 3           |
| 1      | 5           |
| 2      | 4           |
| 3      | 2           |
| 3      | 5           |
| 5      | 4           |





|                   | Vertices |
|-------------------|----------|
|                   | 1        |
| Þ                 | 2        |
| $(\triangleright$ | 3        |
|                   | 4        |
| 4                 | 5        |

|   | Source | Destination |
|---|--------|-------------|
|   | 1      | 3           |
|   | 1      | 5           |
|   | 2      | 4           |
|   | 3      | 2           |
| Ç | 3      | 5           |
|   | 5      | 4           |

#### Sequential vs. Random access

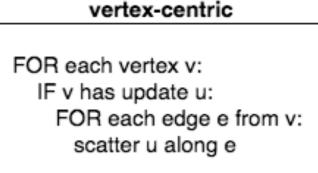
Graph traversal = Random access

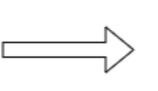
□ For all storage media (RAM, SSD, and HDD)

Sequential bandwidth >> random access bandwidth

HDD - 300x higher

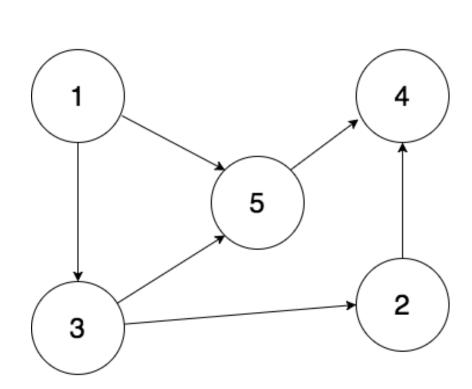
- SSD 30x higher
- RAM (1 core) 4.6x higher


RAM (16 cores) - 1.8x higher


# X-stream processing model: Edge-centric

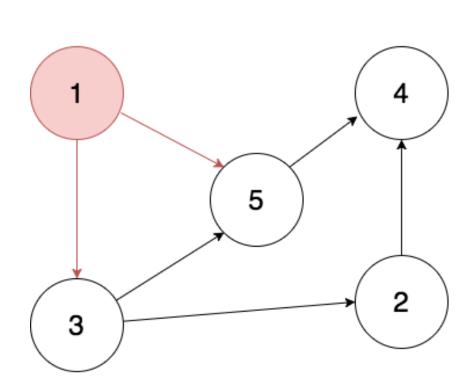
Input to X-stream is an unordered set of directed edges
For undirected graphs - pair of directed edges

Scatter and Gather phases iterate over <del>vertices</del> edges


□ X-stream makes graph access sequential

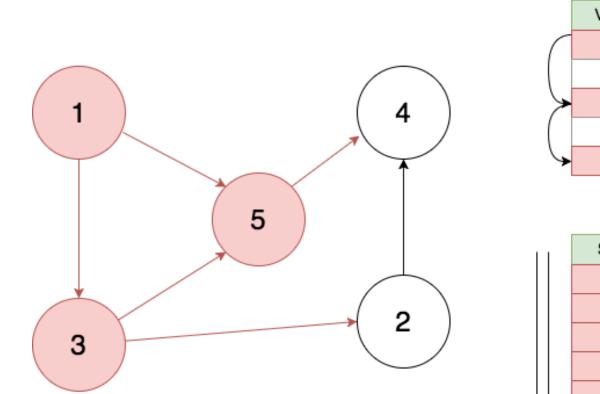


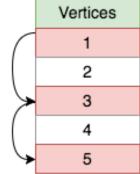



edge-centric

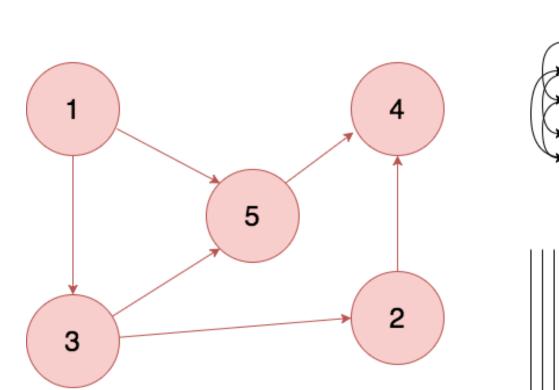
FOR each edge e: IF e.from has update u: scatter u along e




| Vertices |
|----------|
| 1        |
| 2        |
| 3        |
| 4        |
| 5        |


| Source | Destination |
|--------|-------------|
| 1      | 3           |
| 1      | 5           |
| 2      | 4           |
| 3      | 2           |
| 3      | 5           |
| 5      | 4           |




| Vertices |
|----------|
| 1        |
| 2        |
| 3        |
| 4        |
| 5        |

| 1 | Source | Destination |
|---|--------|-------------|
|   | 1      | 3           |
|   | 1      | 5           |
|   | 2      | 4           |
|   | 3      | 2           |
|   | 3      | 5           |
|   | 5      | 4           |





|    | Source | Destination |
|----|--------|-------------|
|    | 1      | 3           |
|    | 1      | 5           |
|    | 2      | 4           |
|    | 3      | 2           |
|    | 3      | 5           |
| •• | 5      | 4           |



|                   | Vertices |
|-------------------|----------|
| $\sim$            | 1        |
| Þ                 | 2        |
| $(\triangleright$ | 3        |
|                   | 4        |
| 4                 | 5        |

| 111 | Source | Destination |
|-----|--------|-------------|
|     | 1      | 3           |
|     | 1      | 5           |
|     | 2      | 4           |
|     | 3      | 2           |
|     | 3      | 5           |
| ↓↓↓ | 5      | 4           |

## Edge-centric properties

Many sequential scans of the edge list

□ The order of edges is irrelevant

Tradeoff

- Sequential access is faster
- □ More Scatter/Gather iterations

□ The number of iterations might be fever if the edge set >> vertex set

Problem: still have random access to vertex set

### Streaming partitions

Partition the graph into streaming partitions

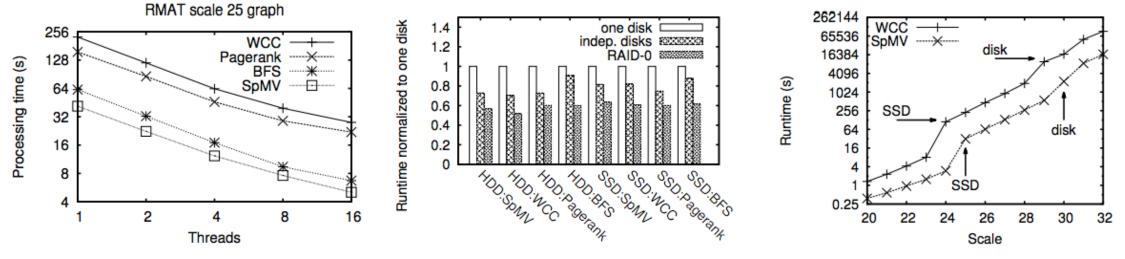
vertex set: a subset of vertices that fit into RAM

□ edge list: all edges whose source vertex is in the partition's vertex set

update list: all updates whose destination vertex is in the partition's vertex set

□ Streaming partitions can be processed in parallel

□ Vertices (random access) => fast storage, Edges (sequential access) => slow storage


□ The number of partitions is crucial for performance

Shuffle phase - updates must be re-arranged after the scatter phase

### Scalability

#### Increasing thread count

- □ Increasing number of I/O devices
- Across devices



Traversal algorithms – BFS, WCC Multiplication algorithms – PageRank, SpMW

# Comparison with Other Systems: Ligra

#### Ligra

In-memory graph processing system

Requires pre-processing

| Threads  | Ligra (s) | X-Stream (s) | Ligra-pre (s) |  |  |  |  |
|----------|-----------|--------------|---------------|--|--|--|--|
| BFS      |           |              |               |  |  |  |  |
| 1        | 11.10     | 168.50       | 1250.00       |  |  |  |  |
| 2        | 5.59      | 86.97        | 647.00        |  |  |  |  |
| 4        | 2.83      | 45.12        | 352.00        |  |  |  |  |
| 8        | 1.48      | 26.68        | 209.40        |  |  |  |  |
| 16       | 0.85      | 18.48        | 157.20        |  |  |  |  |
| Pagerank |           |              |               |  |  |  |  |
| 1        | 990.20    | 455.06       | 1264.00       |  |  |  |  |
| 2        | 510.60    | 241.56       | 654.00        |  |  |  |  |
| 4        | 269.60    | 129.72       | 355.00        |  |  |  |  |
| 8        | 145.40    | 83.42        | 211.40        |  |  |  |  |
| 16       | 79.24     | 50.06        | 160.20        |  |  |  |  |

# Comparison with Other Systems: GraphChi

#### GraphChi

Traditional vertex-centric approach

Out-of-core data structure, parallel sliding windows, to reduce the amount of random access to disk

needs time to pre-sort the graph into shards

|                      | Pre-Sort (s)        | Runtime (s)          | Re-sort (s) | System        | Graphchi (shard)              | Graphchi (run)        | X-Stream               |  |
|----------------------|---------------------|----------------------|-------------|---------------|-------------------------------|-----------------------|------------------------|--|
| Twitter pagerank     |                     |                      |             | System        | /                             |                       | A-Sucan                |  |
| X-Stream (1)         | none                | $397.57 \pm 1.83$    | -           |               | LABOS                         |                       |                        |  |
| Graphchi (32)        | $752.32 \pm 9.07$   | $1175.12 \pm 25.62$  | 969.99      | Intel SSDs    | $486 \pm 6.762$               | $908.966 \pm 16.667$  | $417.213 \pm 3.037$    |  |
| Netflix ALS          |                     |                      |             | Disk          | $591.848 \pm 19.885$          | $1507 \pm 13.656$     | $616.795 \pm 2.271$    |  |
| X-Stream (1)         | none                | $76.74 \pm 0.16$     | -           | Cambridge     |                               |                       |                        |  |
| Graphchi (14)        | $123.73 \pm 4.06$   | $138.68 \pm 26.13$   | 45.02       |               |                               |                       |                        |  |
| RMAT27 WCC           |                     |                      |             | Samsung 840   | $389.569 \pm 41.879$          | $943.246 \pm 19.754$  | $588.613 \pm 5.259$    |  |
| X-Stream (1)         | none                | $867.59 \pm 2.35$    | -           | 2xSamsung 840 | $375.729 \pm 35.975$          | $811.359 \pm 23.706$  | $443.396 \pm 40.446$   |  |
| Graphchi (24)        | $2149.38 \pm 41.35$ | $2823.99 \pm 704.99$ | 1727.01     | OCZ Vertex    | $423.104 \pm 5.218$           | $1079.138 \pm 20.600$ | $843.023 \pm 276.625$  |  |
| Twitter belief prop. |                     |                      |             | Disk          | $590.584 \pm 55.165$          | $1879 \pm 93.368$     | $1613.174 \pm 106.151$ |  |
| X-Stream (1)         | none                | $2665.64 \pm 6.90$   | -           |               |                               |                       |                        |  |
| Graphchi (17)        | $742.42 \pm 13.50$  | $4589.52 \pm 322.28$ | 1717.50     |               | Table 2: Results for pagerank |                       |                        |  |

Table 2: Results for pagerank

#### Criticism

Assumes that the number of edges is larger than the number of vertices

Performs well only on graphs with a low diameter

Workload imbalance as the partitions can have different numbers of edges assigned to them
Is work stealing sufficient?

# Thank you!

