
X-Stream:	Edge-centric	Graph	
Processing	using	Streaming	
Partitions
AMITABHA ROY,	IVO	MIHAILOVIC,	WILLY	ZWAENEPOEL

PRESENTED	BY:	MAREK	STRELEC



Motivation
q Large	graphs	– billions	of	vertices	and	edges	

q Process	on	large	clusters
q Pregel,	GraphLab,	PowerGraph,	Niad
q Complexity	and	cost

q Process	on	a	single	machine
q GraphChi,	X-Stream

q 64	GB	RAM,	32	cores,	2	x	200	GB	SSD,	3	x	3TB	drive



Vertex-centric	processing	model
q “Think	like	a	vertex”

q Popularized	by	the	Pregel and	GraphLab projects

qMutable	states	stored	in	vertices

q Scatter-Gather	model
q Scatter	updates	along	outgoing	edges
q Gather	updates	from	incoming	edges



Vertex-centric	BFS



Vertex-centric	BFS



Vertex-centric	BFS



Vertex-centric	BFS



Sequential	vs.	Random	access
q Graph	traversal	=	Random	access

q For	all	storage	media	(RAM,	SSD,	and	HDD)	
q Sequential	bandwidth	>>	random	access	bandwidth
q HDD	- 300x	higher
q SSD	- 30x	higher
q RAM	(1	core)	- 4.6x	higher
q RAM	(16	cores)	- 1.8x	higher



X-stream	processing	model:
Edge-centric
q Input	to	X-stream	is	an	unordered	set	of	directed	edges
q For	undirected	graphs	- pair	of	directed	edges

q Scatter	and	Gather	phases	iterate	over	vertices edges

q X-stream	makes	graph	access	sequential



Edge-centric	BFS



Edge-centric	BFS



Edge-centric	BFS



Edge-centric	BFS



Edge-centric	properties
qMany	sequential	scans	of	the	edge	list

q The	order	of	edges	is	irrelevant

q Tradeoff
q Sequential	access	is	faster
qMore	Scatter/Gather	iterations

q The	number	of	iterations	might	be	fever	if	the	edge	set	>>	vertex	set

q Problem:	still	have	random	access	to	vertex	set



Streaming	partitions
q Partition	the	graph	into	streaming	partitions
q vertex	set:	a	subset	of	vertices	that	fit	into	RAM
q edge	list:	all	edges	whose	source	vertex	is	in	the	partition’s	vertex	set
q update	list:	all	updates	whose	destination	vertex	is	in	the	partition’s	vertex	set

q Streaming	partitions	can	be	processed	in	parallel

q Vertices	(random	access)	=>	fast	storage,	Edges	(sequential	access)	=>	slow	storage

q The	number	of	partitions	is	crucial	for	performance

q Shuffle	phase	- updates	must	be	re-arranged	after	the	scatter	phase



Scalability

Traversal	algorithms	– BFS,	WCC
Multiplication	algorithms	– PageRank,	SpMW

q Increasing	thread	count

q Increasing	number	of	I/O	devices

q Across	devices	



Comparison	with	Other	Systems:	Ligra
q Ligra
q In-memory	graph	processing	system
q Requires	pre-processing



Comparison	with	Other	Systems:	GraphChi
q GraphChi
q Traditional	vertex-centric	approach
q Out-of-core	data	structure,	parallel	sliding	windows,	to	reduce	the	amount	of	random	access	to	disk
q needs	time	to	pre-sort	the	graph	into	shards



Criticism
q Assumes	that	the	number	of	edges	is	larger	than	the	number	of	vertices

q Performs	well	only	on	graphs	with	a	low	diameter

qWorkload	imbalance	as	the	partitions	can	have	different	numbers	of	edges	assigned	to	them
q Is	work	stealing	sufficient?



Thank	you!


