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Efficient Large-Scale Graph Processing on Hybrid 

CPU and GPU Systems – The paper in a nutshell

• Built a processing engine – Totem, that provides a framework to 

implement graph algorithms on hybrid platform.

• Demonstrated various partitioning strategy to optimize graph problems 

on parallel systems. 

• Benchmarked and evaluated the system to demonstrate a hybrid 

system can offer x2 on Graph500 challenge.

• At the time of publish, it was the only that did CPU processing with GPU 

offloading. Closet to it work [HONG 2011] did CPU first round then 

GPU, memory is an issue there.



Graph Processing - Motivation



Graph Processing – Challenges

• Irregular and data dependent memory access pattern – poor locality

• Data-dependent memory access patterns – process parents before 

children

• Low compute to memory access ratio – updating and fetch state of 

vertices major overhead

• Large memory footprint – Requires a whole graph to be present in 

memory

• Heterogenous node degree distribution – difficult to parallelize

• Beginning of BFS one vertex, middle of it many vertex to 

parallelize, end one vertex 



Hybrid system – processing on CPU and GPU

CPU
Graph Challenge CPU’s Answer

Large memory 

footprint

Have a large 

memory capacity

Data-dependent 

memory access 
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memory access
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GPU
Graph Challenge GPU’s Answer

Large memory 

footprint
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many threads to 
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block



Hybrid system – processing on CPU and GPU



The Internals of Totems – Computation Model

• Bulk Synchronous Parallel (BSP) computation model. Where 

computations happen in rounds (supsersteps) in three phases:

1. Computation phase: Totem assign partitions of the graphs to 

processes and they execute asynchronously.

2. Communication phase: each process (remote vertices) exchange 

messages.

3. Synchronization phase: Guarantees the delivery of messages and 

performed as part of the communication phase

4. Termination: Partitions vote to terminate execution using a callback



Bulk Synchronous Parallel Compute Model (BSP)



Internal of Totem – Graph Representation

• Graph partitions are represented as Compressed Sparse Rows (CSR) 

in memory [Barrett  et  al.  1994], a space-efficient  graph  

representation that uses O(|V| + |E|) space.

• Each vertex access its edge using its vertex id to find neighboring 

edges

• Edges stores the partition id

• Improves communication between

Edges and partition

• Improves data locality

• Allows storing varying number of 

edges on CPU and GPUs



Totem – API Abstraction

Inspired by success of Pregel.

Allows user to define the function to 

run simultaneously on each partition.

Totem will take care of BSP and 

spreading workload on CPU and 

GPU.

Allows defining an aggregation 

function (similar to combiners in 

MapReduce)



Evaluation Platform

Characteristic Sandy-Bridge 

(Xeon 2650) (x2)

Kelper Titan (x2)

Number of processors 2 2

Cores / Proc 8 14

Core frequency (MHz) 2000 800

Hardware Threads / Core 2 192

Hardware Thread / Proc 16 2688

Last Level Cache (MB) 20 2

Memory / Proc (GB) 128 6

Mem. Bandwidth / Proc 

(GB/s)

52 288



Evaluation workload – Graph500

Workload |V| |E|

Twitter [Cha et al. 2010] 52M 1.9B 

UK-Web [Boldi et al. 2008] 105M 3.7B 

RMAT27 128M

2.0B

RMAT28 256M 4.0B

RMAT29 512M 8.0B

RMAT30 1,024M 16.0B 



Partitioning – Assignment strategies

System \

Strategy

HIGH LOW RAND

CPU Highest degree 

vertices

Lowest degree 

vertices

Random

GPU Lowest degree 

vertices

Highest degree 

vertices

Random

* Partitioning isn’t to reduce communication, aggregation is used to reduce 

communication



Evaluation (Low compute) – Breadth First Search

• Traversal algorithm with 

little computation per 

vertex

• Bitmap optimisation 

helps improve cache 

utilization



Observation – CPU is the bottleneck

• GPU has higher 

processing rate

• Communication 

overhead is negligible 

compared to 

computation 



Evaluation (High compute) – PageRank

• No summary table 

(BitMap), therefore 

cache isn’t utilized as 

much.

• Higher compute-to-

memory access



PageRank – Breakdown execution

• Still the computation of 

CPU is the bottleneck!



PageRank - But why High is performing better?

• Number of memory 

read is proportional to 

number of edges in 

graph 

• Number of writes is 

proportional to number 

of vertices (high less 

vertices)



Betweenness Centrality (BC) – Complex & high compute

• Backward & Forward BFS.

• Expensive operation 

proportional to edges and 

vertices

• Performs more on edges 

than vertices than 

PageRank



More CPU? More GPU? Speedup Comparison!



Side Effects – Power Consumption

• Follow up research was done to investigate power consumption in 

[Gharaibeh et al. 2013b] .

• Concerns about high energy consumption were rejected with detailed 

discussion and evaluation were presented in that paper.

• GPUs in idle state are power-efficient.

• GPUs finishes much faster than CPU, therefore they reach the idle state 

faster. (known as ‘race-to-idle’)



Totem Today

• GitHub repository last active in 2015.

• Follow-up research shows efficient energy consumption [1].

• In [2], Offers numerous optimization technique for BFS problem making 

hybrid system attractive for large scale graph processing.

• New benchmarks were published no a newer system that still shows the 

linear speedup [Y GAU 2015][X PAN 2016]

[1] The Energy Case for Graph Processing on Hybrid CPU and GPU Systems, Abdullah Gharaibeh, Elizeu Santos-Neto, 

Lauro Beltrão Costa, Matei Ripeanu

[2] Accelerating Direction-Optimized Breadth First Search on Hybrid Architectures, Scott Sallinen, Abdullah Gharaibeh, 

Matei Ripeanu, 13th International Workshop on Algorithms, Models and Tools for Parallel Computing on Heterogeneous 

Platforms



Main Contributions

• Propose a novel way to process large-scale graphs utilising GPUs.

• Investigated the trade-off on offloading workload between CPU and 

GPU.

• Partitioning is important optimisation in graph processing.

• Built on findings in [HONG, TAYO, KUNLE 2011] that GPUs process 

faster for the case of BFS, and generalised it for other problems.



Presenter’s opinion

• The system is non-distributed, that fact is just brushed over, however it 

is a big concern it won’t scale for larger graphs, and a single point of 

failure. (future direction?)

• It would have been interesting to see benchmarks where the system 

was deployed into a system with more than 2 CPU, 2GPU. Especially if 

more GPUs than CPUs

• Cost comparison would have been nice, GPUs tend to be order of 

magnitude more expensive.

• I really do like the system  paper is really wordy and hard to read 
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