
Efficient Large-Scale Graph Processing

on Hybrid CPU and GPU Systems

A. Gharaibeh, E. Santos-Neto, L. Costa, M. Ripeanu. IEEE TPC, 2014

Sami (sa894) - R244: Large-scale data processing and optimization

Efficient Large-Scale Graph Processing on Hybrid

CPU and GPU Systems – The paper in a nutshell

• Built a processing engine – Totem, that provides a framework to

implement graph algorithms on hybrid platform.

• Demonstrated various partitioning strategy to optimize graph problems

on parallel systems.

• Benchmarked and evaluated the system to demonstrate a hybrid

system can offer x2 on Graph500 challenge.

• At the time of publish, it was the only that did CPU processing with GPU

offloading. Closet to it work [HONG 2011] did CPU first round then

GPU, memory is an issue there.

Graph Processing - Motivation

Graph Processing – Challenges

• Irregular and data dependent memory access pattern – poor locality

• Data-dependent memory access patterns – process parents before

children

• Low compute to memory access ratio – updating and fetch state of

vertices major overhead

• Large memory footprint – Requires a whole graph to be present in

memory

• Heterogenous node degree distribution – difficult to parallelize

• Beginning of BFS one vertex, middle of it many vertex to

parallelize, end one vertex

Hybrid system – processing on CPU and GPU

CPU
Graph Challenge CPU’s Answer

Large memory

footprint

Have a large

memory capacity

Data-dependent

memory access

pattern

Using BitMap can

fit in CPUs

caches

Low compute to

memory access

 Limited

Hardware

threading

capacity

GPU
Graph Challenge GPU’s Answer

Large memory

footprint

 (Limited

memory capacity)

Data-dependent

memory access

BitMap + caches

(much smaller

than CPU)

Low compute to

memory access

 Can launch

many threads to

get around IO

block

Hybrid system – processing on CPU and GPU

The Internals of Totems – Computation Model

• Bulk Synchronous Parallel (BSP) computation model. Where

computations happen in rounds (supsersteps) in three phases:

1. Computation phase: Totem assign partitions of the graphs to

processes and they execute asynchronously.

2. Communication phase: each process (remote vertices) exchange

messages.

3. Synchronization phase: Guarantees the delivery of messages and

performed as part of the communication phase

4. Termination: Partitions vote to terminate execution using a callback

Bulk Synchronous Parallel Compute Model (BSP)

Internal of Totem – Graph Representation

• Graph partitions are represented as Compressed Sparse Rows (CSR)

in memory [Barrett et al. 1994], a space-efficient graph

representation that uses O(|V| + |E|) space.

• Each vertex access its edge using its vertex id to find neighboring

edges

• Edges stores the partition id

• Improves communication between

Edges and partition

• Improves data locality

• Allows storing varying number of

edges on CPU and GPUs

Totem – API Abstraction

Inspired by success of Pregel.

Allows user to define the function to

run simultaneously on each partition.

Totem will take care of BSP and

spreading workload on CPU and

GPU.

Allows defining an aggregation

function (similar to combiners in

MapReduce)

Evaluation Platform

Characteristic Sandy-Bridge

(Xeon 2650) (x2)

Kelper Titan (x2)

Number of processors 2 2

Cores / Proc 8 14

Core frequency (MHz) 2000 800

Hardware Threads / Core 2 192

Hardware Thread / Proc 16 2688

Last Level Cache (MB) 20 2

Memory / Proc (GB) 128 6

Mem. Bandwidth / Proc

(GB/s)

52 288

Evaluation workload – Graph500

Workload |V| |E|

Twitter [Cha et al. 2010] 52M 1.9B

UK-Web [Boldi et al. 2008] 105M 3.7B

RMAT27 128M

2.0B

RMAT28 256M 4.0B

RMAT29 512M 8.0B

RMAT30 1,024M 16.0B

Partitioning – Assignment strategies

System \

Strategy

HIGH LOW RAND

CPU Highest degree

vertices

Lowest degree

vertices

Random

GPU Lowest degree

vertices

Highest degree

vertices

Random

* Partitioning isn’t to reduce communication, aggregation is used to reduce

communication

Evaluation (Low compute) – Breadth First Search

• Traversal algorithm with

little computation per

vertex

• Bitmap optimisation

helps improve cache

utilization

Observation – CPU is the bottleneck

• GPU has higher

processing rate

• Communication

overhead is negligible

compared to

computation

Evaluation (High compute) – PageRank

• No summary table

(BitMap), therefore

cache isn’t utilized as

much.

• Higher compute-to-

memory access

PageRank – Breakdown execution

• Still the computation of

CPU is the bottleneck!

PageRank - But why High is performing better?

• Number of memory

read is proportional to

number of edges in

graph

• Number of writes is

proportional to number

of vertices (high less

vertices)

Betweenness Centrality (BC) – Complex & high compute

• Backward & Forward BFS.

• Expensive operation

proportional to edges and

vertices

• Performs more on edges

than vertices than

PageRank

More CPU? More GPU? Speedup Comparison!

Side Effects – Power Consumption

• Follow up research was done to investigate power consumption in

[Gharaibeh et al. 2013b] .

• Concerns about high energy consumption were rejected with detailed

discussion and evaluation were presented in that paper.

• GPUs in idle state are power-efficient.

• GPUs finishes much faster than CPU, therefore they reach the idle state

faster. (known as ‘race-to-idle’)

Totem Today

• GitHub repository last active in 2015.

• Follow-up research shows efficient energy consumption [1].

• In [2], Offers numerous optimization technique for BFS problem making

hybrid system attractive for large scale graph processing.

• New benchmarks were published no a newer system that still shows the

linear speedup [Y GAU 2015][X PAN 2016]

[1] The Energy Case for Graph Processing on Hybrid CPU and GPU Systems, Abdullah Gharaibeh, Elizeu Santos-Neto,

Lauro Beltrão Costa, Matei Ripeanu

[2] Accelerating Direction-Optimized Breadth First Search on Hybrid Architectures, Scott Sallinen, Abdullah Gharaibeh,

Matei Ripeanu, 13th International Workshop on Algorithms, Models and Tools for Parallel Computing on Heterogeneous

Platforms

Main Contributions

• Propose a novel way to process large-scale graphs utilising GPUs.

• Investigated the trade-off on offloading workload between CPU and

GPU.

• Partitioning is important optimisation in graph processing.

• Built on findings in [HONG, TAYO, KUNLE 2011] that GPUs process

faster for the case of BFS, and generalised it for other problems.

Presenter’s opinion

• The system is non-distributed, that fact is just brushed over, however it

is a big concern it won’t scale for larger graphs, and a single point of

failure. (future direction?)

• It would have been interesting to see benchmarks where the system

was deployed into a system with more than 2 CPU, 2GPU. Especially if

more GPUs than CPUs

• Cost comparison would have been nice, GPUs tend to be order of

magnitude more expensive.

• I really do like the system paper is really wordy and hard to read

References

• Every figure, equation, and picture unless stated otherwise, is

referenced from the paper in review

[Efficient Large-Scale Graph Processing on Hybrid CPU and GPU

Systems, A. Gharaibeh, E. Santos-Neto, L. Costa, M. Ripeanu. IEEE

TPC, 2014]

