o UNIVERSITY OF
@P CAMBRIDGE

Efficient Large-Scale Graph Processing
on Hybrid CPU and GPU Systems

A. Gharaibeh, E. Santos-Neto, L. Costa, M. Ripeanu. IEEE TPC, 2014

Sami (sa894) - R244: Large-scale data processing and optimization

Efficient Large-Scale Graph Processing on Hybrid

CPU and GPU Systems — The paper in a nutshell

« Built a processing engine — Totem, that provides a framework to
Implement graph algorithms on hybrid platform.

« Demonstrated various partitioning strategy to optimize graph problems
on parallel systems.

 Benchmarked and evaluated the system to demonstrate a hybrid
system can offer x2 on Graph500 challenge.

« At the time of publish, it was the only that did CPU processing with GPU
offloading. Closet to it work [HONG 2011] did CPU first round then
GPU, memory is an issue there.

#f% UNIVERSITY OF

" CAMBRIDGE

Graph Processing - Motivation

UNIVERSITY OF
" CAMBRIDGE

Mathematica! PageRanks for a simple network, expressed as

mm;n_wm‘
@

[
&
/,"’I;
y /‘ —
Vi Madingley
J ?%rgng"“ | ‘Rise Ste
[{ University of
Cambridge

/)
£/
[,
/

!
dingley Road
tack and Ride

2

B ?

|

J

2
4L &
\;A; 7303
I
\ /, l', 5
| 0
3] ;
:
ch 3
[Z/®Work
|]
S BB — /]
I ——
: ———")
&% 8 min
' 1.4 miles ;

churcl

Graph Processing — Challenges

 Irregular and data dependent memory access pattern — poor locality

« Data-dependent memory access patterns — process parents before
children

* Low compute to memory access ratio — updating and fetch state of
vertices major overhead

» Large memory footprint — Requires a whole graph to be present in
memory

» Heterogenous node degree distribution — difficult to parallelize

* Beginning of BFS one vertex, middle of it many vertex to
parallelize, end one vertex

#f% UNIVERSITY OF

CAMBRIDGE

Hybrid system — processing on CPU and GPU

CPU GPU
Graph Challenge | CPU’s Answer Graph Challenge W

Large memory
footprint

Data-dependent
memory access
pattern

Low compute to
memory access

. UNIVERSITY OF

Have a large
memory capacity

Using BitMap can
fit in CPUs
caches

® Limited
Hardware
threading
capacity

Large memory
footprint

Data-dependent
memory access

Low compute to
memory access

® (Limited
memory capacity)

BitMap + caches
(much smaller
than CPU)

© Can launch
many threads to
get around 10
block

=§> CAMBRIDGE

Hybrid system — processing on CPU and GPU

MAKE GIFS AT GIFSOUP.COM

#85 UNIVERSITY OF
*§> CAMBRIDGE

The Internals of Totems — Computation Model

« Bulk Synchronous Parallel (BSP) computation model. Where
computations happen in rounds (supsersteps) in three phases:

1. Computation phase: Totem assign partitions of the graphs to
processes and they execute asynchronously.

2. Communication phase: each process (remote vertices) exchange
messages.

3. Synchronization phase: Guarantees the delivery of messages and
performed as part of the communication phase

4. Termination: Partitions vote to terminate execution using a callback

#f% UNIVERSITY OF

CAMBRIDGE

Bulk Synchronous Parallel Compute Model (BSP)

Processors

Local
Computation

Communication

o -
Synchronization

Source: Wikipedia Bullk Synchronous Parallel

#f% UNIVERSITY OF

" CAMBRIDGE

Internal of Totem — Graph Representation

» Graph partitions are represented as Compressed Sparse Rows (CSR)
iIn memory [Barrett et al. 1994], a space-efficient graph
representation that uses O(|V| + |E|) space.

» Each vertex access its edge using its vertex id to find neighboring
edges

f’r 01213 45 ﬂ ““n ﬂ a12a3
o V [[EREE — el [TEEV
 Edges stores the partition id E REERRERE —= 5 EPEE
L S[TIT] (110S

* Improves communication between I "3

it1 ouUthox outbox

Edges and partition B box L1

. inbox J \ ik

 Improves data locality 4 | A

Figure 6: An illustration of the graph data structure and
e Allows Storing Varying number of the communication infrastructure in a two-way

edges on CPU and GPUs partitioning setup.

#f% UNIVERSITY OF

" CAMBRIDGE

Totem — APl Abstraction

Inspired by success of Pregel.

Allows user to define the function to init
run simultaneously on each partition. . . . -0 20 2R
totem config t config = { | kernel f | @ © Fm
Totem will take care of BSP and graph,
spreading workload on CPU and partitioning_algo, mEy_reducs e Pyl promn
GPU ipit fune,
) kernel func,
mag_ reduce func,
finalize funec, o I
o) i kernel EI E'I &I F'G:Im
Allows defining an aggregation tetem conflg{&config);
function (similar to combiners in totem_exscute(); mug_ruduum Goamn
MapReduce) .
finalize

Figure 5: A simplified TOTEM configuration and
how an algorithm callbacks map to the B5P phases.

Evaluation Platform

Characteristic Sandy-Bridge Kelper Titan (x2)
(Xeon 2650) (x2)

Number of processors 2 2
Cores / Proc 8 14
Core frequency (MHz) 2000 800
Hardware Threads / Core 2 192
Hardware Thread / Proc 16 2688
Last Level Cache (MB) 20 2
Memory / Proc (GB) 128 6
Mem. Bandwidth / Proc 52 288
(GB/s)

. UNIVERSITY OF

=§> CAMBRIDGE

Evaluation workload — Graph500

Workload

Twitter [Cha et al. 2010] 52M 1.9B
UK-Web [Boldi et al. 2008] 105M 3.7B
RMAT27 128M

2.0B
RMAT?28 256M 4.0B
RMAT29 512M 8.0B
RMAT30 1,024M 16.0B

s UNIVERSITY OF

" CAMBRIDGE

Partitioning — Assignment strategies

System \ HIGH RAND
Strategy

Highest degree Lowest degree Random
vertices vertices

GPU Lowest degree Highest degree Random
vertices vertices

* Partitioning isn’t to reduce communication, aggregation is used to reduce
communication

#f% UNIVERSITY OF

" CAMBRIDGE

Evaluation (Low compute) — Breadth First Search

 Traversal algorithm with
little computation per

3
vertex g:
* Bitmap optimisation ;
50 55 &0 -EE
helps improve cache o i o
igure 9: raversal rate (in billions of travers

p p edges per second - TEPS) for the RMAT28 graph

- : and different partitioning algorithms while varying

Utl I IZatI O n the percentage of edges placed on the CPU. Left: two

GPUs (252G); Right: one GPU (251G). The
performance of processing the whole graph on the
host only (25) is shown as a straight line.

#f% UNIVERSITY OF

¥ CAMBRIDGE

Observation — CPU iIs the bottleneck

 GPU has higher
processing rate

« Communication
overhead Is negligible
compared to
computation

#f% UNIVERSITY OF

CAMBRIDGE

HIGH LOwW RAND HIGH Low RAND

b L

B OB B OB OB OB

Figure 10: Breakdown of execution time for the
RMAT2E graph. Left: using two GPUs and 50%
of the edges are assigned to the CPU. Right:
using one GPU and 80% of the edges are
assigned to the CPU. The “Computation™ bar
refers to the computation time of the bottleneck

processor (the CPU in this case).

Communication

Time {Seconds)
e = 0w @ o
=

E | g'
=1

Evaluation (High compute) — PageRank

 No summary table
(BitMap), therefore

. y - 2 4l lHcHZLow /JrRanD
cache isn't utilized as i
il hh i kb
¢ ngher CompUte-tO- "o DHEME DG @B 65 T E?Qef?mffecé:u %
memory access Lot using o GPUs. Right. using ane. GPU. Missing bars

represent cases where the GPU memory space is not enough to
fit the GPU partition. The performance of processing the whole
graph on two CPU sockets (2S) is shown as a straight line.

#f% UNIVERSITY OF

CAMBRIDGE

PageRank — Breakdown execution

 Still the computation of

CPU is the bottleneck! , MGH LOW RAND HIGH LOW RAND
R, Comutatianon
S
E 1
& & 3B B ;/ &

Figure 16: Breakdown of PageRank execution time
(five iterations) for the UK-WEB graph when
offloading the maximum size partition to two (left
three bars) and one GPU (right three bars). The
“Computation™ bar refers to the compute time of the
bottleneck processor (the CPU in this case).

#f% UNIVERSITY OF

CAMBRIDGE

PageRank - But why High is performing better?

 Number of memory
read Is proportional to
number of edges In
graph

 Number of writes Is
proportional to number
of vertices (high less
vertices)

#f% UNIVERSITY OF

Q100 L100

5-2 g.‘!

£ 75 FRD

2 : g

T 5 50 25 5%

g8 £3

[+ PPN = 0

582 58 2

23 20
g o g ol 0.35%
% HIGH LOW RAND HIGH LOW RAND

Figure 17: Host memory accesses statistics gathered when
running PageRank on UK-WEB graph while when
offloading the maximum size partition to two GPUs (252G).
The performance counter used to collect these statistics is
“mem_uops_retired”. Left: read accesses; right: write
accesses compared to processing the graph on the host only.

¥ CAMBRIDGE

Betweenness Centrality (BC) — Complex & high compute

« Backward & Forward BFS.

. . 1.2 15
« Expensive operation ol g Wl T gommon
proportional to edges and E §° ™
verti Sos e s
b e
i 2 u:))
« Performs more on edges i SR E L W
. Figure 19: BC performance on the Twitter network for the
th an ve rtICES than 251G system. Left: traversal rate (in Billion TEPS) using one
GPU. The horizontal line indicates the performance of a two
Page Ran k socket system (2S). Right: Breakdown of execution time when

offloading the maximum size partition to one GPU (i.e., the
percentage of edges offloaded is 50%, 30% and 40% for
HIGH, LOW and RAND, respectively).

More CPU? More GPU? Speedup Comparison!

51 FisFAzsEs1GEH2S1GI252G L NsFzsE151GH251G2526G 3 MsFZ2sE151GE251G 252G
. a; a FHQEHE_HHE
£, 3 g2 o
8 5] g, 5
= 8 i

‘|-|

i1 [0

m,,p.."l!'it ﬂwﬁ‘!ﬂ H“p:l."i'- H“p,"li'ﬂ ﬁwﬂﬂ H“p:ﬁ"?-‘i Fﬂpﬂ'ﬂ ﬂmp,’ﬂﬂ F.'I-Mﬂﬁ

Waorkload Worklaad Warkload
Figure 20: BF 5, PageRank and BC processing rates for different hardware configurations

and R-MAT graph sizes. When GPUs are used, the graph is partitioned to obtain best
performance. Experiments on configurations with a single socket (i.e., 15 and 151G) were
performed by binding the CPU threads to the cores of a single socket. The result for an
RMATI0 graph is missing for PageRank and BC because of memory space constraints (the
state required by PageRank and BC is larger than that for BF3).

#f% UNIVERSITY OF

" CAMBRIDGE

Side Effects — Power Consumption

» Follow up research was done to investigate power consumption in
[Gharaibeh et al. 2013Db] .

« Concerns about high energy consumption were rejected with detailed
discussion and evaluation were presented in that paper.

 GPUs in idle state are power-efficient.

* GPUs finishes much faster than CPU, therefore they reach the idle state
faster. (known as ‘race-to-idle’)

#f% UNIVERSITY OF

CAMBRIDGE

Totem Today

» GitHub repository last active in 2015.
» Follow-up research shows efficient energy consumption [1].

* In [2], Offers numerous optimization technique for BFS problem making
hybrid system attractive for large scale graph processing.

 New benchmarks were published no a newer system that still shows the
linear speedup [Y GAU 2015][X PAN 2016]

[1] The Energy Case for Graph Processing on Hybrid CPU and GPU Systems, Abdullah Gharaibeh, Elizeu Santos-Neto,
Lauro Beltrdo Costa, Matei Ripeanu

[2] Accelerating Direction-Optimized Breadth First Search on Hybrid Architectures, Scott Sallinen, Abdullah Gharaibeh,
Matei Ripeanu, 13th International Workshop on Algorithms, Models and Tools for Parallel Computing on Heterogeneous
Platforms

#f% UNIVERSITY OF

CAMBRIDGE

Main Contributions

* Propose a novel way to process large-scale graphs utilising GPUSs.

» Investigated the trade-off on offloading workload between CPU and
GPU.

 Partitioning is important optimisation in graph processing.

 Built on findings in [HONG, TAYO, KUNLE 2011] that GPUs process
faster for the case of BFS, and generalised it for other problems.

#f% UNIVERSITY OF

CAMBRIDGE

Presenter’s opinion

» The system is non-distributed, that fact is just brushed over, however it
is a big concern it won'’t scale for larger graphs, and a single point of
failure. (future direction?)

It would have been interesting to see benchmarks where the system
was deployed into a system with more than 2 CPU, 2GPU. Especially if
more GPUs than CPUs

» Cost comparison would have been nice, GPUs tend to be order of
magnitude more expensive.

| really do like the system © paper is really wordy and hard to read ®

#f% UNIVERSITY OF

CAMBRIDGE

References

« Every figure, equation, and picture unless stated otherwise, is

referenced from the paper in review
[Efficient Large-Scale Graph Processing on Hybrid CPU and GPU
Systems, A. Gharaibeh, E. Santos-Neto, L. Costa, M. Ripeanu. IEEE

TPC, 2014]

