
Pregel: A System for Large-Scale
Graph Processing

Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik,
James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz

Czajkowski
Google, Inc.

R244 Presentation By: Vikash Singh October 24, 2018 Session 3

What is Pregel?

● General purpose system for flexible graph
processing

● Efficient, scalable, and fault-tolerant
implementation in a large-scale distributed
environment

Bulk Synchronous Parallel Model (BSP)[1]

Pros and Cons of BSP for Distributed Graph Processing

● Pro: Naturally suited for distributed implementation
○ Order does NOT matter within a superstep
○ All communication is BETWEEN supersteps

● Pro: No deadlocks or data races to worry about
● Pro: Capable of balancing the load to minimize latency
● Con: As this scales to potentially millions of cores,

barriers become expensive!

Termination Mechanism

Key Decision: Message Passing vs. Shared Reads
● Message passing expressive enough, especially for

graph algorithms
● Remote reads have a high latency
● Message passing can be done asynchronously in

batches

Comparison to MapReduce
● Graph algorithms can be written as a series of chained

MapReduce invocations
● MapReduce would require passing the entire state of

the graph from one state to the next, more overhead
and communication

● Complexity added that would be taken care of by
convenient supersteps in BSP

C++ API Overview
● Vertex class, virtual Compute() function (aka the

instructions for each superstep)
● Compute function flexible to change topology
● Combiners/Aggregators available
● Handlers

Master-Worker Architecture
● Master assigns partitions of vertices to workers
● Master coordinates supersteps and checkpoints

(fault tolerance)
● Workers execute compute() functions for vertices and

directly exchange messages with each other

Fault Tolerance
● Workers save state of partitions to persistent storage at

checkpoint
● Ping messages to check worker availability
● Checkpoint frequency based on mean time to failure

model
● Reassign partitions, revert to last checkpoint in failure

instance

Master-Worker Implementation

Master

● Maintains list of all living workers (ID,
addressing, partition)

● Coordinates supersteps through
barrier synchronization/initiates
recovery in failure

● Maintains stats on the progress of
the graph, runs HTTP server that
displays info

Worker

● Maintains the state of graph
partition in memory (vertex id,
current value, outgoing messages,
queue for incoming messages,
iterators to outgoing/incoming
messages, active flag)

● Optimizations present for vertex
message sending within same
machine, or else use delivery buffer

How does Pregel Scale with Worker Tasks?
Experiment Notes (General)

● 300 multicore commodity PCs
● Time for initializing cluster,

generating the test graphs in
memory, and verifying results
not included

● Checkpointing was disabled

How does Pregel Scale with Graph Size (Binary Tree)?

How does Pregel Scale with Graph Size
 (Log Normal Random Graph)?

Criticism
● No legitimate effort to compare to other systems such

as MapReduce[3], Parallel BGL[4],CGMGraph[5],
Dryad[2],

● No explanation of fault tolerance in case of failure of
master

● Inefficient for imbalanced data (no dynamic
repartitioning) PowerGraph to the rescue!

● Checkpointing disabled in experiments, fault tolerance
not experimentally tested

● No experimental analysis of slow down from spill over
of data to disk when RAM gets full

PowerGraph: Distributed
Graph-Parallel Computation on

Natural Graphs
J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin:

Digging into Pregel’s Load Imbalance Issue
● Natural graphs often have skewed power-law degree

distribution, causes significant imbalance in a
vertex-centric system such as Pregel

● Storage, computation, and communication issues
● No parallelization within each vertex

Visualizing Power-Law Degree Distribution

Powergraph Solution
● Distribute edges rather than vertices, allowing for parallelization of huge

vertices (vertex-cut)
● Execution of vertex program, using Gather, Apply, Scatter (GAS) model

Gather
Collect data from
neighbors and
perform aggregation

Apply
Perform operation on
aggregated data

Scatter
Spread information to
neighbors and
activate their
operations

Vertex-Cut Communication

Runtime Comparison

Worker Imbalance and Communication Comparison

Final Thoughts
● Pregel mostly achieved its main goal: a flexible

distributed framework for graph processing
● Weak experimental data and comparisons, however it

is in production on multiple systems at Google so we
have some degree of faith

● Powergraph solves issue of load imbalance in Pregel’s
method of distributed graph processing

References
1. Leslie G. Valiant, A Bridging Model for Parallel Computation. Comm. ACM

33(8), 1990, 103–111.
2. Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly,

Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks. in
Proc. European Conf. on Computer Syst., 2007, 59–72.

3. Jeffrey Dean and Sanjay Ghemawat, MapReduce: Simplified Data Processing
on Large Clusters. in Proc. 6th USENIX Symp. on Operating Syst. Design and
Impl., 2004, 137–150

4. Douglas Gregor and Andrew Lumsdaine, The Parallel BGL: A Generic Library
for Distributed Graph Computations. Proc. of Parallel Object-Oriented
Scientific Computing (POOSC), July 2005.

5. Albert Chan and Frank Dehne, CGMGRAPH/CGMLIB: Implementing and
Testing CGM Graph Algorithms on PC Clusters and Shared Memory
Machines. Intl. J. of High Performance Computing Applications 19(1), 2005,
81–97.

