Bl TENSORFLOW: A SYSTEM FOR -
LARGE-SCALE MACHINE op ©
o\ LEARNING /O

AUTHORS: MARTIN ABADI, PAUL BARHAM, JIANMIN CHEN, ZHIFENG CHEN, ANDY DAVIS, JEFFREY DEAN,
MATTHIEU DEVIN, SANJAY GHEMAWAT, GEOFFREY IRVING, MICHAEL ISARD, MANJUNATH KUDLUR,
JOSH LEVENBERG, RAJAT MONGA, SHERRY MOORE, DEREK G. MURRAY, BENOIT STEINER, PAUL TUCKER,
VIJAY VASUDEVAN, PETE WARDEN, MARTIN WICKE, YUAN YU, AND XIAOQIANG ZHENG

\l ® Large Scale ML System

®* Multi-node

® Heterogenous Environemnts
® Dataflow Graphs
l ® Open Source

®* Mathematically Flexible

spoke Loss & Kernels

OVERVIEW

® Distributed Compute and Training

DATAFLOW GRAPHS /

(T T p A

o

e ™
; bparrenng_rae = {0 - Gradients

o

—@ |
| AN,

* \\b PRIOR WORK O/
1\) * DistBelief ((

{ ® Architecture
O ® Parameter Server
®* Workers
® Inflexible Layers Parameter
® Inflexible Training Algorithms S
l ® RNNs, LSTMs, GCNs challenging

* Optimized for large clusters

ffe & Theano

| K\) DistBelief /Keras /Etc

v @
—
e

Output

TensorFlow

Multiply

Multiply

ACCELERATOR ABSTRACTION

UNITS OF TENSORFLOW

1 ®* Graph (

Partitioned subgraphs are distributed to

°
SUbngIph individual compute devices
® Edges
® Tensors > Multidimensional arrays
® Vertices
l ® Operations ~ Add, Multiply, Sigmoid

® Automatic Partitioning

® Subgraphs distributions

LN
\

O

CONTROL FLOW EXECUTION O/

® Graph Partitioned and Distributed ® Synchronous Execution (

® Classically frowned upon

® Send + Recv Replace Split Edges
* GPUs make appealing

® Send

, * All workers forced to take same
® Pushes value from one device to another

parameters
® Recv

® Backup workers stochasticall
® Blocks until value available P |

eliminate straggling
® “Deferred execution”

®* Symbolic representation (

* Automatically computes backprop code

K\O DIFFERENTIATION & BACKPROP

O

* Like PS architectures, enables distributed training via +/- write operations

dfs(e)
de N
dfs(e)
de 72
df;(e)
de 73

I —
W =W + 170

I _
W e = W + 170

I —
W= W + 170

Training libraries Inference libs ((

Python client C++ client]

K\O IMPLEMENTATION
\

C API

Distributed master Dataflow executor

l (Const] (Var) (MatMul) (ConvaD) (ReLU) (Queue) ..

Kernel implementations

RPC | |RDMA| ... CPU||GPU
Networking layer

Device layer

Figure 6: The layered TensorFlow architecture.

s

K\) SINGLE MACHINE BENCHMARKS

Training step time (ms)
Library AlexNet Overfeat OxfordNet GoogleNet

Caffe [38] 324 823 1068 1935
Neon [58] 87 211 320 270
l Torch [17] 81 268 529 470

TensorFlow 81 279 540 445

’

10000

K\) SPARSE AND DENSE FETCHES FOR SYNC /

O 1000

-§ Scalar

—4$ Sparse 1GB
—4 Sparse 16GB
—4— Dense 100M
~4— Dense 1GB

100

l 1 1 1 1 1 1 1
1 2 5 10 25 50 100

Number of workers

Batches/second

—
o

Figure 7: Baseline throughput for synchronous replication
with a null model. Sparse accesses enable TensorFlow to
handle larger models, such as embedding matrices (§4.2).

K\) CNN IMPLEMENTATIONS

Training step time (ms)
O Library AlexNet Overfeat OxfordNet GoogleNet
Caffe [38] 324 823 1068 1935
Neon [58] 87 211 320 270
Torch [17] 81 268 529 470
TensorFlow 81 279 540 445

Table 1: Step times for training four convolutional models
with different libraries, using one GPU. All results are for
training with 32-bit floats. The fastest time for each model
is shown in bold.

K SYNC AND NON-SYNCED PROCESSES

/
(a) Baseline performance vs. MXNet (b) Coordination scalability (c) Backup worker effectiveness

O 30 ¢ 3000 25
< ~—f— Step time —— Speedup § 1.10
3 25 +— 2500 | & 24 P peedup o
= m-_-—-‘ T‘ o =
2 20 | g 2000 g 23 Q
ko] o @ o
5 3 @ 1.06 2
§ 15 | 2 1500 5 22 3
® S £ N
@ 10 | g 1000 | S 21 104 '
(o)) — o) =
g 5 L —— TensorFlow 500 L —£- Asynchronous 2 20 102 2
= - o MXNet - T Synchronous

0 1 1 | 1 | 1 0 1 1 1 1 19 1 1 1 1 100
14 8 16 32 50 25 50 100 200 0 1 2 3 4 5
Number of workers Number of workers Number of backup workers

Figure 8: Results of the performance evaluation for Inception-v3 training (§6.3). (a) TensorFlow achieves slightly
better throughput than MXNet for asynchronous training. (b) Asynchronous and synchronous training throughput
increases with up to 200 workers. (c) Adding backup workers to a 50-worker training job can reduce the overall step
time, and improve performance even when normalized for resource consumption.

(a) Full softmax 5 (b) Sampled softmax
10°

K\) TRAINING LARGE MODELS O/
\

10*

F T

~E

103 %‘.I_,.I..m.--
0. f ..
, b —— 256 workers , E.‘ —— 256 workers
10 — 32 workers 10 — 32 workers

Words processed/second
Words processed/second

‘T 4 workers - I 4 workers
101 1 1 1 I] 101 1 1 I I 1
1 2 4 8 16 32 1 2 4 8 16 32

Number of PS tasks Number of PS tasks

Figure 9: Increasing the number of PS tasks leads to in-
creased throughput for language model training, by par-
allelizing the softmax computation. Sampled softmax in-
creases throughput by performing less computation.

\\b CRITICISM O/
1\) ®* No actual accuracy comparisons ((

S ® Convergence comparisons in synchrony analysis?

® Lacking capability for abstracted computation

® Reason why Keras runs on top of TF

® Built a ML system that is: g

® Robust

* K\) CONCLUSION O/
\

O ® Distributable

® Extensible

®* Fast

® In the ensuing years

® Used extensively

®* Extended

for large-scale machine learning. M. Abadi, P. Barham, J. Chen et al. 2016

\}b REFERECES
1\) ® TensorFlow: A System for Large-Scale Machine Learning TensorFlow: A system g

O

