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MOTIVATION

¡ At the time: MapReduce [3] was dominant

¡ A restricted, two phase programming model

¡ Poor support for in-memory computation

¡ Bad for interactive analysis and iterative algorithms

Source: https://spark.apache.org/talks/overview.pdf



OTHER IDEAS: DRYAD AND CIEL

¡ Dryad [1, 2]: use arbitrary DAGs

¡ Ciel [4]: better support for iterative and recursive algorithms

Source: https://www.microsoft.com/en-us/research/project/dryad/



WHAT IS AN RDD?

¡ “a read only, partitioned collection of records”

¡ Create one from:

1. Data in stable storage (e.g. HDFS)

2. Applying transformations such as filter, map or join to other RDDs



THE KEY IDEA FOR FAULT-TOLERANCE

¡ Record the lineage of an RDD

¡ i.e. keep the DAG of transformations applied to your base RDDs

¡ RDDs can be re-computed by retracing the steps in the DAG
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WHY IS THIS BETTER?

¡ Previous shared-memory systems relied on replication to achieve fault tolerance

¡ Replication is expensive



IN-MEMORY COMPUTATION

¡ RDDs can be kept in-memory

¡ Trade-offs against distributed shared memory (DSM)

¡ No arbitrary updates (immutability)

¡ Advantages:

1. Allows lineage to work

2. Can run backup copies of jobs

3. Can schedule based on data-locality



THE PROGRAMMING MODEL

¡ Transformations are lazy operations used to build the DAG

¡ e.g. map, filter, reduce, sample, join, groupBy, sort, etc

¡ Actions launch the computation and return a result to the programmer

¡ e.g. count, collect, save

¡ General – can express MapReduce in Spark



NARROW AND WIDE DEPENDENCIES

¡ Narrow – each partition of the parent RDD is used by at most one partition of the child RDD

¡ Wide – can’t exploit pipelining / data-locality

¡ Implement a shuffle stage like MapReduce



EXAMPLE – PAGERANK

// Load graph as an RDD of (URL, outlinks) pairs
val links = spark.textFile(...)

.map(...) // parse

.persist() // keep in memory

val ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS) {

// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap {

(url, (links, rank)) =>
links.map(dest => (dest, rank / links.size))

}
// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)
}



PERFORMANCE – NODE FAILURE

• Loss of tasks and partitions on a node
• Run in parallel on other nodes to recover lost partitions



PERFORMANCE – ITERATIVE ALGORITHMS

• HadoopBM – store data in lower overhead format with in-memory HDFS

• First iteration – lower protocol overhead vs Hadoop
• Subsequent iterations – deserialization is expensive for HadoopBM!

• K-Means more compute-limited



PERFORMANCE – BIG DATASETS AND INTERACTIVITY

¡ Sensible degradation of performance as dataset exceeds 
available memory

¡ Interactivity – can get query results within seconds (vs minutes for Hadoop)

¡ Hadoop needed 25s to do a no-op in the paper!



TAKEAWAYS

¡ Replication is expensive – serialization, IO

¡ A broader programming model than MapReduce is practical

¡ In-memory caching is effective

¡ Making memory immutable allows lineage fault-tolerance



CRITICISMS

1. Lots of tuning – manually control partitioning and memory-persistence

2. Only one contrived experiment on fault recovery time

3. Batching as the default assumption

4. Low level programming model – can’t have automatic optimisation
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