
RESILIENT DISTRIBUTED DATASETS: A FAULT-TOLERANT 
ABSTRACTION FOR IN-MEMORY CLUSTER COMPUTING
MATEI ZAHARIA, MOSHARAF CHOWDHURY, TATHAGATA DAS, ANKUR DAVE, JUSTIN MA, MURPHY MCCAULEY, MICHAEL J. FRANKLIN, SCOTT SHENKER, ION STOICA

UNIVERSITY OF CALIFORNIA, BERKELEY

Presented by Shyam Tailor (sat62)



MOTIVATION

¡ At the time: MapReduce [3] was dominant

¡ A restricted, two phase programming model

¡ Poor support for in-memory computation

¡ Bad for interactive analysis and iterative algorithms

Source: https://spark.apache.org/talks/overview.pdf



OTHER IDEAS: DRYAD AND CIEL

¡ Dryad [1, 2]: use arbitrary DAGs

¡ Ciel [4]: better support for iterative and recursive algorithms

Source: https://www.microsoft.com/en-us/research/project/dryad/



WHAT IS AN RDD?

¡ “a read only, partitioned collection of records”

¡ Create one from:

1. Data in stable storage (e.g. HDFS)

2. Applying transformations such as filter, map or join to other RDDs



THE KEY IDEA FOR FAULT-TOLERANCE

¡ Record the lineage of an RDD

¡ i.e. keep the DAG of transformations applied to your base RDDs

¡ RDDs can be re-computed by retracing the steps in the DAG

RDD RDD RDD

RDD

Filter Join



WHY IS THIS BETTER?

¡ Previous shared-memory systems relied on replication to achieve fault tolerance

¡ Replication is expensive



IN-MEMORY COMPUTATION

¡ RDDs can be kept in-memory

¡ Trade-offs against distributed shared memory (DSM)

¡ No arbitrary updates (immutability)

¡ Advantages:

1. Allows lineage to work

2. Can run backup copies of jobs

3. Can schedule based on data-locality



THE PROGRAMMING MODEL

¡ Transformations are lazy operations used to build the DAG

¡ e.g. map, filter, reduce, sample, join, groupBy, sort, etc

¡ Actions launch the computation and return a result to the programmer

¡ e.g. count, collect, save

¡ General – can express MapReduce in Spark



NARROW AND WIDE DEPENDENCIES

¡ Narrow – each partition of the parent RDD is used by at most one partition of the child RDD

¡ Wide – can’t exploit pipelining / data-locality

¡ Implement a shuffle stage like MapReduce



EXAMPLE – PAGERANK

// Load graph as an RDD of (URL, outlinks) pairs
val links = spark.textFile(...)

.map(...) // parse

.persist() // keep in memory

val ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS) {

// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap {

(url, (links, rank)) =>
links.map(dest => (dest, rank / links.size))

}
// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)
}



PERFORMANCE – NODE FAILURE

• Loss of tasks and partitions on a node
• Run in parallel on other nodes to recover lost partitions



PERFORMANCE – ITERATIVE ALGORITHMS

• HadoopBM – store data in lower overhead format with in-memory HDFS

• First iteration – lower protocol overhead vs Hadoop
• Subsequent iterations – deserialization is expensive for HadoopBM!

• K-Means more compute-limited



PERFORMANCE – BIG DATASETS AND INTERACTIVITY

¡ Sensible degradation of performance as dataset exceeds 
available memory

¡ Interactivity – can get query results within seconds (vs minutes for Hadoop)

¡ Hadoop needed 25s to do a no-op in the paper!



TAKEAWAYS

¡ Replication is expensive – serialization, IO

¡ A broader programming model than MapReduce is practical

¡ In-memory caching is effective

¡ Making memory immutable allows lineage fault-tolerance



CRITICISMS

1. Lots of tuning – manually control partitioning and memory-persistence

2. Only one contrived experiment on fault recovery time

3. Batching as the default assumption

4. Low level programming model – can’t have automatic optimisation



REFERENCES

[1]
Y. Yu et al., ‘DryadLINQ: A System for General-purpose Distributed Data-parallel Computing Using a High-level 
Language’, in Proceedings of the 8th USENIX Conference on Operating Systems Design and Implementation, Berkeley, CA, 
USA, 2008, pp. 1–14.

[2]
M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, ‘Dryad: Distributed Data-Parallel Programs from Sequential Building 
Blocks’, p. 14.

[3]
J. Dean and S. Ghemawat, ‘MapReduce: simplified data processing on large clusters’, Communications of the ACM, vol. 51, 
no. 1, p. 107, Jan. 2008.

[4]
D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Madhavapeddy, and S. Hand, ‘CIEL: a universal execution engine 
for distributed data-flow computing’, p. 14.

[5]
M. Zaharia et al., ‘Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing’, p. 
14.


