
Presented by: Devin Taylor

Ray
A Distributed Framework for Emerging AI Applications

R. Nishihara, P. Moritz, et al
October 17, 2018

University of California, Berkeley



Table of contents

1. Introduction

Problem Statement

Background

Related Work
2. Methodology

Overview

Programming model

Architecture
3. Analysis

Results

Critical Analysis

4. Conclusion

1



Introduction



Problem Statement

Need for a computation framework that supports heterogeneous
and dynamic computation graphs, while handling millions of tasks
per second with millisecond-level latencies.

2



Background

• High-performance, distributed execution framework for Python
• Key features include:

• Heterogeneous, concurrent computations
• Dynamic task graphs
• High-throughput and low-latency scheduling
• Transparent fault tolerance
• Task-parallel and actor programming models
• Horizontally scalable

• Applications:
• Reinforcement learning
• Hyperparameter tuning
• Distributed training

3



Related Work

• CIEL[1], Dask[2]

• Supports dynamic task graphs
• Centralized scheduling architecture
• No actor abstraction

• MapReduce[3]

• Implement BSP execution model
• No actor abstraction
• Centralized scheduling architecture

• TensorFlow Fold[4], MXNet[5]

• Cannot modify DAG in response to task progress, task completion
times, or faults

4



Methodology



Overview

Goal

• Implement a distributed framework suitable for modern AI
applications

Requirements

• Flexibility - Functionality, duration, resource types
• Performance - scheduling
• Ease of development

5



Methodology - Programming model

• Remote functions return
futures - get(), wait()

• Can specify resource
allocation for remote
functions at run time

• Supports nested remote
functions

• Actor abstraction - Stateful
edge to computation graph
(data and control)

Figure 1: Nested remote functions

6



Methodology - Architecture

• Application layer
• Driver - executes user
program

• Worker - executes remote
functions

• Actor - executes methods it
exposes

• System layer
• Global Control Store (GCS)
• Bottom-up distributed
scheduler

• In-memory distributed
object store - Apache Arrow

Figure 2: Architecture overview

7



Architecture - Global Control Store (GCS)

• Stores all metadata and state information
• Supports pub-sub infrastructure for internal communication
• Enables system to be stateless - enabling easy horizontal
scalability

• Scaling achieved through sharding

8



Architecture - Bottom-up distributed scheduler

• Global scheduler with
per-node local schedulers

• Tasks submitted to node’s
local scheduler first

• Conditions under which
global scheduler is invoked:

• Overloaded
• Cannot satisfy task
requirements

• Task inputs remote

Figure 3: Bottom-up distributed
scheduler

9



Architecture - Overview

Figure 4: Overview of task execution Figure 5: Overview of result retrieval

10



Analysis



Results - System

Figure 6: End-to-end scalability

• Linear
• 1.8M tasks per second

Figure 7: Object store performance

• Peak throughput > 15 GB/s
• Peak IOPS 18K
• 56 µs per operation

11



Results - RL Application

Figure 8: ES implementation

• Evolution Strategies (ES)
Humanoid-v1 task

• Scaled to 8192 cores vs 1024
• 3.7 minutes vs 10 minutes

Figure 9: PPO application

• Proximal Policy Optimization
(PPO)

• Ability to specify resource
requirements

12



Critical Analysis

• Fault tolerance - potentially redundant due to statistical
properties of most AI algorithms

• Specifying resource requirements - not always correctly
understood

• Replication of GCS - single point of failure so requirement for
fault tolerance

13



Conclusion



Conclusion

• Dynamic task graphs, GCS, bottom-up distributed scheduler, and
actor programming model make Ray unique contribution

• Scalability and performance make Ray useful for modern AI
applications

• Minor criticism around redundant architecture implementations

14



References i

Derek G Murray, Malte Schwarzkopf, Christopher Smowton,
Steven Smith, Anil Madhavapeddy, and Steven Hand.
Ciel: a universal execution engine for distributed data-flow
computing.
In Proc. 8th ACM/USENIX Symposium on Networked Systems
Design and Implementation, pages 113–126, 2011.

Matthew Rocklin.
Dask: Parallel computation with blocked algorithms and task
scheduling.
In Proceedings of the 14th Python in Science Conference, number
130-136. Citeseer, 2015.

15



References ii

Jeffrey Dean and Sanjay Ghemawat.
Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

Moshe Looks, Marcello Herreshoff, DeLesley Hutchins, and Peter
Norvig.
Deep learning with dynamic computation graphs.
arXiv preprint arXiv:1702.02181, 2017.

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang.
Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems.
arXiv preprint arXiv:1512.01274, 2015.

16


	Introduction
	Problem Statement
	Background
	Related Work

	Methodology
	Overview
	Programming model
	Architecture

	Analysis
	Results
	Critical Analysis

	Conclusion

