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Introduction



Problem Statement

Need for a computation framework that supports heterogeneous
and dynamic computation graphs, while handling millions of tasks
per second with millisecond-level latencies.



Background

- High-performance, distributed execution framework for Python

- Key features include:
- Heterogeneous, concurrent computations
- Dynamic task graphs
- High-throughput and low-latency scheduling
- Transparent fault tolerance
- Task-parallel and actor programming models
- Horizontally scalable

- Applications:
- Reinforcement learning
- Hyperparameter tuning
- Distributed training



- CIELM, Dask(?!
- Supports dynamic task graphs
- Centralized scheduling architecture
- No actor abstraction

- MapReducel!

- Implement BSP execution model
- No actor abstraction
- Centralized scheduling architecture

- TensorFlow Fold!®l, MxNetl®]

- Cannot modify DAG in response to task progress, task completion
times, or faults



Methodology




Overview

Goal

- Implement a distributed framework suitable for modern Al
applications

Requirements
- Flexibility - Functionality, duration, resource types
- Performance - scheduling

- Ease of development



Methodology - Programming model

- Remote functions return

futures - get(), wait()
- Can specify resource e )
allocation for remote g%
. . ;flﬂulaﬂon/c
functions at run time o> =
- Supports nested remote 4
functions < smtont

- Actor abstraction - Stateful
edge to computation graph
(data and control)

Figure 1: Nested remote functions



Methodology - Architecture

- Application layer
- Driver - executes user
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- Global Control Store (GCS)

- Bottom-up distributed
scheduler Figure 2: Architecture overview

- In-memory distributed
object store - Apache Arrow



Architecture - Global Control Store (GCS)

- Stores all metadata and state information
- Supports pub-sub infrastructure for internal communication

- Enables system to be stateless - enabling easy horizontal
scalability

- Scaling achieved through sharding



Architecture - Bottom-up distributed scheduler

- Global scheduler with

Node 1 | | Node N[ |
per—node local SChed u lerS Driver | | Worker | | Worker Worker Worker
W R

- Tasks submitted to node’s Loca Schealr |
local scheduler first

- Conditions under which

Local Scheduler

tate (GCS)

Global
Scheduler Scheduler

global scheduler is invoked:
g Submit == Schedule ==> Load
. Overloaded — tasks —> tasks = ----» info
~ Cannot satisfy task Figure 3: Bottom-up distributed
requirements scheduler

- Task inputs remote



Architecture - Overview
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Figure 4: Overview of task execution Figure 5: Overview of result retrieval
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Results - System
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Figure 6: End-to-end scalability

- Linear

- 1.8M tasks per second
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Figure 7: Object store performance

- Peak throughput > 15 GB/s
- Peak IOPS 18K
- 56 us per operation
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Results - RL Application
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Figure 8: ES implementation

- Evolution Strategies (ES)

Humanoid-v1 task

- Scaled to 8192 cores vs 1024

- 3.7 minutes vs 10 minutes
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Figure 9: PPO application

- Proximal Policy Optimization
(PPO)

- Ability to specify resource
requirements



Critical Analysis

- Fault tolerance - potentially redundant due to statistical
properties of most Al algorithms

- Specifying resource requirements - not always correctly
understood

- Replication of GCS - single point of failure so requirement for
fault tolerance



Conclusion




Conclusion

- Dynamic task graphs, GCS, bottom-up distributed scheduler, and
actor programming model make Ray unique contribution

- Scalability and performance make Ray useful for modern Al

applications
- Minor criticism around redundant architecture implementations
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