Ray
A Distributed Framework for Emerging Al Applications

R. Nishihara, P. Moritz, et al
October 17, 2018

University of California, Berkeley

Presented by: Devin Taylor

Table of contents

1. Introduction
Problem Statement
Background

Related Work
2. Methodology

Overview
Programming model

Architecture
3. Analysis

Results
Critical Analysis

4. Conclusion

Introduction

Problem Statement

Need for a computation framework that supports heterogeneous
and dynamic computation graphs, while handling millions of tasks
per second with millisecond-level latencies.

Background

- High-performance, distributed execution framework for Python

- Key features include:
- Heterogeneous, concurrent computations
- Dynamic task graphs
- High-throughput and low-latency scheduling
- Transparent fault tolerance
- Task-parallel and actor programming models
- Horizontally scalable

- Applications:
- Reinforcement learning
- Hyperparameter tuning
- Distributed training

- CIELM, Dask(?!
- Supports dynamic task graphs
- Centralized scheduling architecture
- No actor abstraction

- MapReducel!

- Implement BSP execution model
- No actor abstraction
- Centralized scheduling architecture

- TensorFlow Fold!®l, MxNetl®]

- Cannot modify DAG in response to task progress, task completion
times, or faults

Methodology

Overview

Goal

- Implement a distributed framework suitable for modern Al
applications

Requirements
- Flexibility - Functionality, duration, resource types
- Performance - scheduling

- Ease of development

Methodology - Programming model

- Remote functions return

futures - get(), wait()
- Can specify resource e)
allocation for remote g%
. . ;flﬂulaﬂon/c
functions at run time o> =
- Supports nested remote 4
functions < smtont

- Actor abstraction - Stateful
edge to computation graph
(data and control)

Figure 1: Nested remote functions

Methodology - Architecture

- Application layer
- Driver - executes user

. Node Node Node
program 5 [ower [| orar | vt
- Worker - executes remote 2 == _
B ‘ Object Store — Object Store Object Store
functions | |[Cocatscheduter || | ocal schouter]| [Local schecuier
- Actor - executes methods it H
exnoses s | Global Control State (GCS) :‘ Web UI
3 ject Table ,’l
’ o b o] | o)
: SyStem layer @ [Function Table | ‘{ Profilng Tools ‘
Eenlces ™ Error Diagnosis
- Global Control Store (GCS)

- Bottom-up distributed
scheduler Figure 2: Architecture overview

- In-memory distributed
object store - Apache Arrow

Architecture - Global Control Store (GCS)

- Stores all metadata and state information
- Supports pub-sub infrastructure for internal communication

- Enables system to be stateless - enabling easy horizontal
scalability

- Scaling achieved through sharding

Architecture - Bottom-up distributed scheduler

- Global scheduler with

Node 1 | | Node N[|
per—node local SChed u lerS Driver | | Worker | | Worker Worker Worker
W R

- Tasks submitted to node’s Loca Schealr |
local scheduler first

- Conditions under which

Local Scheduler

tate (GCS)

Global
Scheduler Scheduler

global scheduler is invoked:
g Submit == Schedule ==> Load
. Overloaded — tasks —> tasks = ----» info
~ Cannot satisfy task Figure 3: Bottom-up distributed
requirements scheduler

- Task inputs remote

Architecture - Overview

N1 Global Control State (GCS) N2 N1 Global Control State (GCS) N2
Diver e —— Worker Driver Function Table Worker
@ray.remote @ray.remote. ‘@ray.remote. @ray.remote @ray.remote @ray.remote
def add(a, b): def add(a, b) def add(a, b): def add(a, b) def add(a, by
rowmarh | retuma +b retuma +b retuma +b retuma+b
id_ = add.remote(a, b;
i Object Table Object Table
/ id, [N1 9| w (% N1
; id, | N2 IO} Object store () @[N2 |
7 - N | (O AL SO
= L @ d.[a] 9o Maa Nd id,[a)] ia,[b]
Local Scheduler Global Scheduler [(4)” ’1 eI | Local Scheduler s Saheduer Local Scheduler

Figure 4: Overview of task execution Figure 5: Overview of result retrieval

Analysis

Results - System

tasks per second (millions)

OCOoOoO0OoKHR PR

oNPO®ONDO®
\

10 20 30 40 50 60 100
number of nodes

Figure 6: End-to-end scalability

- Linear

- 1.8M tasks per second

20000

15000

g
% 10000

5000

1KB 10KB 100KB 1MB 10MB 100MB 1GB
object size

Figure 7: Object store performance

- Peak throughput > 15 GB/s
- Peak IOPS 18K
- 56 us per operation

1

Results - RL Application

Mean time to solve (minutes)

=3
=3

Y
o

N
S

N
5

o

W Reference ES

Ray ES
X Xpln X
256 512 1024 2048 4096 8192

Number of CPUs

Figure 8: ES implementation

- Evolution Strategies (ES)

Humanoid-v1 task

- Scaled to 8192 cores vs 1024

- 3.7 minutes vs 10 minutes

w s w
S o o
=) 5

N
o
=)

=
o
5

Mean time to solve (minutes)

= MPI PPO
Ray PPO

5]

o

8x1 16x2 32x4 64x8 128x16 256x32 512x64
CPUs x GPUs

Figure 9: PPO application

- Proximal Policy Optimization
(PPO)

- Ability to specify resource
requirements

Critical Analysis

- Fault tolerance - potentially redundant due to statistical
properties of most Al algorithms

- Specifying resource requirements - not always correctly
understood

- Replication of GCS - single point of failure so requirement for
fault tolerance

Conclusion

Conclusion

- Dynamic task graphs, GCS, bottom-up distributed scheduler, and
actor programming model make Ray unique contribution

- Scalability and performance make Ray useful for modern Al

applications
- Minor criticism around redundant architecture implementations

14

References i

3 Derek G Murray, Malte Schwarzkopf, Christopher Smowton,
Steven Smith, Anil Madhavapeddy, and Steven Hand.
Ciel: a universal execution engine for distributed data-flow
computing.
In Proc. 8th ACM/USENIX Symposium on Networked Systems
Design and Implementation, pages 113-126, 2011.

[Matthew Rocklin.
Dask: Parallel computation with blocked algorithms and task
scheduling.
In Proceedings of the 14th Python in Science Conference, number
130-136. Citeseer, 2015.

References ii

[Jeffrey Dean and Sanjay Ghemawat.
Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107-113, 2008.

@ Moshe Looks, Marcello Herreshoff, DeLesley Hutchins, and Peter
Norvig.
Deep learning with dynamic computation graphs.
arXiv preprint arXiv:1702.02181, 2017.

@ Tiangi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang.
Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems.
arXiv preprint arXiv:1512.01274, 2015.

16

	Introduction
	Problem Statement
	Background
	Related Work

	Methodology
	Overview
	Programming model
	Architecture

	Analysis
	Results
	Critical Analysis

	Conclusion

