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Introduction



Problem Statement

Need for a computation framework that supports heterogeneous
and dynamic computation graphs, while handling millions of tasks
per second with millisecond-level latencies.
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Background

• High-performance, distributed execution framework for Python
• Key features include:

• Heterogeneous, concurrent computations
• Dynamic task graphs
• High-throughput and low-latency scheduling
• Transparent fault tolerance
• Task-parallel and actor programming models
• Horizontally scalable

• Applications:
• Reinforcement learning
• Hyperparameter tuning
• Distributed training

3



Related Work

• CIEL[1], Dask[2]

• Supports dynamic task graphs
• Centralized scheduling architecture
• No actor abstraction

• MapReduce[3]

• Implement BSP execution model
• No actor abstraction
• Centralized scheduling architecture

• TensorFlow Fold[4], MXNet[5]

• Cannot modify DAG in response to task progress, task completion
times, or faults
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Methodology



Overview

Goal

• Implement a distributed framework suitable for modern AI
applications

Requirements

• Flexibility - Functionality, duration, resource types
• Performance - scheduling
• Ease of development
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Methodology - Programming model

• Remote functions return
futures - get(), wait()

• Can specify resource
allocation for remote
functions at run time

• Supports nested remote
functions

• Actor abstraction - Stateful
edge to computation graph
(data and control)

Figure 1: Nested remote functions
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Methodology - Architecture

• Application layer
• Driver - executes user
program

• Worker - executes remote
functions

• Actor - executes methods it
exposes

• System layer
• Global Control Store (GCS)
• Bottom-up distributed
scheduler

• In-memory distributed
object store - Apache Arrow

Figure 2: Architecture overview
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Architecture - Global Control Store (GCS)

• Stores all metadata and state information
• Supports pub-sub infrastructure for internal communication
• Enables system to be stateless - enabling easy horizontal
scalability

• Scaling achieved through sharding
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Architecture - Bottom-up distributed scheduler

• Global scheduler with
per-node local schedulers

• Tasks submitted to node’s
local scheduler first

• Conditions under which
global scheduler is invoked:

• Overloaded
• Cannot satisfy task
requirements

• Task inputs remote

Figure 3: Bottom-up distributed
scheduler
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Architecture - Overview

Figure 4: Overview of task execution Figure 5: Overview of result retrieval
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Analysis



Results - System

Figure 6: End-to-end scalability

• Linear
• 1.8M tasks per second

Figure 7: Object store performance

• Peak throughput > 15 GB/s
• Peak IOPS 18K
• 56 µs per operation
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Results - RL Application

Figure 8: ES implementation

• Evolution Strategies (ES)
Humanoid-v1 task

• Scaled to 8192 cores vs 1024
• 3.7 minutes vs 10 minutes

Figure 9: PPO application

• Proximal Policy Optimization
(PPO)

• Ability to specify resource
requirements
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Critical Analysis

• Fault tolerance - potentially redundant due to statistical
properties of most AI algorithms

• Specifying resource requirements - not always correctly
understood

• Replication of GCS - single point of failure so requirement for
fault tolerance
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Conclusion



Conclusion

• Dynamic task graphs, GCS, bottom-up distributed scheduler, and
actor programming model make Ray unique contribution

• Scalability and performance make Ray useful for modern AI
applications

• Minor criticism around redundant architecture implementations
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