Ray

A Distributed Framework for Emerging AI Applications

R. Nishihara, P. Moritz, et al October 17, 2018

University of California, Berkeley

Presented by: Devin Taylor

Table of contents

- 1. Introduction
 - Problem Statement
 - Background
 - Related Work
- 2. Methodology
 - Overview
 - Programming model
 - Architecture
- 3. Analysis
 - Results
 - Critical Analysis
- 4. Conclusion

Introduction

Need for a computation framework that supports heterogeneous and dynamic computation graphs, while handling millions of tasks per second with millisecond-level latencies.

Background

- High-performance, distributed execution framework for Python
- Key features include:
 - Heterogeneous, concurrent computations
 - Dynamic task graphs
 - High-throughput and low-latency scheduling
 - Transparent fault tolerance
 - Task-parallel and actor programming models
 - Horizontally scalable
- Applications:
 - Reinforcement learning
 - Hyperparameter tuning
 - Distributed training

Related Work

- CIEL^[1], Dask^[2]
 - Supports dynamic task graphs
 - Centralized scheduling architecture
 - \cdot No actor abstraction
- MapReduce^[3]
 - Implement BSP execution model
 - No actor abstraction
 - Centralized scheduling architecture
- TensorFlow Fold^[4], MXNet^[5]
 - Cannot modify DAG in response to task progress, task completion times, or faults

Methodology

Goal

• Implement a distributed framework suitable for modern AI applications

Requirements

- Flexibility Functionality, duration, resource types
- Performance scheduling
- Ease of development

- Remote functions return
 futures get(), wait()
- Can specify resource allocation for remote functions at run time
- Supports nested remote functions
- Actor abstraction Stateful edge to computation graph (data and control)

Figure 1: Nested remote functions

Methodology - Architecture

- Application layer
 - Driver executes user program
 - Worker executes remote functions
 - Actor executes methods it exposes
- System layer
 - Global Control Store (GCS)
 - Bottom-up distributed scheduler
 - In-memory distributed object store - Apache Arrow

Figure 2: Architecture overview

- Stores all metadata and state information
- Supports pub-sub infrastructure for internal communication
- Enables system to be stateless enabling easy horizontal scalability
- Scaling achieved through sharding

Architecture - Bottom-up distributed scheduler

- Global scheduler with per-node local schedulers
- Tasks submitted to node's local scheduler first
- Conditions under which global scheduler is invoked:
 - Overloaded
 - Cannot satisfy task requirements
 - Task inputs remote

Figure 3: Bottom-up distributed scheduler

Architecture - Overview

Figure 4: Overview of task execution

Figure 5: Overview of result retrieval

Analysis

Figure 6: End-to-end scalability

- Linear
- 1.8M tasks per second

Figure 7: Object store performance

- Peak throughput > 15 GB/s
- Peak IOPS 18K
- \cdot 56 μ s per operation

Results - RL Application

Figure 8: ES implementation

- Evolution Strategies (ES) Humanoid-v1 task
- Scaled to 8192 cores vs 1024
- 3.7 minutes vs 10 minutes

Figure 9: PPO application

- Proximal Policy Optimization (PPO)
- Ability to specify resource requirements

- Fault tolerance potentially redundant due to statistical properties of most AI algorithms
- Specifying resource requirements not always correctly understood
- Replication of GCS single point of failure so requirement for fault tolerance

Conclusion

- Dynamic task graphs, GCS, bottom-up distributed scheduler, and actor programming model make Ray unique contribution
- Scalability and performance make Ray useful for modern AI applications
- Minor criticism around redundant architecture implementations

References i

 Derek G Murray, Malte Schwarzkopf, Christopher Smowton, Steven Smith, Anil Madhavapeddy, and Steven Hand.
 Ciel: a universal execution engine for distributed data-flow computing.

In Proc. 8th ACM/USENIX Symposium on Networked Systems Design and Implementation, pages 113–126, 2011.

📔 Matthew Rocklin.

Dask: Parallel computation with blocked algorithms and task scheduling.

In *Proceedings of the 14th Python in Science Conference*, number 130-136. Citeseer, 2015.

References ii

- Jeffrey Dean and Sanjay Ghemawat.
 Mapreduce: simplified data processing on large clusters.
 Communications of the ACM, 51(1):107–113, 2008.
- Moshe Looks, Marcello Herreshoff, DeLesley Hutchins, and Peter Norvig.

Deep learning with dynamic computation graphs. *arXiv preprint arXiv:1702.02181, 2017.*

 Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang.
 Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015.