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Background Details

• Authors: Derek Murray, Malte Schwarzkopf, Christopher Smowton, 
Steven Smith, Anil Madhavapeddy and Steven Hand

• Product of the University of Cambridge Computer Laboratory

• Published in 2011 at the NSDI Conference
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Limitations of Existing Platforms
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MapReduce [1,4,9] Dryad [5,6]
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Limitations of Existing Platforms
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MapReduce Dryad

Issue: task graph is fixed, so iteration is 
difficult
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Adding Iteration to Hadoop with Mahout [2]
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Problems: 
1. Job overhead every iteration 
2. No fault-tolerance between iterations 
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Ciel’s Dynamic Task Graph

Ciel enables a dynamic graph by allowing tasks to create follow-up tasks
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Preventing Cycles
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A child task can depend only on:

1. Concrete references

2. Future references from already
running tasks
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Preventing Cycles
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A child task can depend only on:

1. Concrete references

2. Future references from already
running tasks
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System Architecture
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Object Table: Maintains 
references to objects stored on 
workers

Worker Table: Holds worker 
nodes and used to track their 
health

Task Table: Contains references 
to spawned tasks, as well as 
their dependencies
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Scheduling Tasks
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Scheduling is done using lazy evaluation:

1. Evaluate starting from the root task

2. For each subsequent task:

a. If the task has concrete dependencies, evaluate it

b. Otherwise, recursively evaluate tasks needed to resolve 
dependencies and unblock this task

Tasks are dispatched to workers who are nearest to the data
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Performance Optimization: Memoization

• Tasks are deterministic

• Objects are given unique names using properties of the parent task

• Object name and reference stored in master’s object table

• If an object already exists, it is reused instead of recomputed

• Reduces runtime during computations which involve repetitive tasks
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Performance Optimization: Streaming

Some tasks do not need the entire input object to start making progress
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Recovering From Failures

Worker failures are detected using periodic heartbeat messages
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Recovering From Failures

Worker failures are detected using periodic heartbeat messages
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1. Master invalidates object 
references at the failed 
worker

2. Master schedules the re-
computation of any lost 
object according to the lazy 
policy



Introduction Contributions Critique Conclusion

Recovering From Failures
Master failures are also detected using periodic heartbeat messages
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Creating Ciel Jobs

17

Skywriting is an interpreted language created to run Ciel jobs
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To boost performance, 
Skywriting tasks can make calls 
to procedures written in other 
languages
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Performance Evaluation
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Iteration Length on K-Means Cluster Utilization on K-Means

Ciel outperforms Hadoop when running both Grep and K-Means

Execution Time on Grep

Graphs taken from [8]
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Performance Evaluation
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Speedup Using Streaming Cluster Utilization

Binomial Operations Pricing Failed Master During Iteration

Graphs taken from [8]
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Criticism

1. Ciel’s execution is never compared to a more optimized iterative
platform such as HaLoop [3]

2. Number of trials during testing never specified

3. Streaming optimization demonstrated but never compared to 
another system

4. Ciel does not use multiple cores on worker nodes while scheduling
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Selection of Related Work

1. Hive enables SQL-like queries to be executed on large datasets using
Hadoop [10]

2. Spark allows for iterative tasks and derives its efficiency from in-
memory computation [11, 12]

3. Naiad uses cycles in its execution graph to enable low latency 
processing of streams, as well as iterative and incremental tasks [7]
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Conclusion

1. Distributed data processing engine meant for general purpose tasks

2. Dynamic task allocation enables efficient iterative computations

3. Fault-tolerant design with automatic recovery

4. Scripting language Skywriting used to construct Ciel jobs

5. Empirically outperforms Hadoop on iterative tasks
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Questions?
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