
1

Ciel: A Universal Execution Engine
For Distributed Data-Flow Computing

Presented by: Tejas Kannan
Date: 17/10/2018

Outline

1. Introduction

2. Implementation and Contributions

3. Critique and Further Reading

4. Conclusion

2

Introduction Contributions Critique Conclusion

Background Details

• Authors: Derek Murray, Malte Schwarzkopf, Christopher Smowton,
Steven Smith, Anil Madhavapeddy and Steven Hand

• Product of the University of Cambridge Computer Laboratory

• Published in 2011 at the NSDI Conference

3

Introduction Contributions Critique Conclusion

Limitations of Existing Platforms

4

MapReduce [1,4,9] Dryad [5,6]

Introduction Contributions Critique Conclusion

Limitations of Existing Platforms

5

MapReduce Dryad

Issue: task graph is fixed, so iteration is
difficult

Introduction Contributions Critique Conclusion

Adding Iteration to Hadoop with Mahout [2]

6

Mahout
Driver

Hadoop
Cluster

Job

Result

Check Stop
Condition

Problems:
1. Job overhead every iteration
2. No fault-tolerance between iterations

Introduction Contributions Critique Conclusion

Ciel’s Dynamic Task Graph

Ciel enables a dynamic graph by allowing tasks to create follow-up tasks

7

A

u

z

B C

D

x y

v w

Child Task

Concrete Object

Future Object

Diagram recreated from [8]

Root Task

Introduction Contributions Critique Conclusion

Preventing Cycles

8

A child task can depend only on:

1. Concrete references

2. Future references from already
running tasks

C

B

A

x y

z

Parent Task

Concrete Object Future Object

Child Task

Already
Started Task

Legal Child Task

Introduction Contributions Critique Conclusion

Preventing Cycles

9

A child task can depend only on:

1. Concrete references

2. Future references from already
running tasks

C

B

A

x y

z

Parent Task

Concrete Object Future Object

Child Task

Not Started
Task

Illegal Child Task

Introduction Contributions Critique Conclusion

System Architecture

10

Object Table: Maintains
references to objects stored on
workers

Worker Table: Holds worker
nodes and used to track their
health

Task Table: Contains references
to spawned tasks, as well as
their dependencies

Object
Table

Worker
Table

Task
Table

Master Worker

Object
Store

Ex
ec

u
to

r I/O

Sc
h

ed
u

le
r

Publish
Object

Spawn
Child Task

Dispatch
Task

Diagram recreated from [8]

Introduction Contributions Critique Conclusion

Scheduling Tasks

11

Scheduling is done using lazy evaluation:

1. Evaluate starting from the root task

2. For each subsequent task:

a. If the task has concrete dependencies, evaluate it

b. Otherwise, recursively evaluate tasks needed to resolve
dependencies and unblock this task

Tasks are dispatched to workers who are nearest to the data

Introduction Contributions Critique Conclusion

Performance Optimization: Memoization

• Tasks are deterministic

• Objects are given unique names using properties of the parent task

• Object name and reference stored in master’s object table

• If an object already exists, it is reused instead of recomputed

• Reduces runtime during computations which involve repetitive tasks

12

Introduction Contributions Critique Conclusion

Performance Optimization: Streaming

Some tasks do not need the entire input object to start making progress

13

Producer
Task

Consumer
Task

Data Pipe

Local
Disk

Data written to
local disk too in
case of stream
failure

Introduction Contributions Critique Conclusion

Recovering From Failures

Worker failures are detected using periodic heartbeat messages

14

Master

Worker

Worker

Worker

Heartbeat
Message

Introduction Contributions Critique Conclusion

Recovering From Failures

Worker failures are detected using periodic heartbeat messages

15

Master

Worker

Worker

Worker

Heartbeat
Message

1. Master invalidates object
references at the failed
worker

2. Master schedules the re-
computation of any lost
object according to the lazy
policy

Introduction Contributions Critique Conclusion

Recovering From Failures
Master failures are also detected using periodic heartbeat messages

16

Master

Worker

Worker

Worker

Heartbeat
Message

2nd

Master

Log Descriptors of
Tasks On recovery, a master

node can rebuild its
object table using the
workers’ object stores

Introduction Contributions Critique Conclusion

Creating Ciel Jobs

17

Skywriting is an interpreted language created to run Ciel jobs

Skywriting
Code

Java

.NET

SW

Execu
to

r

To boost performance,
Skywriting tasks can make calls
to procedures written in other
languages

Introduction Contributions Critique Conclusion

Performance Evaluation

18

Iteration Length on K-Means Cluster Utilization on K-Means

Ciel outperforms Hadoop when running both Grep and K-Means

Execution Time on Grep

Graphs taken from [8]

Introduction Contributions Critique Conclusion

Performance Evaluation

19

Speedup Using Streaming Cluster Utilization

Binomial Operations Pricing Failed Master During Iteration

Graphs taken from [8]

Introduction Contributions Critique Conclusion

Criticism

1. Ciel’s execution is never compared to a more optimized iterative
platform such as HaLoop [3]

2. Number of trials during testing never specified

3. Streaming optimization demonstrated but never compared to
another system

4. Ciel does not use multiple cores on worker nodes while scheduling

20

Introduction Contributions Critique Conclusion

Selection of Related Work

1. Hive enables SQL-like queries to be executed on large datasets using
Hadoop [10]

2. Spark allows for iterative tasks and derives its efficiency from in-
memory computation [11, 12]

3. Naiad uses cycles in its execution graph to enable low latency
processing of streams, as well as iterative and incremental tasks [7]

21

Introduction Contributions Critique Conclusion

Conclusion

1. Distributed data processing engine meant for general purpose tasks

2. Dynamic task allocation enables efficient iterative computations

3. Fault-tolerant design with automatic recovery

4. Scripting language Skywriting used to construct Ciel jobs

5. Empirically outperforms Hadoop on iterative tasks

22

Introduction Contributions Critique Conclusion

References

[1] Apache hadoop. https://hadoop.apache.org/.

[2] Apache mahout. https://mahout.apache.org/.

[3] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D Ernst. Haloop: efficient iterative data processing on large clusters. Proceedings of the VLDB Endowment, 3(1-2):285–
296, 2010.

[4] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[5] Yuan Yu Michael Isard Dennis Fetterly, Mihai Budiu, Ulfar Erlingsson, and Pradeep Kumar Gunda Jon Currey. Dryadlinq: A system for general-purpose distributed data-parallel
computing using a high-level language. Proc. LSDS-IR, page 8, 2009.

[6] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: distributed data-parallel programs from sequential building blocks. In ACM SIGOPS operating
systems review, volume 41, pages 59–72. ACM, 2007.

[7] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and Martín Abadi. Naiad: a timely dataflow system. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, pages 439–455. ACM, 2013.

[8] Derek G Murray, Malte Schwarzkopf, Christopher Smowton, Steven Smith, Anil Madhavapeddy, and Steven Hand. Ciel: a universal execution engine for distributed data-flow
computing. In Proc. 8thACM/USENIX Symposium on Networked Systems Design and Implementation, pages 113–126, 2011.

[9] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The hadoop distributed filesystem. In Mass storage systems and technologies (MSST), 2010 IEEE 26th
symposium on, pages 1–10.Ieee, 2010.

[10] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive: a warehousing solution over a
map-reduce framework. Proceedings of the VLDB Endowment, 2(2):1626–1629, 2009.

[11] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley,Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation. USENIX
Association, 2012.

[12] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica. Spark: Cluster computing with working sets. HotCloud, 10(10-10):95, 2010.

23

Introduction Contributions Critique Conclusion

Questions?

24

