
Distributed Deep Neural Networks
over the Cloud, the Edge and End Devices

Surat Teerapittayanon
Harvard University

Cambridge, MA, USA
Email: steerapi@seas.harvard.edu

Bradley McDanel
Harvard University

Cambridge, MA, USA
Email: mcdanel@fas.harvard.edu

H.T. Kung
Harvard University

Cambridge, MA, USA
Email: kung@harvard.edu

Abstract—We propose distributed deep neural networks
(DDNNs) over distributed computing hierarchies, consisting of
the cloud, the edge (fog) and end devices. While being able to
accommodate inference of a deep neural network (DNN) in the
cloud, a DDNN also allows fast and localized inference using
shallow portions of the neural network at the edge and end
devices. When supported by a scalable distributed computing
hierarchy, a DDNN can scale up in neural network size and
scale out in geographical span. Due to its distributed nature,
DDNNs enhance sensor fusion, system fault tolerance and data
privacy for DNN applications. In implementing a DDNN, we
map sections of a DNN onto a distributed computing hierarchy.
By jointly training these sections, we minimize communication
and resource usage for devices and maximize usefulness of
extracted features which are utilized in the cloud. The resulting
system has built-in support for automatic sensor fusion and
fault tolerance. As a proof of concept, we show a DDNN
can exploit geographical diversity of sensors to improve object
recognition accuracy and reduce communication cost. In our
experiment, compared with the traditional method of offloading
raw sensor data to be processed in the cloud, DDNN locally
processes most sensor data on end devices while achieving high
accuracy and is able to reduce the communication cost by a
factor of over 20x.

Keywords-distributed deep neural networks; deep neural net-
works; dnn; ddnn; embedded dnn; sensor fusion; distributed
computing hierarchies; edge computing; cloud computing

I. INTRODUCTION

Neural networks (NNs), and deep neural networks
(DNNs) in particular, have achieved great success in numer-
ous applications in recent years. For example, deep Con-
volutional Neural Networks (CNNs) continuously achieve
state-of-the-art performances on various tasks in computer
vision as shown in Figure 1. At the same time, the number
of end devices, including Internet of Things (IoT) devices,
has increased dramatically. These devices are appealing
targets for machine learning applications as they are often
directly connected to sensors (e.g., cameras, microphones,
gyroscopes) that capture a large quantity of input data in a
streaming fashion.

However, the current state of machine learning systems
on end devices leaves an unsatisfactory choice: either (1)
offload input sensor data to large NN models (e.g., DNNs) in
the cloud, with the associated communication costs, latency

issues and privacy concerns, or (2) perform classification
directly on the end device using simple Machine Learning
(ML) models e.g., linear Support Vector Machine (SVM),
leading to reduced system accuracy.

To address these shortcomings, it is natural to consider
the use of a distributed computing approach. Hierarchically
distributed computing structures consisting of the cloud,
the edge and devices (see, e.g., [1], [2]) have inherent
advantages, such as supporting coordinated central and local
decisions, and providing system scalability, for large-scale
intelligent tasks based on geographically distributed IoT
devices.

An example of one such distributed approach is to com-
bine a small NN1 model (less number of parameters) on end
devices and a larger NN model (more number of parameters)
in the cloud. The small model at an end device can quickly
perform initial feature extraction, and also classification if
the model is confident. Otherwise, the end device can fall
back to the large NN model in the cloud, which performs
further processing and final classification. This approach
has the benefit of low communication costs compared to
always offloading NN input to the cloud and can achieve
higher accuracy compared to a simple model on device.
Additionally, since a summary based on extracted features
from the end device model are sent instead of raw sensor
data, the system could provide better privacy protection.

However, this kind of distributed approach over a com-
puting hierarchy is challenging for a number of reasons,
including:

• End devices such as embedded sensor nodes often have
limited memory and battery budgets. This makes it an
issue to fit models on the devices that meet the required
accuracy and energy constraints.

• A straightforward partitioning of NN models over a
computing hierarchy may incur prohibitively large com-
munication costs in transferring intermediate results
between computation nodes.

1The term network layer may refer to either a layer in a NN or a layer
in the distributed computing hierarchy (e.g., edge or cloud). In order to
remove ambiguity, when we refer to network layers for NN we explicitly
use the term NN layers.

• Incorporating geographically distributed end devices is
generally beyond the scope of DNN literature. When
multiple sensor inputs on different end devices are
used, they need to be aggregated together for a single
classification objective. A trained NN will need to
support such sensor fusion.

• Multiple models at the cloud, the edge and the device
need to be learned jointly to allow coordinated decision
making. Computation already performed on end device
models should be useful for further processing on edge
or cloud models.

• Usual layer-by-layer processing of a DNN from the
NN’s input layer all the way to the NN’s output layer
does not directly provide a mechanism for local and
fast inference at earlier points in the neural networks
(e.g., end devices).

• A balance is needed between the accuracy of a model
(with the associated model size) at a given distributed
computing layer and the cost of communicating to the
layer above it. The solution must have reasonably good
lower NN layers on the end devices capable of accurate
local classification for some input while also providing
useful features for classification in the cloud for other
input.

To address these concerns under the same optimization
framework, it is desirable that a system could train a single
end-to-end model, such as a DNN, and partition it between
end devices and the cloud2, in order to provide a simpler
and more principled approach.

To this end, we propose distributed deep neural networks
(DDNNs) over distributed computing hierarchies, consisting
of the cloud, the edge (fog) and geographically distributed
end devices. In implementing a DDNN, we map sections of
a single DNN onto a distributed computing hierarchy. By
jointly training these sections, we show that DDNNs can
effectively address the aforementioned challenges. Specifi-
cally, while being able to accommodate inference of a DNN
in the cloud, a DDNN allows fast and localized inference
using some shallow portions of the DNN at the edge and
end devices. Moreover, via distributed computing, DDNNs
naturally enhance sensor fusion, data privacy and system
fault tolerance for DNN applications. When supported by a
scalable distributed computing hierarchy, a DDNN can scale
up in neural network size and scale out in geographical span.

DDNN leverages our earlier work on BranchyNet [3]
which allows early exit points to be placed in a DNN.
Samples can be classified and exited locally when the system
is confident and offloaded to the edge and the cloud when ad-
ditional processing is required. In addition, DDNN leverages
the recent work of binary neural networks (BNNs) [4], which

2For presentation simplicity, we often just consider the device-cloud
scenario. Our methodology can similarly apply to general device-edge
(fog)-cloud scenarios.

LeNet
(1998)

5 Layers

AlexNet
(2012)

8 Layers

VGGNet
(2014)

19 Layers

GoogLeNet
(2014)

22 Layers

ResNet
(2015)

152 Layers

(34-layer version)

Figure 1. Progression towards deeper neural network structures in recent
years (see, e.g., [6], [7], [8], [9], [10]).

greatly reduce the required memory cost of neural network
layers and enables multi-layer NNs to run on end devices
with small memory footprints [5]. By training DDNN end-
to-end, the network optimally configures lower NN layers to
support local inference at end devices, and higher NN layers
in the cloud to improve overall classification accuracy of the
system. As a proof of concept, we show a DDNN can exploit
geographical diversity of sensors (on a multi-view multi-
camera dataset) in sensor fusion to improve recognition
accuracy.

The contributions of this paper include
1) A novel DDNN framework and its implementation that

maps sections of a DNN onto a distributed computing
hierarchy.

2) A joint training method that minimizes communica-
tion and resource usage for devices and maximizes
usefulness of extracted features which are utilized in
the cloud, while allowing low-latency classification via
early exit for a high percentage of input samples.

3) Aggregation schemes that allows automatic sensor
fusion of multiple sensor inputs to improve the overall
performance (accuracy and fault tolerance) of the
system.

The DDNN codebase is open source and can be found
here: https://github.com/kunglab/ddnn.

II. RELATED WORK

In this section, we briefly review related work in dis-
tributed computing hierarchies and recent deep learning

algorithms that enable our proposed method to run in a dis-
tributed fashion. We then discuss other approaches involving
distributed deep networks.

A. Distributed Computing Hierarchy

The framework of a large-scale distributed computing
hierarchy has assumed new significance in the emerging era
of IoT. It is widely expected that most of data generated
by the massive number of IoT devices must be processed
locally at the devices or at the edge, for otherwise the
total amount of sensor data for a centralized cloud would
overwhelm the communication network bandwidth. In addi-
tion, a distributed computing hierarchy offers opportunities
for system scalability, data security and privacy, as well as
shorter response times (see, e.g., [2], [11]). For example,
in [11], a face recognition application shows a reduced
response time is achieved when a smartphone’s photos are
proceeded by the edge (fog) as opposed to the cloud. In this
paper, we show that DDNN can systematically exploit the
inherent advantages of a distributed computing hierarchy for
DNN applications and achieve similar benefits.

B. Deep Neural Network Extensions

Binarized neural networks (BNNs) are a recent type of
neural networks, where the weights in linear and convolu-
tional layers are constrained to {−1, 1} (stored as 0 and 1
respectively). This representation has been shown to achieve
similar classification accuracy for some datasets such as
MNIST and CIFAR-10 [12] when compared to a standard
floating-point neural network while using less memory and
reduced computation due to the binary format [4]. Embedded
binarized neural networks (eBNNs) extends BNNs to allow
the network to fit on embedded devices by reducing floating-
point temporaries through reordering the operations in in-
ference [5]. These compact models are especially attractive
in end device settings, where memory can be a limiting
factor and low power consumption is required. In DDNN,
we use BNNs, eBNNs and the alike to accommodate the
end devices, so that they can be jointly trained with the NN
layers in the edge and cloud.

BranchyNet proposed a solution of classifying samples at
earlier points in a neural network, called early exit points,
through the use of an entropy-based confidence criteria [3].
If at an early exit point a sample is deemed confident based
on the entropy of the computed probability vector for target
classes, then it is classified and no further computation is
performed by the higher NN layers. In DDNN, exit points
are placed at physical boundaries (e.g., between the last NN
layer on an end device and the first NN layer in the next
higher layer of the distributed computing hierarchy such
as the edge or the cloud). Input samples that can already
be classified early will exit locally, thereby achieving a
lowered response latency and saving communication to the
next physical boundary. With similar objectives, SACT [13]

allocates computation on a per region basis in an image, and
exits each region independently when it is deemed to be of
sufficient quality.

C. Distributed Training of Deep Networks

Current research on distributing deep networks is mainly
focused on improving the runtime of training the neural
network. In 2012, Dean et al. proposed DistBelief, which
maps large DNNs over thousands of CPU cores during
training [14]. More recently, several methods have been
proposed to scale up DNN training across GPU clusters [15],
[16], which further reduces the runtime of network training.
Note that this form of distributing DNNs (over homogeneous
computing units) is fundamentally different from the notion
presented in this paper. We proposes a way to train and
perform feedforward inference over deep networks that can
be deployed over a distributed computing hierarchy, rather
than processed in parallel over bus- or switch-connected
CPUs or GPUs in the cloud.

III. PROPOSED DISTRIBUTED DEEP NEURAL NETWORKS

In this section we give an overview of the proposed
distributed deep neural network (DDNN) architecture and
describe how training and inference in DDNN is performed.

A. DDNN Architecture

DDNN maps a trained DNN onto heterogeneous physical
devices distributed locally, at the edge, and in the cloud.
Since DDNN relies on a jointly trained DNN framework at
all parts in the neural network, for both training and infer-
ence, many of the difficult engineering decisions are greatly
simplified. Figure 2 provides an overview of the DDNN
architecture. The configurations presented show how DDNN
can scale the inference computation across different physical
devices. The cloud-based DDNN in (a) can be viewed as
the standard DNN running in the cloud as described in
the introduction. In this case, sensor input captured on end
devices is sent to the cloud in original format (raw input
format), where all layers of DNN inference is performed.

We can extend this model to include a single end device,
as shown in (b), by performing a portion of the DNN
inference computation on the device rather than sending the
raw input to the cloud. Using an exit point after device
inference, we may classify those samples which the local
network is confident about, without sending any information
to the cloud. For more difficult cases, the intermediate DNN
output (up to the local exit) is sent to the cloud, where
further inference is performed using additional NN layers
and a final classification decision is made. Note that the
intermediate output can be designed to be much smaller than
the sensor input (e.g., a raw image from a video camera),
and therefore drastically reduce the network communication
required between the end device and the cloud. The details

of how communication is considered in the network is
discussed in section III-E.

DDNN can also be extended to multiple end devices
which may be geographically distributed, shown in (c),
that work together to make a classification decision. Here,
each end device performs local computation as in (b), but
their output is aggregated together before the local exit
point. Since the entire DDNN is jointly trained across
all end devices and exit points, the network automatically
aggregates the input with the objective of achieving max-
imum classification accuracy. This automatic data fusion
(sensor fusion) simplifies runtime inference by avoiding the
necessity of manually combining output from multiple end
devices. We will discuss the design of feature aggregation
in detail in section III-B. As before, if the local exit point
is not confident about the sample, each end devices sends
intermediate output to the cloud, where another round of
feature aggregation is performed before making a final
classification decision.

DDNN scales vertically as well, by using an edge layer in
the distributed computing hierarchy between the end devices
and cloud, shown in (d) and (e). The edge acts similarly to
the cloud, by taking output from the end devices, performing
aggregation and classification if possible, and forwarding its
own intermediate output to the cloud if more processing is
needed. In this way, DDNN naturally adjusts the network
communication and response time of the system on a per
sample basis. Samples that can be correctly classified locally
are exiting without any communication to the edge or cloud.
Samples that require more feature extraction than can be pro-
vided locally are sent to the edge, and eventually the cloud
if necessary. Finally, DDNNs can also scale geographically
across the edge layer as well, which is shown in (f).

B. DDNN Aggregation Methods

In DDNN configurations with multiple end devices
(e.g., (c), (e), and (f) in Figure 2), the output from each end
device must be aggregated in order to perform classification.
We present several different schemes for aggregating the
output. Each aggregation method makes different assump-
tions about how the device output should be combined and
therefore can result in different system accuracy. We present
three approaches:

• Max pooling (MP). MP aggregates the input vectors
by taking the max of each component. Mathematically,
max pooling can be written as

v̂j = max
1≤i≤n

vij ,

where n is the number of inputs and vij is the j-
th component of the input vector and v̂j is the j-th
component of the resulting output vector.

• Average pooling (AP). AP aggregates the input vectors
by taking the average of each component. This is

written as

v̂j =

n∑
i=1

vij
n

,

where n is the number of inputs and vij is the j-
th component of the input vector and v̂j is the j-th
component of the resulting output vector. Averaging
may reduce noisy input presented in some end devices.

• Concatenation (CC). CC simply concatenates the input
vectors together. CC retains all information which is
useful for higher layers (e.g., the cloud) that can use
the full information to extract higher level features.
Note that this expands the dimension of the resulting
vector. To map this vector back to the same number
of dimensions as input vectors, we add an additional
linear layer.

We analyzes these aggregation methods in Section IV-C.

C. DDNN Training

While DDNN inference is distributed over the distributed
computing hierarchy, the DDNN system can be trained on a
single powerful server or in the cloud. One aspect of DDNN
that is different from most conventional DNN pipelines is the
use of multiple exit points as shown in Figure 2. At training
time, the loss from each exit is combined during back-
propagation so that the entire network can be jointly trained,
and each exit point achieves good accuracy relative to its
depth. For this work, we follow joint training as described
in GoogleNet [9] and BranchyNet [3].

For the system evaluation discussed in Section IV, we
apply DDNNs to a classification task. We use the softmax
cross entropy loss function as the optimization objective.
We now describe formally how we train DDNNs. Let y be
a one-hot ground-truth label vector, x be an input sample
and C be the set of all possible labels. For each exit, the
softmax cross entropy objective function can be written as

L(ŷ,y; θ) =− 1

|C|
∑
c∈C

yc log ŷc,

where

ŷ = softmax(z) =
exp(z)∑

c∈C

exp(zc)
,

and

z =fexitn(x; θ),

where fexitn is a function representing the computation of
the neural network layers from an entry point to the n-th
exit branch and θ represents the network parameters such as
weights and biases of those layers.

To train the DDNN we form a joint optimization problem
as minimizing a weighted sum of the loss functions of each

Cloud Exit Cloud Exit Cloud Exit

Cloud Exit Cloud Exit

Cloud

Cloud Exit

CloudCloud

Cloud Cloud Cloud

Local Exit Local Exit

Device Device

Local Exit

Device

Local Exit

Device

Local Exit

Device

Edge Exit

Edge

Edge Exit

Edge

Edge Exit

Edge

(a) (b) (c)

(f)(e)(d)

(a) Cloud-based DDN
(b) DDNN over cloud and device
(c) DDNN over cloud and geographically

distributed devices

(d) DDDN over cloud, edge and device
(e) DDNN over cloud, edge and
geographically distributed devices
(f) DDDN over cloud and geographically
distributed edges and devices

Figure 2. Overview of the DDNN architecture. The vertical lines represent the DNN pipeline, which connects the horizontal bars (NN layers). (a) is the
standard DNN (processed entirely in the cloud), (b) introduces end devices and a local exit point that may classify samples before the cloud, (c) extends
(b) by adding multiple end devices which are aggregated together for classification, (d) and (e) extend (b) and (c) by adding edge layers between the cloud
and end devices, and (f) shows how the edge can also be distributed like the end devices.

exit:

L(ŷ,y; θ) =

N∑
n=1

wnL(ŷexitn ,y; θ),

where N is the total number of exit points and wn is the
associated weight of each exit. Equal weights are used for
the experimental results of this paper.

D. DDNN Inference

Inference in DDNN is performed in several stages using
multiple preconfigured exit thresholds T (one element T at
each exit point) as a measure of confidence in the prediction
of the sample. One way to define T is by searching over
the ranges of T on a validation set and pick the one with
the best accuracy. We use a normalized entropy threshold
as the confidence criteria (instead of unnormalized entropy
as used in [3]) that determines whether to classify (exit) a
sample at a particular exit point. The normalized entropy is
defined as

η(x) = −
|C|∑
i=1

xi log xi

log |C|
,

where C is the set of all possible labels and x is a probability
vector. This normalized entropy η has values between 0
and 1 which allows easier interpretation and searching of

its corresponding threshold T . For example, η close to 0
means that the DDNN is confident about the prediction of
the sample; η close to 1 means it is not confident. At each
exit point, η is computed and compared against T in order
to determine if the sample should exit at that point.

At a given exit point, if the predictor is not confident
in the result (i.e., η > T), the system falls back to a higher
exit point in the hierarchy until the last exit is reached which
always performs classification.

We now provide an example of the inference procedure
for a DDNN which has multiple end devices and three exit
points (configuration (e) in Figure 2):

1) Each end device first sends summary information to
local aggregator.

2) The local aggregator determines if the combined sum-
mary information is sufficient for accurate classifica-
tion.

3) If so, the sample is classified (exited).
4) If not, each device sends more detailed information

to the edge in order to perform further processing for
classification.

5) If the edge believes it can correctly classify the sample
it does so and no information is sent to the cloud.

6) Otherwise, the edge forwards intermediate computa-
tion to the cloud which makes the final classification.

E. Communication Cost of DDNN Inference

The total communication cost for an end device with the
local and cloud aggregator is calculated as

c = 4× |C|+ (1− l)
f × o

8
(1)

where l is the percentage of samples exited locally, C is the
set of all possible labels (3 in our experiments), f is the
number of filters, and o is the output size of a single filter
for the final NN layer on the end-device. The constant 4
corresponds to 4 bytes which are used to represent a floating-
point number and the constant 8 corresponds to bits used
to express a byte output. The first term assumes a single
floating-point per class, which conveys the probability that
the sample to be transmitted from the end device to the local
aggregator belongs to this class. This step happens regardless
of whether the sample is exited locally or at a later exit point.
The second term is the communication between end device
and cloud which happens (1− l) fraction of the time, when
the sample is exited in the cloud rather than locally.

F. Accuracy Measures

Throughout the evaluation in Section IV, we use different
accuracy measures for the various exit points in a DDNN as
follows:

• Local Accuracy is the accuracy when exiting 100% of
samples at the local exit of a DDNN.

• Edge Accuracy is the accuracy when exiting 100% of
samples at the edge exit of a DDNN.

• Cloud Accuracy is the accuracy when exiting 100% of
samples at the cloud exit of a DDNN.

• Overall Accuracy is the accuracy when exiting some
percentage of samples at each exit point in the hier-
archy. The samples classified at each exit point are
determined by the entropy threshold T for that exit.
The impact of T on classification accuracy and com-
munication cost is discussed in Section IV-D.

• Individual Accuracy is the accuracy of an end device
NN model trained separately from DDNN. The NN
model for each end device consists of a ConvP block
followed by a FC block (a single end device portion
as shown in Figure 4). In the evaluation, individual
accuracy for each device is computed by classifying all
samples using the individual NN model and not relying
on the local or cloud exit points of a DDNN.

IV. DDNN SYSTEM EVALUATION

In this section, we evaluate DDNN on a scenario with
multiple end devices and demonstrate the following charac-
teristics of the approach:

• DDNNs allow multiple end devices to work collabo-
ratively in order to improve accuracy at both the local
and cloud exit points.

• DDNNs seamlessly extend the capability of end devices
by offloading difficult samples to the cloud.

• DDNNs have built-in fault tolerance. We illustrate that
missing any single end device does not dramatically
affect the accuracy of the system. Additionally, we
show how performance gradually degrades as more end
devices are lost.

• DDNNs reduce communication costs for end devices
compared to traditional system that offloads all input
sensor data to the cloud.

We first introduce the DDNN architecture and dataset used
in our evaluation.

A. DDNN Evaluation Architecture

To accommodate the small memory size of the end
devices, we use Binary Neural Network [4] blocks3. We
make use of two types of blocks in [5]: the fused binary
fully connected (FC) block and fused binary convolution-
pool (ConvP) block as shown in Figure 3. FC blocks each
consist of a fully connected layer with m nodes for some
m, batch normalization and binary activation. ConvP blocks
each consist of a convolutional layer with f filters for
some f , a pooling layer and batch normalization and binary
activation. A convolution layer has a kernel of size 3x3 with
stride 1 and padding 1. A pooling layer has a kernel of size
3x3 with stride 2 and padding 1.

For our experiments, we use version (c) from Figure 2,
with six end devices. The system presented can be general-
ized to a more elaborated structure which includes an edge
layer, as shown in (d), (e) or (f) of Figure 2. Figure 4 depicts
a detailed view of the DDNN system used in our experi-
ments. In this system, we have six end devices shown in red,
a local aggregator, and a cloud aggregator. During training,
output from each device is aggregated together at each exit
point using one of the aggregation schemes described in
Section III-B. We provide detailed analysis on the impact
of aggregation schemes at both the local and cloud exit
points in Section IV-C. All DDNNs in our experiments are
trained with Adam [17] using the following hyper-parameter
settings: α of 0.001, β1 of 0.9, β2 of 0.999, and ϵ of 1e-8. We
train each DDNN for 100 epochs. When training the DDNN,
we use equal weights for the local and cloud exit points. We
explored heavily weighting both the local exit and the cloud
exit, but neither weighting scheme significantly changed the
accuracy of the system. This indicates that this solution to
the dataset and the problem we are exploring is not sensitive
to the weights, but this may not be true for other datasets
and problems4.

3A block consists of one or more conventional NN layers
4In GoogleNet [9], a less than 1% difference in accuracy was observed

based on the values of the weight parameters

3x3 conv, f filters

Binary Activation

Batch Normalization

f x 16 x 16 bits

Fused Binary
Convolution-Pool Block
(ConvP)

3x3 pool, /2

input
(3 x 32 x 32)

fully-connected, n nodes

Binary Activation

Batch Normalization

n bits

Fused Binary
Fully-Connected
Block (FC)

input
(3 x 32 x 32)

Figure 3. Fused binary blocks consisting of one or more standard NN
layers. The fused binary fully connected (FC) block is a fully connected
layer with n nodes, batch normalization and binary activation. The fused
binary convolution-pool (ConvP) block consists of a convolutional layer
with f filters, a pooling layer, batch normalization and binary activation.
The convolution layer has a kernel of size 3x3 with stride 1 and padding
1. The pooling layer has a kernel of size 3x3 with stride 2 and padding 1.
These blocks are used as they are presented in [5].

Figure 4. The DDNN architecture used in the system evaluation. The
FC and ConvP blocks in red and blue correspond to layers run on end
devices and the cloud respectively. The dashed orange boxes represent the
end devices and show which blocks of the DDNN are mapped onto each
device. The local aggregator shown in red combines the exit output (a short
vector with length equal to the number of classes) from each end device in
order to determine if local classification for the given input sample can be
performed accurately. If the local exit is not confident (i.e. η(x) > T), the
activation output after the last convolutional layer from each end device is
sent to the cloud aggregator (shown in blue), which aggregates the input
from each device, performs further NN layer processing, and outputs a final
classification result. The aggregation of input for multiple end devices is
discussed in Section IV-C.

B. Multi-view Multi-camera Dataset

We evaluate the proposed DDNN framework on a multi-
view multi-camera dataset [18]. This dataset consists of
images acquired at the same time from six cameras placed
at different locations facing the same general area. For the
purpose of our evaluation, we assume that each camera is
attached to an end device, which can transmit the captured
images over a bandwidth-constraint wireless network to a
physical endpoint connected to the cloud.

The dataset provides object bounding box annotations.
Multiple bounding boxes may exist in a single image, each
of which corresponds to a different object in the frame. In

Device 1 Device 2 Device 3 Device 4 Device 5 Device 6

Person

Bus

Car

Figure 5. Example images of three objects (person, bus, car) from the
multi-view multi-camera dataset. The six devices (each with their own
camera) capture the same object from different orientations. An all grey
image denotes that the object is not present in the frame.

preparing the dataset, for each bounding box, we extract an
image, and manually synchronize5 the same object across
the multiple devices that the object appears in for the given
frame. Examples of the extracted images are shown in
Figure 5. Each row corresponds to a single sample used for
classification. We resize each extracted sample to a 32x32
RGB pixel image. For each device that a given object does
not appear in, we use a blank image and assign a label of -1,
meaning that the object is not present in the frame. Labels
0, 1, and 2 correspond to car, bus and person, respectively.
Objects that are not present in a frame (i.e., label of -
1) are not used during training. We split the dataset into
680 training samples and 171 testing samples. Figure 6
shows the distribution of samples at each device. Due to
the imbalanced number of class samples in the dataset,
the individual accuracy of each end device differs widely,
as shown by the “Individual” curve of Figure 8. A full
description of the training process for the individual NN
models is provided in Section IV-E. The processed dataset
used in this paper is available at [20].

C. Impact of Aggregation Schemes

In order to perform classification on the input from mul-
tiple end devices, we must aggregate the information from
each end device. We consider three aggregation methods
(max pooling, average pooling, and concatenation) outlined
in Section III-B, at both the local and cloud exit points.
The accuracy of different aggregation schemes are shown in
Table I. The first two letters identify the local aggregation
scheme and the last two letters identify the scheme used
by the cloud aggregator. For example, MP-CC means the
local aggregator uses max-pooling and the cloud uses con-
catenation. Recall that each input to the local aggregator
is a floating-point vector of length equal to the number of
classes (corresponding to the output from the final FC block
for a single device as shown in Figure 4) and the device

5In practical object tracking systems, this synchronization step is typi-
cally automated [19].

1 2 3 4 5 6
End Device

0

100

200

300

400

500

600

700

N
u
m

b
e
r

o
f

sa
m

p
le

s

Person

Bus

Car

Not-present

Figure 6. The distribution of class samples for each end device in the
multi-view multi-camera dataset.

Table I
ACCURACY OF AGGREGATION SCHEMES. THE FIRST TWO LETTERS
IDENTIFY THE LOCAL AGGREGATION SCHEME, AND THE LAST TWO

LETTERS IDENTIFY THE CLOUD AGGREGATION SCHEME. FOR EXAMPLE,
MP-CC MEANS THE LOCAL AGGREGATOR USES MAX-POOLING AND

THE CLOUD AGGREGATOR USES CONCATENATION. THE ACCURACY OF
EACH EXIT POINT (EITHER LOCAL OR CLOUD) IS COMPUTED USING THE
ENTIRE TEST SET. IN PRACTICE, WE WILL EXIT A PORTION OF SAMPLES

LOCALLY BASED ON THE ENTROPY THRESHOLD T AND SEND THE
REMAINING SAMPLES IN THE CLOUD. DUE TO ITS HIGH PERFORMANCE,

MP-CC IS USED IN THE REMAINING EXPERIMENTS OF THIS PAPER.

Schemes Local Acc. (%) Cloud Acc. (%)
MP-MP 95 91
MP-CC 98 98
AP-AP 86 98
AP-CC 75 96
CC-CC 85 94
AP-MP 88 93
MP-AP 89 97
CC-MP 77 87
CC-AP 80 94

output sent to the cloud aggregator is the output from the
final ConvP block.

The MP-MP scheme has good classification accuracy for
the local aggregator but poor performance in the cloud. The
elements in the vectors at the local aggregator correspond to
the same features (e.g., the first item is the likelihood that
the input corresponds to that class). Therefore, max pooling
corresponds to taking the max response for each class over
all end devices, and shows good performance. On the other
hand, since the information sent from the end devices to
the cloud is the activation output from the filters at each
device, which corresponds to different visual features in the
input from the viewpoint of each individual end device, max
pooling these features does not perform well.

Comparing MP-MP and MP-CC schemes, though both
use MP for local aggregators, MP-CC increases the accu-

racy of the local classifier. In the training phrase, during
backpropagation the MP-MP scheme only passes gradients
through a device that gives the highest response while MP-
CC scheme passes gradients through all devices. Therefore,
using CC aggregator in the cloud allows all devices to learn
better filters (filter weights) that give a stronger response for
the local MP aggregator, resulting in a better classification
accuracy.

The CC-CC scheme shows an opposite trend where the
local accuracy is poor while the cloud accuracy is high.
Concatenating the local information (instead of a pooling
scheme), does not enforce any relationship between out-
put for the same class on multiple devices and therefore
performs worse. Concatenating the output for the cloud
aggregator maintains the most information for NN layer
processing in the cloud and therefore performs well.

Generally, for the local aggregator, average pooling per-
forms worse than max pooling. This is because some of
the end devices do not have the object present in the given
frame. Average pooling take average of all outputs from
end devices; this compromises the strong outputs from end
devices in which the object is present. Based on these
results, we use the MP-CC aggregation scheme throughout
the paper.

D. Entropy Threshold

The entropy threshold for an exit point, T , corresponds
to the level of confidence that is required in order to exit a
sample. A threshold value of 0 would mean that no samples
will exit and a value of 1 would mean that all samples exit at
that point. Figure 7 shows the relationship between T at the
local aggregator and the overall accuracy of the DDNN. We
observe that as more samples are exited at the local exit, the
overall accuracy decreases. This is expected, as the accuracy
of the local exit is typically lower than that of the cloud exit.

We need to set the threshold appropriately to achieve a
balance between the communication cost, as defined in Sec-
tion III-E, latency and accuracy of the system. In this case,
we see that setting the threshold to 0.8 results in the best
overall accuracy with significantly reduced communication,
i.e., 97% accuracy while exiting 60.82% of samples locally
as shown in Table II where in addition to local exit (%) and
overall accuracy (%), communication cost in bytes is given.
We set T = 0.8 for the remaining experiments in the system
evaluation, unless noted otherwise.

The local classifier may do better than cloud for certain
samples where low-level features are more robust in classi-
fication than higher-level features. By setting an appropriate
threshold T , we can improve overall accuracy. In this
experiment, T = 0.8 corresponds to that sweet spot where
some samples which are incorrectly classified by the cloud
classifier can actually be correctly classified by the local
classifier. Such a threshold indicates the optimal point where
both local and cloud classifier work best together.

0.0 0.2 0.4 0.6 0.8 1.0
Exit Threshold T

75

80

85

90

95

100100

O
v
e
ra

ll
A

cc
u
ra

cy
 (

%
)

Impact of Exit Threshold
Overall Acc. (%)

Local Exit (%)

0

20

40

60

80

100

Lo
ca

l
E
x
it

 (
%

)
Figure 7. Overall accuracy of the system as the entropy threshold for the
local exit is varied from 0 to 1. For this experiment, 4 filters are used in
the ConvP blocks on the end devices.

Table II
EFFECTS OF DIFFERENT EXIT THRESHOLD (T) SETTINGS FOR THE
LOCAL EXIT. T = 0.8 IS USED IN THE REMAINING EXPERIMENTS.

T Local Exit (%) Overall Acc. (%) Comm. (B)
0.1 0.00 96 140
0.3 0.58 96 139
0.5 1.75 96 138
0.6 2.92 96 136
0.7 22.81 96 111
0.8 60.82 97 62
0.9 83.04 96 34
1.0 100.00 92 12

E. Impact of Scaling Across End Devices

In order to scale DDNNs across multiple end devices,
we distribute the lower sections of Figure 4, shown in red,
over the corresponding devices, outlined in orange. Figure 8
shows how the accuracy of the system improves as additional
end devices (each with its attached input cameras) are added.
The devices are added in order sorted by their individual
accuracy from worst to best (i.e., the device with the lowest
accuracy first and the device with the highest accuracy last).

The first observation is the large variation in the individual
accuracy of the end devices, as noted earlier. Due to the
nature of the dataset, some devices are naturally better posi-
tioned and generally have clearer observations of the objects.
Looking at the viewpoints of each camera in Figure 5, we see
that the selected examples for Device 6 have clear frontal
views of each object. This viewpoint gives Device 6 the
highest individual accuracy at over 70%. By comparison,
Device 2 has the lowest individual accuracy at under 40%.

The “Local” and “Cloud” curves show the accuracy of
the system at each exit point when all samples are exited at
that point. We observe that the cloud exit point outperforms

1 2 3 4 5 6
Number of End Devices

30

40

50

60

70

80

90

100

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Scaling End Devices
Overall

Cloud

Local

Individual

Figure 8. Accuracy of the DDNN system as additional end devices are
added. The accuracy of “Overall” is obtained by exiting a percentage of
the samples locally and the rest in the cloud. The accuracy of “Cloud” and
“Local” are computed by exiting all samples at each point, respectively.
The end devices are ordered by their “Individual” classification accuracy,
sorted from worst to best.

the local exit point at all numbers of end devices. The gap
is widest when there are fewer devices. This suggests that
the additional NN layers in the cloud significantly improve
the final classification result when the problem is more
difficult due to limited labeled training data for an end
device. Once all six end devices are added, both the local
and cloud aggregators have high accuracy. The “Overall”
curve represents the overall accuracy of the system when the
threshold for the local exit point is set to 0.8. We see that
this curve is roughly equivalent to exiting all samples at the
cloud (but at a much reduced communication cost as 60.82%
of samples are exited locally). Generally, these results show
that by combining multiple viewpoints we can increase the
classification accuracy at both the local and cloud level by a
substantial margin when compared to the individual accuracy
of any device. The resulting accuracy of the DDNN system
is superior to any individual device accuracy by over 20%.
Moreover, we note that the 60.82% of samples which exit
locally enjoy lowered latency in response time.

F. Impact of Cloud Offloading on Accuracy Improvements

DDNNs improve the overall accuracy of the system by
offloading difficult samples to the cloud, which perform
further NN layer processing and final classification. Figure 9
shows the accuracy and communication costs of DDNN as
the number of filters on the end devices increases. For all
settings, the NN layers stored on an end device require
under 2 KB of memory. In this experiment, we configure
the local exit threshold T such that around 75% of samples
are exited locally and around 25% of samples are offloaded

15 20 25 30
Communication (B)

84

86

88

90

92

94

96

98

100

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Overall Acc.

Cloud Acc.

Local Acc.

Figure 9. Accuracy and communication cost (in bytes) for increasingly
larger end device memory sizes that accommodate additional filters. We
notice that cloud offloading leads to improved accuracy.

to the cloud. We see that DDNNs achieve around a 5%
improvement in accuracy compared to using just the local
aggregator. This demonstrates the advantage for offloading
to the cloud even when larger models (more filters) with
improved local accuracy are used on the end devices.

G. Fault Tolerance of DDNNs

A key motivation for distributed systems is fault tolerance.
Fault tolerance implies that the system still works well
even when some parts are broken. In order to test the fault
tolerance of DDNN, we simulate end device failures and
look at the resulting accuracy of the system. Figure 10 shows
the accuracy of the system under the presence of individual
device failures. Regardless of the device that is missing,
the system still achieves over a 95% overall classification
accuracy. Specifically, even when the device with the highest
individual accuracy has failed, which is Device 6, the overall
accuracy is reduced by only 3%. This suggests that for this
dataset, the automatic fault tolerance provided by DDNN
makes the system reliable even in the presence of device
failure.

We can also view figure 8 from the perspective of pro-
viding fault tolerance for the system. As we decrease the
number of end devices from 6 to 4, we observe that the
overall accuracy of the system drops only 4%. This suggests
that the system can also be robust to mutliple failing end
devices.

H. Reducing Communication Costs

DDNNs significantly reduces the communication cost of
inference compared to the standard method of offloading raw
sensor input to the cloud. Sending a 32x32 RGB pixel image
(the input size of our dataset) to the cloud costs 3072 bytes

1 2 3 4 5 6
Device Failure

30

40

50

60

70

80

90

100

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

DDNN Fault Tolerance

Overall

Cloud

Local

Individual

Figure 10. The impact on DDNN system accuracy when any single end
device has failed.

per image sample. By comparison, as shown in Table II,
the largest DDNN model used in our evaluation section
requires only 140 bytes of communication per sample on
average (an over 20x reduction in communication costs).
This communication reduction for an end device results from
transmitting class-label related intermediate results to the
local aggregator for all samples and binarized communica-
tion with the cloud when additional NN layer processing is
required for classification with improved accuracy.

V. DDNN PROVISION FOR
HORIZONTAL AND VERTICAL SCALING

The evaluation in the previous section shows that DDNN
is able to achieve high overall accuracy through provisioning
the network to scale both horizontally, across end devices,
and vertically, over the network hierarchy. Specifically, we
show that DDNN scales vertically, by exiting easier input
samples locally for low-latency response and offloading
difficult samples to the cloud for high overall recognition
accuracy, while maintaining a small memory footprint on the
end devices and incurring a low communication cost. This
result is not obvious, as we need sufficiently good feature
representations from the lower parts of the DNN (running on
the end devices with limited resources) in order for the upper
parts of the neural network (running in the cloud) to achieve
high accuracy under the low communication cost constraint.
Therefore, we show in a positive way that the proposed
method of jointly training a single DNN with multiple exit
points at each part of the distributed hierarchy allows us to
meet this goal. That is, DDNN optimizes the lower parts of
the DNN to create a sufficiently good feature representations
to support both samples exited locally and those processed
further in the cloud.

To meet the goal of horizontal scaling, we provide a
principled way of jointly training a DNN with inputs from
multiple devices through feature pooling via local and cloud
aggregators and demonstrate that by aggregating features
from each device we can dramatically improve the accuracy
of the system both at the local and cloud level. Filters
on each device are automatically tuned to process the
geographically unique inputs and work together toward to
the same overall objective leading to high overall accuracy.
Additionally, we show that DDNN provides built-in fault
tolerance across the end devices and is still able to achieve
high accuracy in the presence of failed devices.

VI. CONCLUSION

In this paper, we propose a novel distributed deep neu-
ral network architecture (DDNN) that is distributed across
computing hierarchies, consisting of the cloud, the edge
and end devices. We demonstrate for a multi-view, multi-
camera dataset that DDNN scales vertically from a few
NN layers on end devices or the edge to many NN layers
in the cloud and scales horizontally across multiple end
devices. The aggregation of information communicated from
different devices is built into the joint training of DDNN and
is handled automatically at inference time. This approach
simplifies the implementation and deployment of distributed
cloud offloading and automates sensor fusion and system
fault tolerance.

The experimental results suggest that with our DDNN
framework, a single DNN properly trained can be mapped
onto a distributed computing hierarchy to meet the accu-
racy, communication and latency requirements of a target
application while gaining inherent benefits associated with
distributed computing such as fault tolerance and privacy.

DDNNs reduce the required communication compared
to a standard cloud offloading approach by exiting many
samples at the local aggregator and sending a compact
binary feature representation to the cloud when additional
processing is required. For our evaluation dataset, the com-
munication cost of DDNN is reduced by a factor of over
20x compared to offloading raw sensor input to a DNN in
the cloud which performs all of the inference computation.

DDNN provides a framework for further research in
mapping DNN into a distributed computing hierarchy. For
future work, we will investigate the performance of DDNNs
on applications with a larger dataset with multiple types
of input modalities [21] and more end devices. Currently,
all layers in DDNN are binary. While binary layers are a
requirement for end devices due to the limited space on
devices, it is not necessary in the cloud. We will explore
other types of aggregation schemes and mixed precisions
schemes where the end devices use binary NN layers and
the cloud uses mixed-precision or floating-point NN layers.

ACKNOWLEDGMENT

This work is supported in part by gifts from the Intel Cor-
poration and in part by the Naval Supply Systems Command
award under the Naval Postgraduate School Agreements No.
N00244-15-0050 and No. N00244-16-1-0018.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE Internet of Things Journal,
vol. 3, no. 5, pp. 637–646, 2016.

[2] K. Skala, D. Davidovic, E. Afgan, I. Sovic, and Z. Sojat,
“Scalable distributed computing hierarchy: Cloud, fog and
dew computing,” Open Journal of Cloud Computing (OJCC),
vol. 2, no. 1, pp. 16–24, 2015.

[3] S. Teerapittayanon, B. McDanel, and H. Kung, “Branchynet:
Fast inference via early exiting from deep neural networks,”
in International Conference on Pattern Recognition, 2016.

[4] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect:
Training deep neural networks with binary weights during
propagations,” in Advances in Neural Information Processing
Systems, 2015, pp. 3123–3131.

[5] B. McDanel, S. Teerapittayanon, and H. Kung, “Embedded
binarized neural networks,” in International Conference on
Embedded Wireless Systems and Networks, 2017.

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Advances in neural information processing systems, 2012, pp.
1097–1105.

[8] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper
with convolutions,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2015, pp. 1–9.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” arXiv preprint arXiv:1512.03385,
2015.

[11] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform
and applications,” in Hot Topics in Web Systems and Tech-
nologies (HotWeb), 2015 Third IEEE Workshop on. IEEE,
2015, pp. 73–78.

[12] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-
net: Imagenet classification using binary convolutional neural
networks,” arXiv preprint arXiv:1603.05279, 2016.

[13] M. Figurnov, M. D. Collins, Y. Zhu, L. Zhang, J. Huang,
D. Vetrov, and R. Salakhutdinov, “Spatially adaptive
computation time for residual networks,” arXiv preprint
arXiv:1612.02297, 2016.

[14] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
A. Senior, P. Tucker, K. Yang, Q. V. Le et al., “Large scale
distributed deep networks,” in Advances in neural information
processing systems, 2012, pp. 1223–1231.

[15] F. N. Iandola, K. Ashraf, M. W. Moskewicz, and
K. Keutzer, “Firecaffe: near-linear acceleration of deep neu-
ral network training on compute clusters,” arXiv preprint
arXiv:1511.00175, 2015.

[16] J. Dean, “Large scale deep learning,” in Keynote GPU Tech-
nical Conference, vol. 3, 2015, p. 2015.

[17] D. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[18] G. Roig, X. Boix, H. B. Shitrit, and P. Fua, “Conditional
random fields for multi-camera object detection,” in 2011
International Conference on Computer Vision. IEEE, 2011,
pp. 563–570.

[19] X. Li, W. Hu, C. Shen, Z. Zhang, A. Dick, and A. V. D.
Hengel, “A survey of appearance models in visual object
tracking,” ACM transactions on Intelligent Systems and Tech-
nology (TIST), vol. 4, no. 4, p. 58, 2013.

[20] B. McDanel, “Multiview multicamera dataset,” https:
//www.dropbox.com/s/uk8c6iymy8nprc0/MVMC.npz, 2016,
accessed: 2016-12-10.

[21] M. Cha, Y. Gwon, and H. Kung, “Multimodal sparse
representation learning and applications,” arXiv preprint
arXiv:1511.06238, 2015.

