
Trinity: A Distributed Graph Engine on a Memory Cloud

Bin Shao
Microsoft Research Asia

Beijing, China

binshao@microsoft.com

Haixun Wang
Microsoft Research Asia

Beijing, China

haixunw@microsoft.com

Yatao Li
∗

HKUST
Kowloon, Hong Kong

ylibg@ust.hk

ABSTRACT

Computations performed by graph algorithms are data driven,
and require a high degree of random data access. Despite
the great progresses made in disk technology, it still cannot
provide the level of efficient random access required by graph
computation. On the other hand, memory-based approaches
usually do not scale due to the capacity limit of single ma-
chines. In this paper, we introduce Trinity, a general purpose
graph engine over a distributed memory cloud. Through op-
timized memory management and network communication,
Trinity supports fast graph exploration as well as efficient
parallel computing. In particular, Trinity leverages graph
access patterns in both online and offline computation to
optimize memory and communication for best performance.
These enable Trinity to support efficient online query pro-
cessing and offline analytics on large graphs with just a few
commodity machines. Furthermore, Trinity provides a high
level specification language called TSL for users to declare
data schema and communication protocols, which brings
great ease-of-use for general purpose graph management and
computing. Our experiments show Trinity’s performance in
both low latency graph queries as well as high throughput
graph analytics on web-scale, billion-node graphs.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distri-
buted Systems—Distributed Databases; D.4.2 [Operating

Systems]: Storage Management—Distributed memories

Keywords

Distributed System; Memory Cloud; Graph Database

1. INTRODUCTION
Large graphs appear in a wide range of computational do-

mains, and we are facing challenges at all levels ranging from

∗The work was done at Microsoft Research Asia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

the infrastructure to the programming model for managing
and processing large graphs. Graph applications have varied
needs. We may roughly classify such needs into two cate-
gories: online query processing, which requires low latency,
and offline graph analytics, which requires high throughput.
As an example, deciding instantly whether there is a path
between two given persons in a social network belongs to the
first category while computing PageRank for the WWW be-
longs to the second. Still, many sophisticated applications
have both needs: Given two nodes in a graph, the “distance
oracle” algorithm that estimates the shortest distance be-
tween the two nodes is an online algorithm. However, to
estimate the distances, the algorithm relies on “landmark”
nodes in the graph, and the optimal set of landmark nodes
are discovered using offline analytics.

Despite the diversity of graph applications, graph compu-
tation has some unique characteristics [26]: It usually has
a high data-access-to-computation ratio, in other words, it
is I/O intensive. Furthermore, graph computation usually
requires a high degree of random data access. This is partic-
ularly true for online queries as they usually require certain
degree of graph exploration (e.g., BFS, sub-graph match-
ing, etc.). Offline graph computations are usually performed
in an iterative, batch manner. For iterative computations,
keeping data in main memory can improve performance by
an order of magnitude due to the reuse of intermediate re-
sults as illustrated by Spark [34]. Moreover, the scale of data
makes distributed parallel computation the most promising
solution for large graph processing. As we shall see, keeping
the graph, at least the topology, in distributed memory not
only improves the performance, but also enables a new set
of graph computation paradigms.

In this paper, we introduce Trinity, a distributed graph
engine on a memory cloud. Trinity supports both online
graph query processing and offline graph analytics, and it
has been used for real life applications, including knowl-
edgebases [33], knowledge graphs [36], and social networks.
Trinity is able to scale-out, which means it can host arbi-
trarily large graphs in the memory of a cluster of commodity
machines1. Instead of optimizing for certain types of graph
computation (e.g., BSP), Trinity directly addresses the ran-
dom data access problem in large graph computation. Trin-
ity implements a globally addressable distributed memory
storage, and provides a random access abstraction for large

1Trinity usually makes the graph topology and frequently
used information of the graph memory-resident. Trinity
provides transparent access to other information associated
with the graph in DBMSs.

505



graph computation. The design of Trinity is based on the
belief that, as high-speed network becomes more available
and DRAM prices trends downward in the long run, all-
in-memory solutions provide the lowest total cost of own-
ership for a large range of applications [8]. For instance,
RAMCloud [30] envisioned that advances in hardware and
OS technology will eventually enable all-in-memory applica-
tions, and low latency can be achieved by deploying faster
NICs and network switches and by tuning the OS, the NIC,
and the communication protocol. Trinity realizes this vision
for large graph applications, and Trinity does not rely on
hardware/platform upgrades and/or special OS tuning, al-
though Trinity can leverage these techniques to achieve even
better performance.

Graph Query Graph Scale-out
Database Processing Analytics System

Neo4j [4] Yes Yes Yes No
HyperGraphDB [22] Yes Yes No No
GraphChi [25] No No Yes No
PEGASUS [23] No No Yes Yes
MapReduce [15] No No Yes Yes
Pregel [28] No No Yes Yes
GraphLab [1] No No Yes Yes

Table 1: Some Representative Graph Systems

Before we discuss the details of Trinity, we survey a few
representative graph systems that have been proposed in
the last few years. Table 1 summarizes our survey results.
Among the existing graph systems, Neo4j [4] and Hyper-
GraphDB [22] focus on supporting online transaction pro-
cessing (OLTP) on graph data. However, they are not dis-
tributed: They do not handle graphs that are partitioned
over multiple machines. This limits the size of the graphs
they can efficiently handle. Furthermore, a single machine
also does not have enough computation power compared
with a distributed, parallel system. Thus, it is difficult for
such systems to handle web-scale graphs.
On the other end of the spectrum are MapReduce [15],

Pregel [28], GraphLab [1]. These are high latency, high
throughput offline platforms. Unlike Neo4j and HyperGraph-
DB, they do not support online query processing, instead,
they are optimized for analytics on large data partitioned
over hundreds of machines. MapReduce computations on
graphs depend heavily on interprocessor bandwidth, as graph
structures are sent over the network iteration after itera-
tion. Pregel and GraphLab mitigate this problem by pass-
ing computation results instead of graph structures between
processors. In Pregel, GraphLab, and GraphChi, analytics
on the graphs are expressed using a vertex centric compu-
tation paradigm. Although some well known graph algo-
rithms, including PageRank, shortest path discovery, can be
implemented through vertex centric computing with ease,
there are a large range of sophisticated graph computations,
for example, multi-level graph partitioning, that cannot be
expressed in a succinct and elegant way.
Trinity itself is not a system that comes with comprehen-

sive built-in graph computation modules. However, with its
flexible data and computation modeling capability, Trinity
enables the development of such modules and hence empow-
ers a large variety of graph applications. In other words, it
can easily morph into systems to support any specific graph
applications.
The rest of the paper is organized as follows. In Section 2,

we outline the design of the Trinity system. In Section 3, we
introduce the Trinity’s memory cloud. Section 4 describes

the Trinity data model. Section 5 analyzes the computation
paradigms of typical graph applications. Section 6 discusses
some technical details in system implementation. Section 7
presents experimental results on Trinity. We discuss related
work in Section 8 and conclude in Section 9.

2. AN OVERVIEW OF TRINITY
We show the architecture of Trinity in Figure 1. Trinity

is a storage infrastructure and computation framework built
on top of a cluster of well-connected machines. As a stor-
age infrastructure, Trinity organizes the memory of multiple
machines into a globally addressable, distributed memory
address space (a memory cloud) to support large graphs.
Trinity is designed for online query processing applications
as well as offline analytics applications, and it supports user-
friendly graph modeling, object-oriented data manipulation.

Trinity Slaves

Trinity
Proxy

Trinity
Proxy

Client

Lib

Client

Lib

Client

Lib

Client

Lib

Lib

Client

Lib

Client

Figure 1: Trinity Cluster Structure

A Trinity system consists of multiple components that
communicate through a network. According to the roles
they play, we classify them into three types: slaves, prox-
ies, and clients. A Trinity slave plays two roles: storing
graph data and performing computation on the data. Com-
putation usually involves sending messages to and receiving
messages from other Trinity components. Specifically, each
slave stores a portion of the data and processes messages re-
ceived from other slaves, proxies, or clients. A Trinity proxy
only handles messages but does not own any data. It usu-
ally serves as a middle tier between slaves and clients. For
example, a proxy may serve as an information aggregator: It
dispatches requests from clients to slaves and sends results
back to the clients after aggregating partial results received
from slaves. Proxies are optional, that is, a Trinity system
does not always need a proxy. A Trinity client is responsi-
ble for enabling users to interacting with the Trinity cluster.
It is a user interface tier between the Trinity system and
end-users. Trinity clients are applications that are linked to
Trinity library. They communicate with Trinity slaves and
Trinity proxies through the APIs provided by the Trinity
library.

Figure 2 shows the stack of Trinity system modules. The
memory cloud is essentially a distributed key-value store,
and it is supported by a memory storage module and a
message passing framework. The memory storage module
manages memory and provides mechanisms for concurrency
control. The network communication module provides an
efficient, one-sided, machine-to-machine message passing in-
frastructure.

Trinity Provides a specification language called TSL (Trin-
ity specification language) that bridges the graph model and

506



Distributed
Memory
Storage

Message
Passing

Framework

Memory Cloud
(Distributed Key-Value Store)

Trinity Specification Language

Graph Model

Graph Operations

GetInlinks(), Outlinks.Foreach(...), etc

Figure 2: System Layers

the data storage. Due to the diversity of graphs and the
diversity of graph applications, it is hard, if not entirely im-
possible, to support efficient general purpose graph compu-
tation using fixed graph schema. Instead of using fixed graph
schema and fixed computation models, Trinity let users de-
fine graph schema, communication protocols, and computa-
tion paradigms through TSL.

3. THE MEMORY CLOUD
We create a distributed memory cloud as Trinity’s stor-

age infrastructure. The memory cloud consists of 2p mem-
ory trunks, each of which is stored on a machine. Usually,
we have 2p > m, where m is the number of machines. In
other words, each machine hosts multiple memory trunks.
The reason we partition a machine’s local memory space
into multiple memory trunks is twofold: 1) Trunk level par-
allelism can be achieved without any overhead of locking;
2) The performance of a single huge hash table is subopti-
mal due to a higher probability of hashing conflicts. Essen-
tially, the entire memory cloud is partitioned into 2p mem-
ory trunks. To support fault-tolerant data persistence, these
memory trunks are also backed up in a shared distributed
file system called TFS (Trinity File System), which is similar
to HDFS [10].
On top of the memory cloud, we create a key-value store.

A key-value pair forms the most basic data structure of the
graph system or any system built on top of the memory
cloud. Here, keys are 64-bit globally unique identifiers, and
values are blobs of arbitrary length. As the memory cloud
is distributed across multiple machines, we cannot address
a key-value pair using its physical memory address. To ad-
dress a key-value pair, Trinity uses a hashing mechanism.
In order to locate the value of a given key, we first 1) iden-
tify the machine that stores the key-value pair, and then 2)
locate the key-value pair in one of the memory trunks on
that machine. Through this hashing mechanism (shown in
Figure 3), we provide a globally addressable memory space.
Specifically, given a 64-bit key, to locate its correspond-

ing value in the memory cloud, we hash the key to a p-bit
value i ∈ [0, 2p − 1]. This means the key-value pair is stored
in memory trunk i within the memory cloud. To find out
which machine memory trunk i is in, we maintain an “ad-
dressing table” that contains 2p slots, where each slot stores
a machine ID. Essentially, we implement a consistent hash-
ing mechanism that allows machines to join and leave the

64-bit UID

hash

machine 0 machine 1 machine 2 machine m

. . .

0 1 m 2 · · · 1 2 m
p-bit

hash code
0 1 2 3 · · · j k 2p-1

Addressing
Table

. . .

0 1 2 2p-1

Trinity File System

. . .

Memory

Trunk

Trinity
Slave

Memory Trunks

cell bytes

Memory Trunk

UID Offset Size

01. . . 321 123

10. . . 423 211

· · · · · · · · ·

Figure 3: Data Partitioning and Addressing

memory cloud (described later). Furthermore, in order for
global addressing to work, each machine keeps a replica of
the addressing table, and we will describe how we ensure the
consistency of the addressing tables in Section 6.2.

We then locate the key-value pair in memory trunk i,
which is stored on the machine whose ID is in slot i of the
addressing table. Each memory trunk is associated with a
hash table. We hash the 64-bit key again to find the offset
and size of the key-value pair in the hash table. Given the
memory offset and the size, we retrieve the key-value pair
from the memory trunk.

The addressing table provides a mechanism that allows
machines to dynamically join and leave the memory cloud.
When a machine fails, we reload the memory trunks it owns
from the TFS to other alive machines. All we need to do
is to update the addressing table so that the corresponding
slots point to the machines that host the data now. Simi-
larly, when new machines join the memory cloud, we relocate
some memory trunks to those new machines and update the
addressing table accordingly.

Each key-value pair in the memory cloud may contain
some meta data for various purposes. Most notably, we
may associate each key-value pair with a spin lock. Spin
locks are used for concurrency control and physical memory
pinning. Multiple threads may try to access the same key-
value pair concurrently. A physical key-value pair may also
be moved by the memory defragmentation thread as elabo-
rated in Section 6.1. Therefore, we must ensure a key-value
pair is locked and pinned to a fixed memory position before
allowing any thread to manipulate it. For applications that
are not read-only, the spin lock mechanism allows a thread
to access a pinned physical key-value pair exclusively by re-
quiring all threads to acquire the lock before accessing or
moving a cell.

4. DATA MODEL
Trinity is designed to handle graph data of diverse char-

acteristics. In this section, we describe data modeling issues

507



and the Trinity Specification Language that is designed to
facilitate the modeling.

4.1 Modeling Graph
A graph consists of nodes and edges. But a graph is

more than its topology: In real-world applications, nodes
and edges in a graph are often associated with rich informa-
tion. We may use relational databases, XML, or even plain
text files to store graphs. But they do not support efficient
access of graph data. Take relational databases as an exam-
ple. We may use one table to store the nodes, and another
table to store the edges. If edges represent more than one
relationship, we may need multiple tables to store edges of
difficult types. This seems to be simple and intuitive. How-
ever, graph operations usually involve graph traversal, which
incurs costly, multi-way joins of relational tables. Thus, re-
lational databases are not for processing graph data.
Trinity supports graphs on top of an in-memory key-value

store. Here, the “key” is a system wide identifier, and the
“value” is used for modeling application data. When the
“value” is associated with a schema (defined in TSL, which
is described in Section 4.2), we also call it a cell, and the (key,
value) pair becomes a (cellId, cell) pair. To model graphs
on top of a key-value store, we use a cell to implement a
node in a graph. A cell may contain a lot of information.
For undirected graphs, a cell (a graph node) contains a set
of cellIds that represent its neighboring nodes. For directed
graphs, a cell (a graph node) contains two set of cellIds, one
for incoming links, and the other for outgoing links. A cell
may contain additional data associated with a node, such as
the name of the node, its description, etc.
Usually, there is no need to represent an edge as a cell. As

mentioned above, we may represent a node’s outgoing edges
by the cellIds of the nodes they connect to. Additional data
associated with an edge (e.g., its name, type, weight, etc.)
can simply stay with the cellId as (cellId, associatedData)
pairs. However, when edges are associated with rich infor-
mation, we may represent edges using cells, and store the
rich information associated with the edges in the edge cells.
Correspondingly, a node will store a set of edge cellIds. We
can also model hypergraphs in this way, as we can easily
store a set of node cellIds in an edge cell.

4.2 Trinity Specification Language
We designed a high level language called TSL (Trinity

Specification Language) for data and network communica-
tion modeling in Trinity. As we know, graphs have very di-
verse characteristics, and distributed algorithms on graphs
have very diverse communication patterns. In face of these
diversity, TSL brings great ease-of-use for general purpose
graph management and computing. Its goals and benefits
include the following:

• TSL provides object-oriented data manipulation for
the underlying blob data in the memory cloud. This
will be elaborated in Section 4.3.

• TSL facilitates data integration. It defines an inter-
face between graphs and external data (e.g., data in
an RDBMS). Through TSL, we can specify how nodes
in a graph are associated with records in a relational
table. This enables us to store graph topology and
some critical data in Trinity’s memory cloud, while
leaving other rich information (such as images) on disk.

This further enables transparent query processing over
memory cloud and RDBMSs (but with dramatically
improved performance as join relationships are mate-
rialized in Trinity), and automatic data conversion be-
tween memory cloud and external data sources.

• TSL facilitates system extension. With data schema
and communication protocols defined in TSL, the TSL
compiler generates highly efficient and powerful source
code for data manipulation and communication, which
greatly facilitates the development of advanced system
modules in Trinity. For example, we implemented a
sophisticated graph query language (TQL) within this
framework.

Figure 4 gives an example of using TSL to model the data
of a toy graph consisting of movies and actors.

[CellType: NodeCell]
cell struct Movie
{

string Name;
[EdgeType: SimpleEdge, ReferencedCell: Actor]
List<long> Actors;

}
[CellType: NodeCell]
cell struct Actor
{

string Name;
[EdgeType: SimpleEdge, ReferencedCell: Movie]
List<long> Movies;

}

Figure 4: Modeling a Movie and Actor Graph

The script above defines two types of graph nodes, namely
Movie and Actor, using two Cell structs. A Cell struct

is a basic element for modeling graph. It is a data con-
tainer which may contain an arbitrary number of: 1) prim-
itive data types, such as byte, int, and double; 2) data con-
tainer types, such as Array, List, and BitArray; and 3) other
user-defined structs. In our case, the Movie and Actor cells
contain data elements List<long> Actors and List<long>

Movies, which are outgoing edges from the cells. The “[...]”
constructs (following C# convention) in the script describes
the constructs that follow them. For example, it indicates
Actors are SimpleEdge from Movie cells to Actor cells. Be-
sides SimpleEdge (which is represented by a cellId), Trinity
also supports StructEdge (which is an independent cell) and
HyperEdge (hyperedges).

Besides modeling data, TSL also models network commu-
nication. This is important for the following reasons. First,
graph algorithms have very diverse network communication
patterns because they are data driven, and the data is dis-
tributed. It is extremely tedious for users to implement all
kinds of message passing protocols (e.g., synchronous, asyn-
chronous, etc.) Second, in vertex based computing and other
algorithms, a large number of nodes send and receive mes-
sages simultaneously. The total number of messages in the
system is huge although each message may be small. This
incurs a huge cost if the system does not automatically pack
small messages between two machines into a single transfer.
Third, graph algorithms require a flexible message passing
mechanism. The well known message passing framework
MPI has drawbacks for distributed graph applications: It is
optimized for two-sided bulk synchronous communication.

508



A lot of tuning is needed to write efficient, asynchronous,
fine-grained message passing programs, and writing such
code is tedious.
TSL provides an intuitive way of writing efficient message

passing programs for graph computation. It provides one-
sided communication based on the request-response commu-
nication paradigm, and it supports bulk synchronous mes-
sage passing and transparent message packing for asynchronous
messages to increase the network throughput.

struct MyMessage
{

string Text;
}
protocol Echo
{

Type: Syn;
Request: MyMessage;
Response: MyMessage;

}

Figure 5: Modeling Message Passing

Figure 5 shows an example. We implement a simple“Echo”
protocol: A client sends a message to a server, and the server
sends a message back. It is stated that “Echo” uses syn-
chronous message passing, and the type of messages being
sent and received is MyMessage. TSL compiles the script
to generate an empty message handler EchoHandler, and
the user only needs to implement the algorithm logic for the
handler as if implementing a local method. Calling a pro-
tocol defined in the TSL is also like calling a local method.
Trinity takes care of message dispatching, packing, etc., for
the user.

4.3 Object-Oriented Cell Manipulation
The memory cloud provides a key-value pair store, where

values are binary blobs. The TSL script in Figure 4 informs
the Trinity system the schema of the data, so that Trinity
knows how to manipulate the data, including, for exam-
ple, integrating the data with data from external sources.
Alternatively, we can implement graph nodes and edges as
runtime objects. Unfortunately, we cannot reference objects
across machine boundaries. Second, runtime objects incur
significant storage overhead. For C# on the .Net framework,
an empty runtime object (one that does not contain any
data element) requires 24 bytes of memory on a 64-bit sys-
tem and 12 bytes of memory on a 32-bit system. For billion-
node graphs, this is a tremendous overhead. Third, although
Trinity is an in-memory system, we do need to store mem-
ory trunks on disk or network for persistence. For runtime
objects, we need serialization and deserialization operations,
which is costly.
On the other hand, storing objects as blobs of bytes is

compact, economical, with zero serialization and deserial-
ization overhead. We can also make the objects globally ad-
dressable by giving them unique identifiers and using hash
functions to map the objects to memory in a host machine
as we have described. However, blobs are not user-friendly.
We no long have an object-oriented interface, and we need
to know the exact memory layout before we can manipulate
the data in the blob (using pointers, address offsets, and
casting to access data elements in the blob). This makes
programming difficult and error-prone2.

2Note that we cannot naively cast a blob to a structure de-

00000011 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000010 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000001 00000000 00000000 00000000 00000011 00000000 00000000 00000000

Blob View

using(var cell = UseMyCellAccessor(cellId))
{

int Id = cell.Id; //Get the value of Id
cell.Links[1] = 2; //Set Links[1] to 2

}

Manipulate
MyCell via

Cell Accessor

cell struct MyCell
{

int Id;
List<long> Links;

}

TSL
Script

Generated API

Cell Schema
Defined in TSL

compile
Cell

Accessor

Blob

Figure 6: Cell Accessor

To address this problem, Trinity introduces a mechanism
(the cell accessor mechanism) to support object-oriented
data manipulation on blob data. Users first declare the
schema of a cell in TSL, then Trinity automatically gener-
ates key-value store interfaces for manipulating cells stored
as blob strings in the memory cloud. Specifically, Trinity
compiles the TSL script to create a set of APIs for access-
ing, loading, and saving the data. One of the generated API
is UseMyCellAccessor. Given a cellId, it returns an object
of type MyCellAccessor, and users can manipulate its un-
derlying blob data as a runtime object in an object-oriented
manner. This is shown in Figure 6. As a matter of fact, a
cell accessor is not a data container, but a data mapper. It
maps the fields declared in the data structure to the correct
memory locations in the blob. Any data accessing opera-
tion to a data field will be correctly mapped to the correct
memory location with zero memory copy overhead.

4.4 Consistency
Using the spin lock associated with each key-value pair,

Trinity guarantees the atomicity of the operation on a sin-
gle cell (key-value pair). However, Trinity does not pro-
vide ACID transaction support. This means Trinity cannot
guarantee serializability for concurrent threads. For appli-
cations that need transaction support, we can implement
light-weight atomic operation primitives that span multiple
cells, such as MultiOp primitives [13] and Mini-transaction
primitives [7], on top of the atomic cell operation primitives.

5. GRAPH COMPUTATION PARADIGMS
Different graph computations have different data access

and communication patterns. In this section, we discuss the
graph computation paradigms supported by Trinity.

5.1 Traversal Based Online Queries
A lot of applications require graph exploration, the breadth-

first search and the depth-first search being the most typi-
cal. Here, we use “people search” on a social network as an
example to demonstrate the importance of efficient graph
exploration to online query processing. The problem is the
following: On a social network, for a given user, find anyone
whose first name is “David” among his/her friends, his/her
friends’ friends, and his/her friends’ friends’ friends. This is

fined in programming languages such as C or C# because
the fields of a struct are not always flatly laid out in the
memory. We cannot cast a flat memory region to a struc-
tured data pointer.

509



a practical problem: While logged in on Facebook, a user
performs a search in Bing. Bing explores the user’s Face-
book network to see if there is anything relevant. In the
case as shown in Figure 7, it finds someone who is the user’s
friends’ friend.

Figure 7: Facebook search in Bing

It is unlikely we can index the social network to solve the
“David” problem. One option is to index the neighborhood
for each user, so that given any user, we can use the index
to check if there is any “David” within 3 hops of his/her
neighborhood. However, the size and the update cost of such
an index are prohibitive for a web-scale graph. The second
option is to create an index to answer 3-hop reachability
queries for any two nodes. This is infeasible because“David”
is a popular first name, and we cannot check every David in
the social network to see if he is within 3 hops to the current
user.
Trinity solves the “David” problem by leveraging its very

efficient memory-based graph exploration capabilities. We
deployed a synthetic, power-law graph in an eight-machine
cluster managed by Trinity. The graph has Facebook-like
size and distribution (800 million nodes, 104 billion edges,
with each node having on average 130 edges). We found that
exploring the entire 3-hop neighborhood of any node in the
graph takes less than 100 milliseconds on average. In other
words, Trinity is able to explore 130 + 1302 + 1303 ≈ 2.2
million nodes distributed over eight machines in one tenth
of a second. The algorithm simply sends asynchronous re-
quests recursively to remote machines, and the performance
is achieved by efficient memory access and optimization of
network communication.

5.2 A New Paradigm for Online Queries
Trinity introduces a new paradigm for online graph pro-

cessing by storing web-scale graphs in the memory of a dis-
tributed system, and relying on fast random access and par-
allel computing for query processing, as demonstrated by
the above example.
In contrast, instead of storing graph in its native form,

many existing graph systems store graph data in relational
tables, or matrices, and use join operations to simulate graph
exploration. The approach does not scale. In order to
support more sophisticated online queries such as subgraph
matching, existing systems rely on index. The reality is,
none of the existing systems and methods support efficient
subgraph matching on web-scale graphs. To understand
the challenge, consider various kinds of indices developed
to support query processing on graphs. Most of them require
super-linear space and/or super-linear construction time. For
example, the R-Join approach [14] for subgraph matching is
based on the 2-hop index [11]. The complexity to build such

an index is O(n4), where n is the number of vertices. It is ob-
vious that in large graphs where the value of n is on the scale
of 1 billion (109), any super-linear approach will become un-
realistic, let alone an algorithm of complexity O(n4).

In Trinity, the combination of fast random access and par-
allel computing, offers a new paradigm which enables us to
rethink efficient query processing on web-scale graphs. Fig-
ure 8(a) shows the performance of subgraph matching on
web scale graphs. Here, the size of the graph ranges from 1
million to 128 million nodes, average node degree is 16, aver-
age query size is 10 (nodes), and queries are generated using
two random methods, DFS and RANDOM [32]. It shows
that without any index of graph structure, average query
time is 1 second using just 8 machines for parallel query
processing, and there is still a lot of room for improvement.

20 21 22 23 24 25 26 27
100
200
300
400
500
600
700
800
900

1,000
1,100
1,200

Number of Nodes (Million)
Q
u
er
y
T
im

e
(m

s)

(a) Subgraph Matching

DFS
Random

100 200 300 400 500
0

20

40

60

80

100

Number of Landmarks

E
st
im

at
io
n
A
cc
u
ra
cy

(%
)

(b) Distance Oracle

Largest Degree
Local Betweenness
Global Betweenness

Figure 8: New paradigms of graph computation

5.3 Vertex Centric Offline Analytics
Trinity, as well as Pregel [28] and GraphChi [25], provide a

vertex centric computation model for offline graph analytics.
A computation task is expressed in multiple iterative super-
steps and each vertex acts as an independent agent. During
each super-step, each agent performs some computation and
communication, independent of each other.

In the following, we first compare Pregel’s vertex centric
model with Trinity’s vertex centric model. We will discuss
GraphChi’s computation model later at the end of this sec-
tion.

• A general model (Pregel). In each super-step, a vertex
may receive messages sent to it by any vertex in the
previous super-step, send messages to any vertex, and
modify its vertex values.

• A restrictive model (Trinity). In each super-step, a
vertex may receive messages sent to it by a fixed set of
vertices (usually its neighbors), send messages to an-
other fixed set of vertices, and modify its vertex values.

As far as the above two computation models are con-
cerned, Trinity is more restrictive than Pregel in the sense
that in Trinity’s computation model, a vertex only communi-
cates with a subset of vertices (usually its neighbors). The
reason Trinity focuses on the restrictive model is twofold.
First, in a lot of well-known vertex centric computation, e.g.
PageRank and shortest path, vertices only talk with their
neighbors. In other words, the restrictive model can already
support a large number of graph algorithms on its own. Sec-
ond, the restrictive model introduces a lot of optimization
opportunities. Since the communication is with a fixed set of
vertices, the communication pattern is predictable iteration
after iteration. This enables us to optimize messages de-
livery to maximize the performance. With the optimization
techniques, Trinity achieves much better performance. With

510



just 8 machines, one BSP iteration on a synthetic, power-law
graph of 1 billion nodes and 13 billion edges takes less than
60 seconds. This enables Trinity to support algorithms such
as PageRank and shortest distances very efficiently using
vertex centric computation.
Before we describe the detail of how Trinity optimizes

message passing for supporting the restrictive computation
model in Section 5.4, we describe some related work. Re-
cently, GraphChi [25] introduces a computation model which
is even more restrictive. It supports asynchronous computa-
tion only, which means it cannot implement traversal based
graph computation and synchronous graph computation ef-
ficiently. The benefit of doing so is that for analytics that
can be implemented in an asynchronous manner, GraphChi
can accomplish them using sequential disk access. It is clear
that there is a compromise between the expressive power of
a computation model and its efficiency.
However, unlike Pregel and GraphChi that are specialized

systems focusing on one computation model, Trinity is not
constrained by any computation model. For instance, Trin-
ity can partition billion-node graphs within a few hours using
a multi-level partitioning algorithm [6]. The quality of the
partitioning is comparable to that of the best partitioning
algorithm (e.g., METIS [24]). To the best of our knowledge,
billion-node graph partitioning is an unsolved problem on
general-purpose graph platforms. In summary, Trinity can
adopt any computation model (BSP as in Pregel, restrictive
vertex centric computation, or asynchronous model as in
GraphChi), yet because Trinity deploys graphs on a memory
cloud, it can express any algorithm using graph exploration,
and is not constrained by any computation model.

5.4 Message Passing Optimization
In this section, we describe how Trinity optimizes message

passing to support its vertex based computation model. Al-
though a graph is distributed on multiple machines, from
the point view of a local machine, vertices of the graph are
in two categories: vertices on the local machine, and vertices
on any of the remote machines. Figure 9(a) shows a local
machine’s bipartite view of the entire graph.
In vertex based computation, each vertex is scheduled to

run a job. Before the job on a vertex can start running,
the vertex must receive all the messages it needs. One naive
approach is to wait until all messages to arrive before we
start running the job on any of the local vertices. This
means the local machine needs to buffer all the messages
from remote vertices, and perform random access to retrieve
the messages when running algorithms on the local vertices.
Since the total amount of messages is too big to be memory
resident, we need to buffer the messages on disk, and perform
random accesses on the disk. This incurs significant cost.
Another naive approach is to run jobs on local vertices

without preparing any messages in advance. When a local
vertex is scheduled to run the job, we obtain remote mes-
sages for the vertex, and run the job immediately after they
arrive. Since the system does not have space to hold all mes-
sages, we discard messages after they are used. For example,
in Figure 9(a), in order to run the job on vertex x, we need
messages from vertices u, v, and others. Later on, when y
is scheduled to run, we need messages from u and v again.
This means a single message needed to be delivered multi-
ple times, which is unacceptable in an environment where
network capacity is an extremely valuable resource.

In Trinity, we assume each vertex mainly communicates
with a fixed set of vertices such as its neighbors (the restric-
tive vertex computation model). This provides opportunity
of optimization, because at least we can prepare most of the
messages a vertex needs before it is scheduled to run. To
do this, we create a bipartite partition of the local graph
as shown in Figure 9(b). In the ideal case, local vertices
in a partition only needs messages from remote vertices in
the same partition. Thus, as long as the local machine can
buffer the messages required for each partition in memory,
we can run the job on local vertices in the partition without
waiting, and we also ensure that each message is delivered
just once.

x

y

u

v

x

y

u

v
Local

Remote

a) b)

Figure 9: Bipartite View on a Local Machine

However, graph partitioning itself is a very costly task,
and it is very difficult to create partitions of even size while
minimizing the number of edge cuts. In Trinity, on each local
machine, we differentiate remote vertices into 2 categories.
The first category contains hub vertices, that is, vertices
having a large degree and connecting to a great percentage
of local vertices. The second category contains all of the
remaining vertices. We buffer messages from vertices in the
first category for the entire duration of one iteration. In
other words, they will not participate in the partitioning
process shown in Figure 9(b). For a scale-free graph, e.g.,
one generated by degree distribution P (k) ∼ ck−γ with c =
1.16 and γ = 2.16, 20% hub vertices are sending messages to
80% of vertices. Even if we buffer messages from just 10%
hub vertices, we have addressed 72.8% of message needs.
Thus, after exclusing these frequently used messages, the
partitioning becomes much easier.

In reality, vertices may need messages from vertices in
other partitions, or from vertices other than a predefined
fixed set of vertices such as their neighbors (the general ver-
tex computaton model), these messages are obtained on de-
mand. Let Ki be the remote vertices that do not belong
to partition i but whose messages are needed by local ver-
tices in partition i. We obtain messages from Ki while we
are running algorithms on local vertices in partition i − 1.
Usually, the size of Ki is small, and we can obtain messages
from Ki before running the algorithms on local vertices in
partition i.

The scheme described above requires remote messages to
arrive in certain order (that is, partition by partition, in-
cluding messages on cut edges Ki). To achieve this, after a
local machine performs the partitioning, it sends out to each
remote machine an “action script”, which specifies the order
of the messages it needs. Each machine merges the action

511



scripts it receives from other machines. After the execution
starts, each machine sends messages based on the merged
script, iteration after iteration.
One observation we can make from Figure 9 is that unlike

in online query processing, where it is impossible to predict
which part of the graph the next query is going to access, the
data access pattern in offline analytics jobs can be predicted.
For example, for vertex centric computation, the execution is
partition by partition. On each machine, the same sequence
of execution will repeat over and over again.
Since we can predict the data access pattern, we no longer

have to keep the entire graph memory resident. At any mo-
ment, we consider two types of vertices: A) vertices in a
partition currently scheduled to run on a certain machine;
and B) all of the other vertices in the graph. For a Type A
vertex, we keep its cell structure in memory, the computa-
tion may need to access its neighbors, attributes, and local
variables. For a Type B vertex, we only keep its message
box in memory, since Type A vertices may need it. This is
illustrated in Figure 10.

Type A vertices

message

local variables

attributes

neighbors

UID

Type B vertices

message

UID

Figure 10: Memory Resident Cell Structures

This arrangement dramatically reduces the memory re-
quirement. Originally, to keep the graph topology memory
resident (also include some runtime information), the total
memory we need is:

S = |V | · (16 + k + l +m) + 8|E|

where 16 (bytes) is the space needed to store and access the
UID, k, l, and m are the average sizes of attributes, local
variables, and message, respectively. In the offline mode, the
memory we need is

S
′ = p · S + (1− p) · |V | · (16 +m)

where p is the percentage of Type A vertices. Thus, the
saved memory is:

S − S
′ = (1− p)(k + l) · |V |+ (1− p) · 8|E|

Suppose k = l = m = 8 and p = 0.1, for the Facebook social
graph, 708 GB memory space can be saved. This means the
number of required machines can be reduced significantly
without affecting the performance much.

5.5 A New Paradigm for Offline Analytics
Besides the capabilities mentioned above, Trinity also in-

troduces a new paradigm for offline graph analytics. In Trin-
ity, a web-scale graph is partitioned and stored on a num-
ber of machines. This leads to the following question: Can
we perform graph computation locally on each machine and
then aggregate their answers to derive the answer for the
entire graph, or can we use probabilistic inference to derive
the answer for the entire graph from the answer on a sin-
gle machine? This paradigm has the potential to overcome

the network communication bottleneck, as it minimizes or
even abolishes network communication. The answer to the
above question is positive. If a graph is partitioned over 10
machines, each machine has full information about 10% of
the vertices and 10% of the edges. Besides, the edges link
to a large amount of the remaining 90% of vertices. Thus,
the sample actually contains a lot of information about the
entire graph. Furthermore, when a graph is randomly par-
titioned, each machine holds a random sample of the graph,
which enables us to perform probabilistic inference.

We experimented with this new paradigm in Trinity. In
one example, we find landmark vertices, and use them to es-
timate shortest distances between any two nodes in a large
graph [37]. In Figure 8(b), we show the effectiveness of us-
ing 3 methods to pick the landmark vertices. Here, the X
axis shows the number of landmark vertices we use, and
the Y axis shows estimation accuracy. The best approach
is to use vertices that have the highest global betweenness,
and the worst approach is to simply use vertices that have
the largest degree. Our approach, which uses vertices that
have the highest betweenness computed locally, actually has
very close accuracy to the best approach. However, find-
ing landmarks that have the highest global betweenness is
significantly more costly than our approach.

6. IMPLEMENTATION DETAILS
We implemented Trinity on Microsoft .Net framework. In

this section, we discuss some technical details in memory
management and fault tolerance.

6.1 Circular Memory Management
Trinity memory cloud is a key-value store, and the value in

a key-value pair is a blob of arbitrary size. Some (graph) ap-
plications need to manage billions of key-value pairs. Among
these key-value pairs, some are very large (imagine a very
popular celebrity on Facebook with a million fans), but most
of them are small. It is a challenge to manage billions of key-
value pairs of varied sizes in a very compact manner. Tradi-
tional memory management mechanisms that use memory
buckets are extremely wasteful because they leave memory
gaps between billions of key-value pairs. Furthermore, when
we update a key-value pair, the size of the blob may increase
or decrease, creating further challenges for memory manage-
ment. For Trinity, the goal is to support fast memory allo-
cation, efficient memory reallocation, and maintains a high
memory utilization ratio.

Trinity implements a circular memory management mech-
anism, which tries to avoid memory gaps between large num-
ber of key-value pairs. When we initialize a memory trunk,
we reserve a 2GB virtual memory address space from the
operating system. As shown in Figure 11 (a), new key-value
pairs are sequentially appended to the committed memory
region. The pointer append head points to the next free
memory byte. The memory space occupied by existing key-
value pairs resides in the region between committed tail and
append head.

When we expand a key-value pair or create a new key-
value pair, we always allocate a new memory region from
append head if there is enough committed memory. If no
space is left, we allocate one or more new memory pages
and advance committed head. Hence, memory allocation is
efficient, because in most cases, we just advance the append
head. Shrinking or expanding the size of a key-value pair

512



may leave memory gaps in the committed memory region.
Trinity activates a defragmentation daemon which scans the
committed memory region, and moves key-value pairs to-
ward append head. After a pass, the freed memory pages at
the tail of committed memory is released and the committed
tail is moved forward. In this process, the committed head,
append head, and committed tail may move to the start of
the memory trunk, performing an endless circular movement
until all available memory is occupied.

Reserved Memory Committed Memory Reserved Memory

Defragmentation
Tail

Allocation
Head

(c)

Committed Memory Reserved Memory Committed Memory

Allocation Head DefragmentationTail

(b)

Reserved Memory Reserved Memory

Memory Trunk Memory Space

Committed Memory
Tail Head

Append Head

TrunkPtr TrunkEnd

(a)

Figure 11: Circular Memory Management

For certain applications (e.g., graph generation, graph
streams, etc.), the size of key-value pairs keep increasing (as
new edges are added to the node cells). This creates tremen-
dous overhead in committing and decommitting memory
pages, and in moving key-value pairs around for defragmen-
tation. To reduce the overhead, we devised a short-lived
memory reservation mechanism to support frequent key-
value pair reallocation. A naive idea is to reserve a few more
bytes during a key-value pair expansion for future expansion.
For example, if the current key-value pair needs to expand
by 16 bytes, we allocate 32 bytes instead. The problem for
this naive solution is that the memory utilization ratio will
be lowered since a lot of reserved memory is actually not
used. To address this issue, we make all memory reserva-
tion short-lived. One reservation is only valid in the interval
between two defragmentation passes. The unused reserved
memory will be released in next defragmentation. On the
one hand, by memory reservation, we greatly decrease the
chance of memory committing/decommitting and memory
movement so that we can greatly improve the key-value pair
expansion performance. On the other hand, through mem-
ory defragmentation, unused reserved memory is collected
timely so that we can minimize the runtime memory over-
head.

6.2 Fault Tolerance
As a distributed system, Trinity needs to deal with various

fault-tolerance issues.

Shared Addressing Table Maintenance

Trinity uses a shared addressing table to locate a key-value
pair, as elaborated in section 3. The addressing table is a
shared global data structure. A centralized implementation

is infeasible because of the performance bottleneck and the
risk of single point of failure. A straightforward approach to
these issues is to duplicate this table on each slave. However,
this leads to potential problem of data inconsistency.

Trinity maintains a primary replica of the shared address-
ing table on a leader machine, and uses the fault-tolerant
distributed file system TFS to keep a persistent copy of the
primary addressing table. An update to the primary table
must be applied to the persistent replica before committing.

Trinity uses heartbeat messages to proactively detect ma-
chine failures. Besides this, a machine A that attempts to
access a data item on machine B which is down can detect
the failure of machine B. In this case, machine A will inform
the leader machine of the failure of machine B. After that,
machine A will wait for the addressing table to be updated,
and attempt to access the item again once the addressing
table is updated.

On the confirmation of a machine failure, the leader ma-
chine will start the recovery process. During recovery, the
leader reloads data owned by the failed machine to other
alive machines, updates the primary addressing table and
broadcasts it. Even if some slave machines cannot receive
the broadcast message due to temporary network interrup-
tion, the protocol still works since a machine will always sync
up with the primary addressing table replica when it fails to
load a data item. If the leader machine fails, a new round
of leader election will be triggered. The new leader marks
a flag on the shared distributed fault-tolerant file system to
avoid multiple leaders in the case that the cluster machines
are partitioned into disjointed sets due to network failure.

Fault Recovery

For different computation models, we use different fault re-
covery mechanisms. For BSP based synchronous computa-
tion, we make check points every a few supersteps. These
check points are written to the persistent file system for fu-
ture failure recovery. For asynchronous computation, the
fault recovery issue is subtler than that of its synchronous
counterpart, as check points cannot be easily created when
the computation is running in the asynchronous mode. In-
stead of adopting a complex checkpoint techniques, e.g. [21],
we use a simple “periodical interruption”mechanisms to cre-
ate snapshots. Specifically, Trinity issues an interruption
signal periodically. On receiving this signal, all vertices will
pause after finishing the job in hand. After issuing the in-
terruption signal, Trinity calls Safra’s termination detection
algorithm [16] to check whether the system ceases. A snap-
shot is written to the persistent disk storage once the system
ceases. For read-only queries, we just restart the failed node
and reload the data from the persistent disk storage. For
online update queries, we use the buffered logging mech-
anism proposed in RAMCloud to do failure recovery. The
key idea is to log operations to remote memory buffers before
committing them to the local memory. Detailed discussion
about buffered logging can be found in [30, 29].

7. EXPERIMENTAL EVALUATION
We conduct a number of experiments to measure the per-

formance of Trinity for online queries and offline analytics.
All the following experiments are performed in a 16-machine
cluster. Each machine has 96 GB DDR3 RAM and two 2.67
GHz Intel(R) Xeon(R) X5650 CPUs, each processor has 12
threads. The operating system is 64-bit Windows Server

513



2008 R2 Enterprise. There are dual network adapters on
each machine, one is 40 Gbps Mellanox IPoIB Adapter and
the other is 1 Gbps HP NC382i DP Multifunction Gigabit
Server Adapter. Trinity is implemented using C# and com-
plied with target platform x64. The Trinity runtime is .NET
Framework 4.

People Search Query On Social Graph. We perform peo-
ple search queries in a social network to measure the perfor-
mance of data-intensive, traversal-based online graph queries.
This experiment measures query response time of searching
friends by name within 2 and 3 hops on synthetic social
graphs. The out-degree of each node varies from 10 to 200.
Eight machines are used in this experiment, the performance
curves are shown in Figure 12(a). The response times of 2-
hop queries are always under 10 ms. The response time of
3-hop search on the graph with 130 node degree is 96.2 ms in
this experiment. Currently the average degree of Facebook
is 130. This indicates people search queries on Facebook like
social graphs can be answered within 100 ms.

Page Rank Calculation On Web Graph. Calculation of
page rank is one of the commonest graph analytics tasks
on web graphs. Here we use page rank calculation to mea-
sure the offline processing performance of Trinity. In this
experiment, the page rank is calculated using synchronous
vertex centric computation model on R-MAT graphs [12].
The number of vertices varies from 64 million to 1024 mil-
lion. The average degree is 13. The computation time for
one iteration (a super-step in BSP model) on 8, 10, 12 and
14 machines is shown in Figure 12(b). We can see that one
page rank iteration on a graph with 1 billion node can be
completed in merely one minute on 8 machines.

Breadth-first Search. Breadth-first search (BFS) is a fun-
damental graph computation operation. Many graph algo-
rithms are built on BFS. Graph 500 Benchmark [5] adopts
BFS as one of its two computation kernels. Figure 12(c)
shows the performance curves of performing BFS on 8, 10,
12 and 14 machines. This experiment uses the same data
as that in the page rank calculation experiment. For the
1 billion node graph, it takes 1028 seconds on 8 machines,
while 644 seconds on 14 machines.

Trinity vs. PBGL. PBGL [19] is a generic C++ library for
high-performance parallel and distributed graph Computa-
tion. We run BFS on RMAT graphs in a 16-machine cluster
using PBGL and Trinity to compare their execution time
and memory usage. The node count varies from 1 million
to 256 million with average degree 4, 8, 16 and 32. The re-
sults in Figure 13 clearly show that Trinity runs 10x faster
with 10x less memory footprint. When average degree is 32,
PBGL runs out of memory on the 256 million graph. PBGL
uses the “ghost cells” mechanism for message passing. This
mechanism incurs great memory overhead, especially on not-
well-partitioned graphs. It takes near 600 GB memory for
the 256 million node graph when average degree is 16. In
contrast, Trinity takes less than 65 GB memory for the same
graph.

Trinity vs. Giraph. Giraph [3] is a publicly available pregel
implementation. We run page rank on Giraph to compare
its performance with Trinity. We deployed the latest Giraph

on the 16-machine cluster. The required Hadoop version is
0.20.2-RC1. The JRE version is jre-6u31-windows-x64, and
the maximum memory heap size is set to 81 GB. The ex-
perimental results are shown in Figure 12 (d). Each page
rank iteration takes 2455 seconds on the graph with 256
million nodes and 2 billion edges. With half number of ma-
chines, each page rank iteration of Trinity on a graph with
1 billion nodes and 13 billion edges only takes 51 seconds.
Trinity runs faster by two orders of magnitude. Note: when
average degree is 16, Giraph run out of memory on the 256
million node graph. This indicates that the runtime memory
footprint of Giraph is much larger Trinity.

1 2 3 4 5 6 7 8
0

5

10

15

20

Number of Machines

Q
u
er
y
T
im

e
(s
ec
)

(a) Subgraph Matching Query

Patent
Wordnet

2 3 4 5 6 7 8 9 10 11 12

10−2

10−1

100

101

Number of Machines

Q
u
er
y
T
im

e
(s
ec
)

(b) SPARQL Query

Figure 14: Parallel Speedup for Online Queries

Parallel Speedup. We have performed experiments to eval-
uate the distributed parallel speedup for both graph analyt-
ics jobs and online graph queries. The experimental results
of page rank and BFS are shown in Figure 12 (b) and (c).
The parallel speedup for online queries is shown in Figure
14. Figure 14 (a) shows the response time of subgraph match
queries on two real-life graphs (Wordnet and US patent net-
work), while (b) shows the response time of four SPARQL
queries on a LUBM RDF data set [20] with 1,367,122,031
triples [36]. As the number of machines increases, the com-
putation time is dramatically reduced for both offline graph
analytics and online query processing. With more machines,
the data partition on each machine is smaller, but the net-
work message number will increase. Trinity is designed to
scale out, with more machines, the performance would keep
going up until the network communication limit is reached.

More Discussions on Scalability. An interesting obser-
vation is that Trinity has the least memory footprint when
performing jobs on the same graph, compared with PBGBL
and Giraph. PBGL and Giraph take more memory than
trinity, while run much slower than Trinity. The reasons
are twofold: i) Due to the random data access pattern, the
graph data must be cached in memory during computation.
However, in PBGL and Giraph, graph nodes exist as run-
time objects in memory. They take much more memory than
Trinity’s plain blobs. 2) Trinity is an all-in-memory system,
the graph data is loaded in memory before doing computa-
tion. So there is no cache-missing penalty. This mechanism
is much more efficient than memory caching mechanism even
a lot of memory is allocated as cache. Cache-misses hurt per-
formance greatly even if there are only a few occurrences.

8. RELATED WORK
Many applications utilize large RAM storage to offer bet-

ter performance. Large web applications, such as Facebook,
Twitter, Youtube, and Wikipedia, heavily use memcached

514



0 20 40 60 80 100 120 140 160 180 200
100

101

102

103

Node Degree

R
es
p
on

se
T
im

e
(m

s)
(a) People Search

3 hop
2 hop

0 128 256 384 512 640 768 896 1,024
0

10

20

30

40

50

60

Node Count (Million)

E
x
ec
u
ti
on

T
im

e
(s
ec
)

(b) Page Rank

8 machines
10 machines
12 machines
14 machines

0 128 256 384 512 640 768 896 1,024
0

200

400

600

800

1,000

1,200

Node Count (Million)

E
x
ec
u
ti
on

T
im

e
(s
ec
)

(c) Breadth-first Search

8 machines
10 machines
12 machines
14 machines

20 21 22 23 24 25 26 27 28
0

500

1,000

1,500

2,000

2,500

3,000

Node Count (Million)

E
x
ec
u
ti
on

T
im

e
(s
ec
)

(d) Page Rank on Giraph

4 machines
8 machines
16 machines

Figure 12: Trinity Performance Experiments

20 21 22 23 24 25 26 27 28
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

Node Count (Million)

E
x
ec
u
ti
on

T
im

e
(s
ec
)

(a) PBGL

4 machines
8 machines
16 machines
32 machines

20 21 22 23 24 25 26 27 28
0

100

200

300

400

500

600

Node Count (Million)

E
x
ec
u
ti
on

T
im

e
(s
ec
)

(b) Trinity

4 machines
8 machines
16 machines
32 machines

20 21 22 23 24 25 26 27 28
0

100

200

300

400

500

600

Node Count (Million)

M
em

or
y
U
sa
ge

(G
B
)

(c) PBGL

4 machines
8 machines
16 machines
32 machines

20 21 22 23 24 25 26 27 28
0

10

20

30

40

50

60

70

Node Count (Million)

M
em

or
y
U
sa
ge

(G
B
)

(d) Trinity

4 machines
8 machines
16 machines
32 machines

Figure 13: BFS in PBGL and Trinity

[17] to cache large volume of long-lived small objects. As the
middle tier between data storage and application, caching
systems offload the server side work by taking over some
data serving tasks. Machines in a caching system are inde-
pendent with each other. They do not communicate with
each other to perform computation, hence they do not solve
the computation latency problem.
Besides memcached, key-value stores such as Scalaris [31]

and Redis [35] also use RAM as their main storage. Recently,
RAMCloud [30] pushes the idea of RAM based applications
to a new level. RAMCloud is a data storage system that
hosts all its data permanently in memory. The memory
cloud storage of Trinity resembles the concept proposed in
RAMCloud. Although both RAMCloud and Trinity have a
large distributed RAM storage, their design goals are quite
different. RAMCloud tries to leverage the low latency and
high throughput data access power of RAM to support large
scale applications, especially large web applications. While
Trinity focuses on utilizing the random data access trait of
distributed RAM storage to support large graph processing
applications, especially those need fast graph exploration.
To the best of our knowledge, Trinity is the first mature
system that turns the concept of ram cloud into a large
graph processing platform.
Many systems have been devised to process large graphs.

PEGASUS [23] is a graph mining system built on Hadoop
[2], which is an open source implementation of the MapRe-
duce framework [15]. Due to the challenges posed by paral-
lel graph processing [26], MapReduce based approaches are
often “ill-suited” for large graph processing as discussed in
[28]. To overcome the challenges, Pregel [28], GraphLab [1],
PowerGraph [18], and GraphChi [25] adopt vertex centric
graph computation models. The idea of vertex centric com-
putation can be traced back to the well studied synchronous
and asynchronous network model [27]. The processors in a
processor network becomes graph vertices, and communica-
tion channels becomes graph edges. To a large extent, these

metaphors in the context of graph computation are the key
innovations of vertex centric graph computation.

Due to the random data access problem, general purpose
graph computations usually do not have efficient disk-based
solutions. But under certain constraints, offline graph prob-
lems that can be solved by “divide-and-conquer” strategy
sometimes have efficient disk based solutions. A typical ex-
ample is GraphChi [25]. GraphChi can perform efficient disk
based graph computation under an assumption that current
computation has an asynchronous vertex centric solution.
Asynchronous solution means a vertex can perform compu-
tation just based on partially updated information from its
incoming links. This assumption, on the one hand, frees the
need of passing messages of current vertex to all its outgo-
ing links so that it can perform the graph computation block
by block. On the other hand, it inherently cannot support
traversal based graph computation and synchronous graph
computation efficiently because it cannot access the neigh-
borhood of a vertex efficiently. Disk based graph computa-
tion solutions are essentially cache mechanisms. If a prob-
lem can be well partitioned, then the sub-problems can be
loaded in memory and efficiently handled one by one. How-
ever, as widely acknowledged [26], most graph problems are
usually inherently irregular and hard to partition especially
for online queries.

Besides various graph processing systems, a number of
parallel graph processing libraries are also available for im-
plementing parallel graph algorithms on large graph data,
such as Parallel Boost Graph Library (PBGL) [19] and Multi-
Threaded Graph Library (MTGL) [9]. PBGL provides graph
data structures and message passing mechanisms to make
graph algorithms run in parallel. It uses ghost cells (local
replicas of remote cells) for message passing. As discussed
in [26], the ghost cell mechanism only works well for well-
partitioned graphs. Great memory overhead would be in-
curred for not-well-partitioned large graphs. This fact is
clearly validated by our experimental results shown in Sec-
tion 7. A big difference between PBGL and Trinity is their

515



communication infrastructure. PBGL’s network communi-
cation relies on MPI, which heavily utilizes two-sided com-
munication paradigm. Trinity uses the one-sided communi-
cation paradigm, a vertex can send message to other ver-
tices without any prior appointment. This communication
paradigm makes fine-grained parallelism possible on large
graph data [26]. MTGL is designed for massively multi-
threaded architectures. However MTGL only works on mas-
sively multi-threaded machines. Thus, the dependence on
architecture makes it hard to be adopted widely.

9. CONCLUSION
We introduce a graph engine called Trinity for building

online query processing applications as well as offline graph
analytics applications. The graph engine is built on top of
a distributed memory storage infrastructure called memory
cloud. Memory cloud is designed to address the random data
access challenge of large graph processing. With this stor-
age infrastructure, Trinity enables a large variety of efficient
graph computing paradigms for web scale graphs.

10. REFERENCES

[1] http://graphlab.org/.

[2] http://hadoop.apache.org/.

[3] http://incubator.apache.org/giraph/.

[4] http://neo4j.org/.

[5] http://www.graph500.org/.

[6] How to partition a billion-scale graph. Technical
report, Microsoft Research, 2012.

[7] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis. Sinfonia: a new paradigm for
building scalable distributed systems. SOSP ’07, pages
159–174, 2007.

[8] D. G. Andersen, J. Franklin, M. Kaminsky,
A. Phanishayee, L. Tan, and V. Vasudevan. Fawn: a
fast array of wimpy nodes. SOSP ’09, pages 1–14.

[9] J. Berry, B. Hendrickson, S. Kahan, and P. Konecny.
Software and algorithms for graph queries on
multithreaded architectures. In IPDPS 2007, pages
1–14, 2007.

[10] D. Borthakur. The Hadoop Distributed File System:
Architecture and Design, 2007.

[11] R. Bramandia, B. Choi, and W. K. Ng. Incremental
maintenance of 2-hop labeling of large graphs. TKDE,
22(5):682–698, 2010.

[12] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A
recursive model for graph mining. SDM ’04, 2004.

[13] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos
made live: an engineering perspective. PODC ’07,
pages 398–407, 2007.

[14] J. Cheng, J. X. Yu, B. Ding, P. S. Yu, and H. Wang.
Fast graph pattern matching. In ICDE, pages
913–922, 2008.

[15] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. OSDI ’04, pages
137–150.

[16] E. W. Dijkstra. Shmuel Safra’s version of termination
detection. Jan. 1987.

[17] B. Fitzpatrick. Distributed caching with memcached.
Linux J., August 2004.

[18] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. Powergraph: Distributed graph-parallel
computation on natural graphs. In OSDI, pages 17–30,
2012.

[19] D. Gregor and A. Lumsdaine. The Parallel BGL: A
generic library for distributed graph computations.
POOSC ’05.

[20] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark
for OWL knowledge base systems. Journal of Web
Semantics, 3(2-3):158–182, 2005.

[21] H. Higaki, K. Shima, T. Tachikawa, and M. Takizawa.
Checkpoint and rollback in asynchronous distributed
systems. INFOCOM ’97, pages 998–, 1997.

[22] B. Iordanov. Hypergraphdb: a generalized graph
database. WAIM ’10, pages 25–36, 2010.

[23] U. Kang, C. E. Tsourakakis, and C. Faloutsos.
Pegasus: A peta-scale graph mining system
implementation and observations. ICDM ’09, pages
229–238, 2009.

[24] G. Karypis and V. Kumar. Parallel multilevel k-way
partitioning scheme for irregular graphs.
Supercomputing ’96.

[25] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi:
Large-scale graph computation on just a pc. In OSDI,
pages 31–46, 2012.

[26] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. W.
Berry. Challenges in parallel graph processing. Parallel
Processing Letters, 17(1):5–20, 2007.

[27] N. A. Lynch. Distributed Algorithms. 1996.

[28] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a
system for large-scale graph processing. SIGMOD ’10.

[29] D. Ongaro, S. M. Rumble, R. Stutsman,
J. Ousterhout, and M. Rosenblum. Fast crash recovery
in ramcloud. SOSP ’11, pages 29–41, 2011.

[30] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,
J. Leverich, D. Mazières, S. Mitra, A. Narayanan,
G. Parulkar, M. Rosenblum, S. M. Rumble,
E. Stratmann, and R. Stutsman. The case for
ramclouds: scalable high-performance storage entirely
in dram. SIGOPS Oper. Syst. Rev., 43:92–105, 2010.

[31] T. Schütt, F. Schintke, and A. Reinefeld. Scalaris:
reliable transactional p2p key/value store. ERLANG
’08, pages 41–48, 2008.

[32] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li.
Efficient subgraph matching on billion node graphs.
Proc. VLDB Endow., 5(9):788–799, May 2012.

[33] W. Wu, H. Li, H. Wang, and K. Zhu. Probase: A
probabilistic taxonomy for text understanding. In
SIGMOD, 2012.

[34] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: cluster computing
with working sets. HotCloud’10, pages 10–10, 2010.

[35] J. Zawodny. Redis: Lightweight key/value store that
goes the extra mile. Linux Magazine, 2009.

[36] K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A
distributed graph engine for web scale RDF data. In
VLDB 2013.

[37] X. Zhao, A. Sala, C. Wilson, H. Zheng, and B. Y.
Zhao. Orion: shortest path estimation for large social
graphs. WOSN’10, pages 9–9, 2010.

516




