
Dynamic Knobs for Responsive Power-Aware Computing

Henry Hoffmann ∗ Stelios Sidiroglou∗ Michael Carbin Sasa Misailovic
Anant Agarwal Martin Rinard

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

{hank,stelios,mcarbin,misailo,agarwal,rinard}@csail.mit.edu

Abstract

We present PowerDial, a system for dynamically adapting applica-
tion behavior to execute successfully in the face of load and power
fluctuations. PowerDial transforms static configuration parameters
into dynamic knobs that the PowerDial control system can manip-
ulate to dynamically trade off the accuracy of the computation in
return for reductions in the computational resources that the ap-
plication requires to produce its results. These reductions translate
directly into performance improvements and power savings.

Our experimental results show that PowerDial can enable our
benchmark applications to execute responsively in the face of
power caps that would otherwise significantly impair responsive-
ness. They also show that PowerDial can significantly reduce the
number of machines required to service intermittent load spikes,
enabling reductions in power and capital costs.

Categories and Subject Descriptors C.4 [Performance of Sys-
tems]: Reliability, availability, and serviceability

General Terms Performance, Reliability, Experimentation

Keywords Accuracy-aware Computing, Power-aware Comput-
ing, Self-aware Systems

1. Introduction

Many applications exhibit a trade-off between the accuracy of the
result that they produce and the power and/or time that they require
to produce that result. Because an application’s optimal operating
point can vary depending on characteristics of the environment
in which it executes (for example, the delivered computational
capacity of the underlying computing platform), developers often
provide a static interface (in the form of configuration parameters)
that makes it possible to choose different points in the trade-off
space for different executions of the application. Configured at
startup, the application operates at the selected point for its entire
execution.

But phenomena such as load fluctuations or variations in avail-
able power can change the optimal operating point of the appli-

∗Henry Hoffmann and Stelios Sidiroglou contributed equally to the research
presented in this paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’11, March 5–11, 2011, Newport Beach, California, USA.
Copyright c© 2011 ACM 978-1-4503-0266-1/11/03. . . $10.00

cation as it is executing. Static configuration leaves the applica-
tion with two unappealing choices: either continue its execution
at a suboptimal point in the trade-off space (potentially impairing
properties such as responsiveness to users) or terminate its current
execution and restart at a new operating point (and incur service
interruptions as it drops its current task and restarts).

1.1 Dynamic Knobs and Adaptive Response

We present a new system, PowerDial, for dynamically adapting the
behavior of running applications to respond to fluctuations in load,
power, or any other event that threatens the ability of the underlying
computing platform to deliver adequate capacity to satisfy demand:

• Dynamic Knob Insertion: PowerDial uses dynamic influence
tracing to transform static application configuration parameters
into dynamic control variables stored in the address space of the
running application. These control variables are made available
via a set of dynamic knobs that can change the configuration
(and therefore the point in the trade-off space at which it exe-
cutes) of a running application without interrupting service or
otherwise perturbing the execution.
• Dynamic Knob Calibration: PowerDial explores the under-

lying accuracy versus performance trade-off space (originally
available via the configuration parameters) to characterize the
accuracy and performance of each dynamic knob setting. It uses
a quality of service (QoS) metric to quantify the accuracy of
each setting.
• Dynamic Knob Control: PowerDial is designed for applica-

tions that are deployed to produce results at a target frequency
(with performance measured as the time between results). It
uses the Application Heartbeats framework [24] to dynami-
cally monitor the application. An existing control strategy [35]
is combined with a novel actuation mechanism to maintain
performance. When the performance either drops below tar-
get (i.e., the time between results exceeds a given threshold)
or rises above target (i.e., the time between results drops be-
low the threshold), the PowerDial system uses the calibrated
dynamic knobs to move the application to a more appropriate
point in its trade-off space (the new point may, for example,
give up some accuracy in return for increased performance and
decreased power consumption). The goal is to maximize accu-
racy while preserving responsiveness in the face of fluctuations
in the capabilities of the underlying computing platform.

1.2 Summary of Experimental Results

We evaluate PowerDial’s ability to control the behavior of four
benchmark applications (the x264 video encoder, the bodytrack hu-
man tracking application, the swaptions financial analysis applica-
tion, and the swish++ search engine) dynamically in environments
with fluctuating load and power characteristics. Our results show:

199

• Trade-Off Space: All of the applications exhibit a large viable
trade-off space — three of the applications (x264, bodytrack,
and swaptions) can execute from four to six times faster than
their baseline (which defines the default quality of service)
with acceptable quality of service losses. swish++ can execute
approximately 1.5 times faster than its baseline (at the cost of
dropping lower-ranked search results).
• Power Capping: Systems often respond to power caps (reduc-

tions in the delivered power imposed, for example, in response
to cooling system failures) by dynamic voltage/frequency scal-
ing (DVFS) (reducing the frequency and voltage at which the
system operates [51]). The ensuing reduction in the delivered
computational capacity of the system can make it difficult or
impossible for applications to continue to deliver responsive
service.
Our results show that PowerDial enables applications to adapt
effectively as a power cap (which reduces the processor fre-
quency from 2.4 GHz to 1.6 GHz) is first imposed, then lifted.
When the power cap is imposed, PowerDial preserves respon-
siveness by moving the applications to new Pareto-optimal
points with less computational demands and slightly lower
quality of service. When the power cap is lifted, PowerDial
restores the original quality of service by moving the applica-
tions back to the baseline.
• Peak Load Provisioning: Systems are often provisioned to ser-

vice the peak anticipated load. Common workloads often con-
tain intermittent load spikes [9]. The system therefore usually
contains idle machines that consume power but perform no use-
ful work.
Our results show that PowerDial can reduce the number of
machines required to successfully service time-varying work-
loads. When a load spike overwhelms the ability of the sys-
tem to service the load with the baseline application configura-
tion, PowerDial preserves responsive performance by dynam-
ically reconfiguring the application to use less computation to
produce (slightly) lower quality results. Specifically, our results
show that PowerDial can make it possible to reduce (by a fac-
tor of 3/4 for x264, bodytrack, and swaptions and by a factor of
1/3 for swish++) the number of machines required to provide
responsive service in the face of intermittent load spikes. The
system provides baseline quality of service for the vast major-
ity of tasks; during peak loads, the system provides acceptable
quality of service and (at most) negligible performance loss.

PowerDial is not designed for all applications — it is instead de-
signed for applications that 1) have viable performance versus QoS
trade-off spaces and (as is evident in the availability of appropri-
ate configuration parameters) have been engineered to operate suc-
cessfully at multiple points within those spaces and 2) operate in
contexts where they must satisfy responsiveness requirements even
in the face of fluctuations in the capacity of the underlying comput-
ing platform. In this paper we focus on fluctuations in power and
load, but PowerDial can enable applications to adapt dynamically
to any change that affects the computational capacity delivered to
the application.

1.3 Contributions

This paper makes the following contributions:
• Dynamic Knobs: It presents the concept of dynamic knobs,

which manipulate control variables in the address space of a
running application to dynamically change the point in the un-
derlying performance versus quality of service trade-off space
at which the application executes.
• PowerDial: It presents PowerDial, a system that transforms

static configuration parameters into calibrated dynamic knobs
and uses the dynamic knobs to enable the application to oper-

ate successfully in the face of fluctuating operating conditions
(such as load spikes and power fluctuations).
• Analysis and Instrumentation: It presents the PowerDial

analysis and instrumentation systems, which dynamically ana-
lyze the application to find and insert the dynamic knobs.
• Control: It presents the PowerDial control system, which uses

established control techniques combined with novel actuators
to automatically maintain the application’s desired performance
while minimizing quality of service loss.
• Resource Requirements: It shows how to use dynamic knobs

to reduce the number of machines required to successfully
service peak loads and to enable applications to tolerate the
imposition of power caps. It analyzes the resulting reductions
in the amount of resources required to acquire and operate a
computational platform that can successfully deliver responsive
service in the face of power and load fluctuations.
• Experimental Results: It presents experimental results charac-

terizing the trade-off space that dynamic knobs make available
in our benchmark applications. It also presents results demon-
strating PowerDial’s ability to enable automatic, dynamic adap-
tation of applications in response to fluctuations in system load
and power.

2. Dynamic Knobs

Dynamic knobs are designed for applications that 1) have static
configuration parameters controlling performance versus QoS
trade-offs and 2) use the Application Heartbeats API [24] (our
system can automatically insert the required API calls, see Sec-
tion 2.3). These applications typically exhibit the following general
computational pattern:
• Initialization: During initialization the application parses and

processes the configuration parameters, then computes and
stores the resulting values in one or more control variables in
the address space of the running application.
• Main Control Loop: The application executes multiple itera-

tions of a main control loop. At each iteration it emits a heart-
beat, reads the next unit of input, processes this unit, produces
the corresponding output, then executes the next iteration of the
loop. As it processes each input unit, it reads the control vari-
ables to determine which algorithm to use.

With this computational pattern, the point in the performance
versus QoS trade-off space at which the application executes is
determined by the configuration parameters when the application
starts and does not change during its execution. A goal of Power-
Dial, as illustrated in Figure 1, is to augment the application with
the ability to dynamically change the point in the trade-off space at
which it is operating. At a high level, PowerDial accomplishes this
goal as follows:
• Parameter Identification: The user of the program identifies

a set of configuration parameters and a range of settings for
each such parameter. Each combination of parameter settings
corresponds to a different point in the performance versus QoS
trade-off space.
• Dynamic Knob Identification: For each combination of pa-

rameter settings, PowerDial uses dynamic influence tracing
(which traces how the parameters influence values in the run-
ning application) to locate the control variables and record the
values stored in each control variable.
• Dynamic Knob Calibration: Given a set of representative

inputs and a QoS metric, PowerDial executes a training run
for each input and combination of parameter settings. For each
training run it records performance and QoS information. It
then processes this information to identify the Pareto-optimal
points in the explored performance versus QoS trade-off space.

200

201

202

2.3.3 Actuation Policy

The PowerDial actuator must convert the speedup specified by the
controller into a dynamic knob setting. The controller is a continu-
ous linear system, and thus, the actuator must convert the continu-
ous signal into actions that can be realized in the application’s dis-
crete, potentially non-linear, dynamic knob system. For example,
the controller might specify a speedup of 1.5 while the smallest
speedup available through a knob setting is 2. To resolve this issue,
the actuator computes a set of actions to take over a time quantum.
We heuristically establish the time quantum as the time required
to process twenty heartbeats. In the example, the actuator would
run with a speedup of 2 for half the time quantum and the default
speedup of 1 for the other half. Therefore, the average speedup over
the time quantum is 1.5, the desired value.

The actuator determines which actions to take for the next time
quantum by optimizing a system of linear constraints. Let b be the
heart rate in the baseline configuration, while g is the target heart
rate of the system. Let smax be the maximum achievable speedup for
the application given its dynamic knobs, and let smin be the mini-
mum speedup corresponding to a knob setting such that smin ≥ g/b.
Let unknowns tmax, tmin, and tde f ault correspond to the percentage of
time during the next quantum to run with the application’s knobs set
to the maximum speedup, the minimum required speedup, and the
default settings, respectively. The following system of constraints
captures the behaviors considered for the next time quantum.

smax · tmax + smin · tmin +
b
g
· tde f ault = 1 (9)

tmax + tmin + tde f ault ≤ 1 (10)
tmax, tmin, tde f ault ≥ 0 (11)

While there are many solutions to this system of constraints, two
are of particular interest for making power versus performance ver-
sus QoS trade-offs. First, for platforms with sufficiently low idle
power consumption (for more detail see Section 3), PowerDial sup-
ports race-to-idle execution by setting tmin = tde f ault = 0, which
forces the application to run at the highest available speedup. If
tmax < 1 the system can idle for the remaining 1 − tmax portion of
the time quantum to save power. The second solution PowerDial
considers results from setting tmax = 0 and requiring tmin + tde f ault =
1. This solution will run the application at the lowest obtainable
speedup that will enable the application to meet its heart rate tar-
get and delivers the lowest feasible QoS loss. Having determined
values for tmax, tmin, and tde f ault for the next time quantum, the Pow-
erDial controller executes the corresponding plan, then computes a
new plan when the quantum expires.

3. Analytical Models

Data center power consumption is experiencing significant growth.
By 2011, U.S. data centers are predicted to use 100 Billion kWh, at
a cost of $7.4 billion per year [50]. Of particular concern is the low
average data center utilization, typically around 20-30% [9, 37],
which coupled with high idle power consumption (at idle, current
servers use about 60% of peak power), leads to significant waste.

The combination of brief but frequent bursts of activity with la-
tency requirements results in underutilized machines remaining on-
line. Server consolidation through the use of virtual machines, com-
monly used for non-critical services, cannot react quickly enough
to maintain the desired level of service [37]. Turning idle systems
off (even in low power mode), has similar problems.

To deal with idle power waste, researchers have proposed that
system components be designed to consume energy proportional
to their use [9]. Dynamic voltage and frequency scaling (DVFS)
is a power management technique commonly found in modern
processors [1, 3] that demonstrates this concept.

Beyond direct energy costs, data centers also incur capital costs
(e.g. power provisioning, cooling, etc.,). Over the lifetime of the
facility, these capital costs may exceed energy costs. To reduce
such costs, researchers have proposed techniques that aim to op-
erate facilities as close to maximum power capacity as possible,
sometimes guaranteeing availability using various forms of power
capping [18, 31, 41]. Power capping throttles server performance
during utilization spikes to ensure that power budgets are satisfied.
As a consequence of power capping, applications may experience
increased latency due to the lower operating frequency. This in-
creased latency may violate latency service level agreements.

We next present several analytical models that characterize the
effectiveness of dynamic knobs in enabling applications to respond
to dynamic voltage/frequency scaling (caused, for example, by the
imposition or lifting of power caps) and in reducing the number
of machines required to maintain responsiveness in the face of
intermittent load spikes.
DVFS and Dynamic Knobs: Figure 3 shows how operating at
lower power states can enable systems to reduce power consump-
tion at the cost of increased latency. The area within the boxes rep-
resents the total energy required to complete a workload. For a task
which takes time t and consumes average power of Pavg, the total
energy can be calculated as: Etask = Pavg · t. Without DVFS (Fig-
ure 3 (a)), the workload consumes power Pnodv f s for time t1 and
power Pidle for the remaining time tdelay. With DVFS (Figure 3 (b)),
the consumed power is reduced to Pdv f s but the execution time in-
creases to t2 = t1 + tdelay. To accurately calculate DVFS energy
savings, the idle power consumed by the non-DVFS system (Pidle)
must be included. Thus the energy savings due to DVFS can be
computed as:

Edv f s = (Pnodv f s · t1 + Pidle · tdelay) − (Pdv f s · t2) (12)

For CPU-bound applications, t2 can be predicted by the change in
operating frequency as: t2 =

fnodv f s
fdv f s

· t1. We note that any power
savings here come at the cost of added latency.

Dynamic knobs can complement DVFS by allowing systems
to save power by reducing the amount of computational resources
required to accomplish a given task. There are two cases to consider
depending on the idle power of the system Pidle as illustrated in
Figure 4. Figure 4(a) illustrates the first case. This case applies
to systems with low idle power consumption (i.e., small Pidle). In
this case, the best energy savings strategy is to complete the task
as quickly as possible, then return to the low-power idle state,
a strategy known as race-to-idle. Dynamic knobs can facilitate
race-to-idle operation by decreasing the amount of computational
resources required to complete the task (in return for some QoS
loss), thereby reducing t1. Figure 4(b) illustrates the second case,
which applies to systems with high idle power consumption (i.e.,
large Pidle), common in current server class machines. In this case,
dynamic knobs can allow the system to operate at a lower power
state for the time t2 allocated to complete the task.

In both cases the energy savings available through combining
DVFS and dynamic knobs can be calculated as:

t′1 =
t1

S (QoS)
, t′delay = tdelay + t1 − t1

S (QoS)
(13)

E1 = Pnodv f s · t′1 + Pidle · t′delay (14)

t′2 =
t2

S (QoS)
, t′′delay = t2 − t2

S (QoS)
(15)

E2 = Pdv f s · t′2 + Pidle · t′′delay (16)
Eelasticdv f s = min(E1, E2) (17)

Edv f s = min(Pnodv f s · t1 + Pidle · tdelay, Pdv f s · t2) (18)
Esavings = Edv f s − Eelasticdv f s (19)

203

204

Benchmark Training Inputs Production Inputs Source
swaptions 64 swaptions 512 swaptions PARSEC & randomly generated swaptions
x264 4 HD videos of 200+ frames 12 HD videos of 200+ frames PARSEC & xiph.org [5]
bodytrack sequence of 100 frames sequence of 261 frames PARSEC & additional input from PARSEC authors
swish++ 2000 books 2000 books Project Gutenberg [2]

Table 1: Summary of Training and Production Inputs for Each Benchmark

coder [22]) and bitrate (as measured by the size of the encoded
video file), with the PSNR and bitrate weighted equally. This QoS
metric captures the two most important attributes of encoded video:
image quality and compression.

4.3 bodytrack

Description: This computer vision application uses an annealed
particle filter and videos from multiple cameras to track a human’s
movement through a scene [15]. bodytrack produces two outputs:
a text file containing a series of vectors representing the positions
of body components (head, torso, arms, and legs) over time and a
series of images graphically depicting the information in the vec-
tors overlaid on the video frames from the cameras. In envisioned
usage contexts [15], a range of vectors is acceptable as long as the
vectors are reasonably accurately overlaid over the actual corre-
sponding body components.
Knobs: bodytrack uses positional parameters, two of which we
convert to knobs: argv[5], which controls the number of anneal-
ing layers, and argv[4], which controls the number of particles.
The number of layers ranges from 1 to 5 (the PARSEC native de-
fault); the number of particles ranges from 100 to 4000 (the PAR-
SEC native default) in increments of 100.
Inputs: bodytrack requires data collected from four carefully cal-
ibrated cameras. We use a sequence of 100 frames (obtained from
the maintainers of PARSEC) as the training input and the PARSEC
native input (a sequence of 261 frames) as the production input.
QoS Metric: The QoS metric is the distortion of the vectors that
represent the position of the body parts. The weight of each vec-
tor component is proportional to its magnitude. Vector components
which represent larger body components (such as the torso) there-
fore have a larger influence on the QoS metric than vectors that
represent smaller body components (such as forearms).

4.4 swish++

Description: This search engine is used to index and search files
on web sites. Given a query, it searches its index for documents
that match the query and returns the documents in rank order. We
configure this benchmark to run as a server — all queries originate
from a remote location and search results must be returned to the
appropriate location.
Knobs: We use the command line parameter --max-results (or
-m, which controls the maximum number of returned search re-
sults) as the single dynamic knob. We use the values 5, 10, 25, 50,
75, and 100 (the default value).
Inputs: We use public domain books from Project Gutenberg [2]
as our search documents. We use the methodology described by
Middleton and Baeza-Yates [38] to generate queries for this cor-
pus. Specifically, we construct a dictionary of all words present in
the documents, excluding stop words, and select words at random
following a power law distribution. We divide the documents ran-
domly into equally-sized training and production sets.
QoS Metric: We use F-measure [36] (a standard information re-
trieval metric) as our QoS metric. F-measure is the harmonic mean
of the precision and recall. Given a query, precision is the number
of returned documents that are relevant to the query divided by the
total number of returned documents. Recall is the number of rel-

evant returned documents divided by the total number of relevant
documents (returned or not). We examine precision and recall at
different cutoff values, using typical notation P @N.

4.5 Discussion

These applications are broadly representative of our target set of ap-
plications — they all have a performance versus quality of service
trade-off and they all make that trade-off available via configuration
parameters. Other examples of applications with appropriate trade-
off spaces include most sensory applications (applications that pro-
cess sensory data such as images, video, and audio), most machine
learning applications, many financial analysis applications (espe-
cially applications designed for use in competitive high-frequency
trading systems, where time is critically important), many scien-
tific applications, and many Monte-Carlo simulations. Such appli-
cations (unlike more traditional applications such as compilers or
databases) are typically inherently approximate computations that
operate largely without a notion of hard logical correctness — for
any given input, they instead have a range of acceptable outputs
(with some outputs more accurate and therefore more desirable
than others). This broad range of acceptable outputs, in combina-
tion with the fact that more accurate outputs are often more com-
putationally expensive to compute, gives rise to the performance
versus quality of service trade-offs that PowerDial enables the ap-
plications to dynamically navigate.

There are a variety of reasons such applications would be de-
ployed in contexts that require responsive execution. Applications
that process soft real-time data for human users (for example,
video-conferencing systems) need to produce results responsively
to deliver an acceptable user experience. Search and information
retrieval applications must also present data responsively to human
users (although with less stringent response requirements). Other
scenarios involve automated interactions. Bodytrack and similar
probabilistic analysis systems, for example, could be used in real-
time surveillance and automated response systems. High-frequency
trading systems are often better off trading on less accurate results
that are available more quickly — because of competition with
other automated trading systems, opportunities for lucrative trades
disappear if the system does not produce timely results.

5. Experimental Evaluation

We next discuss the experimental platform and each of the exper-
iments used to evaluate PowerDial. Our first set of experiments
explores the performance versus QoS trade-off space for each of
our benchmark applications. Next, we explore the (closely related)
power versus QoS trade-off spaces. We then investigate how Pow-
erDial enables applications to respond to the imposition of power
caps using dynamic knobs. Finally, we investigate the use of Power-
Dial to reduce the number of machines required for servicing work-
loads with intermittent load spikes. This reduction can, in turn, re-
duce the cost of acquiring and operating the system.

For each application, our experimental evaluation works with
two data sets: a training data set used to characterize the applica-
tion’s performance versus QoS trade-off space, and a production
data set used to evaluate how well the obtained characterization

205

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5

QoS Loss

S
pe

ed
up

all knobs optimal knobs (training) optimal knobs (production)

(a) swaptions

1

2

3

4

5

0 1 2 3 4 5 6 7

QoS Loss

S
pe

ed
up

all knobs optimal knobs (training) optimal knobs (production)

(b) x264

1

2

3

4

5

6

7

8

0 3 6 9 12 15

QoS Loss

S
pe

ed
up

all knobs optimal knobs (training) optimal knobs (production)

(c) bodytrack

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80

QoS Loss

S
pe

ed
up

optimal knobs (P@10 training) optimal knobs (P@10 production)
optimal knobs (P@100 training) optimal knobs(P@100 production)

(d) swish++

Figure 5: QoS loss versus speedup for each benchmark.

 160

 170

 180

 190

 200

 210

2.4 2.26 2.13 2 1.86 1.73 1.6
 0

 0.02

 0.04

 0.06

 0.08

 0.1

P
ow

er
 in

 W
at

ts

Q
oS

 L
os

s

Frequency in GHz

QoS Loss
Power

(a) swaptions

 160

 170

 180

 190

 200

 210

2.4 2.26 2.13 2 1.86 1.73 1.6
 0

 0.1

 0.2

 0.3

 0.4

 0.5

P
ow

er
 in

 W
at

ts

Q
oS

 L
os

s

Frequency in GHz

QoS Loss
Power

(b) x264

 160

 170

 180

 190

 200

 210

2.4 2.26 2.13 2 1.86 1.73 1.6
 0

 0.5

 1

 1.5

 2

 2.5

 3

P
ow

er
 in

 W
at

ts

Q
oS

 L
os

s

Frequency in GHz

QoS Loss
Power

(c) bodytrack

 155

 160

 165

 170

 175

 180

 185

2.4 2.26 2.13 2 1.86 1.73 1.6
 5

 10

 15

 20

 25

 30

 35

P
ow

er
 in

 W
at

ts

Q
oS

 L
os

s

Frequency in GHz

QoS Loss
Power

(d) swish++

Figure 6: Power versus QoS trade-offs for each benchmark.

206

generalizes to other inputs. We obtain a set of inputs for each ap-
plication, then randomly divide this set of inputs into training and
production sets.

5.1 Experimental Platform

We run all our experiments on a Dell PowerEdge R410 server with
two quad-core Intel Xeon E5530 processors running Linux 2.6.26.
The processors support seven power states with clock frequencies
from 2.4 GHz to 1.6 GHz. The cpufrequtils package enables
software control of the clock frequency (and thus the power state).
We use a WattsUp device to sample and store the consumed power
at 1 second intervals [4]. All benchmark applications run for sig-
nificantly more than 1 second. The measured power ranges from
220 watts (at full load) to 80 watts (idle), with a typical idle power
consumption of approximately 90 watts. The WattsUp device mea-
sures full system power and all results reported here are based on
this measurement.

We measure the overhead of the PowerDial control system by
comparing the performance of the benchmarks with and without
the control system. The overhead of the PowerDial control system
is insignificant and within the run-to-run variations in the execution
times of the benchmarks executing without the control system.

5.2 Performance Versus QoS Trade-Offs

Dynamic knobs modulate power consumption by controlling the
amount of computational work required to perform a given task.
On a machine that delivers constant baseline performance (i.e., no
clock frequency changes), changes in computational work corre-
spond to changes in execution time.

Figures 5a–5d present the points that dynamic knobs make
available in the speedup versus QoS trade-off space for each bench-
mark application. The points in the graphs plot the observed mean
(across the training or production inputs as indicated) speedup as
a function of the observed mean QoS loss for each dynamic knob
setting. Gray dots plot results for the training inputs, with black
squares (connected by a line) indicating Pareto-optimal dynamic
knob settings. White squares (again connected by a line) plot the
corresponding points for these Pareto-optimal dynamic knob set-
tings for the production inputs. All speedups and QoS losses are
calculated relative to the dynamic knob setting which delivers the
highest QoS (and consequently the largest execution time). We ob-
serve the following facts:
• Effective Trade-Offs: Dynamic knobs provide access to oper-

ating points across a broad range of speedups (up to 100 for
swaptions, 4.5 for x264, and 7 for bodytrack). Moreover, QoS
losses are acceptably small for virtually all Pareto-optimal knob
settings (up to only 1.5% for swaptions, 7% for x264, and, for
speedups up to 6, 6% for bodytrack).
For swish++, dynamic knobs enable a speedup of up to approx-
imately a factor of 1.5. The QoS loss increases linearly with
the dynamic knob setting. The effect of the dynamic knob is,
however, very simple — it simply drops lower-priority search
results. So, for example, at the fastest dynamic knob setting,
swish++ returns the top five search results.
• Close Correlation: To compute how closely behavior on pro-

duction inputs tracks behavior on training inputs, we take each
metric (speedup and QoS loss), compute a linear least squares
fit of training data to production data, and compute the corre-
lation coefficient of each fit (see Table 2). The correlation co-
efficients are all close to 1, indicating that behavior on training
inputs is an excellent predictor of behavior on production in-
puts.

Benchmark Speedup QoS Loss
x264 0.995 0.975
bodytrack 0.999 0.839
swaptions 1.000 0.999
swish++ 0.996 0.999

Table 2: Correlation coefficient of observed values from training
with measured values on production inputs.

5.3 Power Versus QoS Trade-offs

To characterize the power versus QoS trade-off space that dynamic
knobs make available, we initially configure each application to run
at its highest QoS point on a processor in its highest power state
(2.4 GHz) and observe the performance (mean time between heart-
beats). We then instruct the PowerDial control system to maintain
the observed performance, use cpufrequtils to drop the clock
frequency to each of the six lower-power states, run each appli-
cation on all of the production inputs, and measure the resulting
performance, QoS loss, and mean power consumption (the mean
of the power samples over the execution of the application in the
corresponding power state). We verify that, for all power states,
PowerDial delivers performance within 5% of the target.

Figures 6a–6d plot the resulting QoS loss (right y axis, in per-
centages) and mean power (left y axis) as a function of the proces-
sor power state. For x264, the combination of dynamic knobs and
frequency scaling can reduce system power by as much as 21% for
less than 0.5% QoS loss. For bodytrack, we observe a 17% reduc-
tion in system power for less than 2.3% QoS loss. For swaptions,
we observe an 18% reduction in system power for less than .05%
QoS loss. Finally, for swish++ we observe power reductions of up
to 16% for under 32% QoS loss. For swish++ the dynamic knob
simply truncates the list of returned results — the top results are
the same, but swish++ returns fewer total results.

The graphs show that x264, bodytrack, and swaptions all have
suboptimal dynamic knob settings that are dominated by other,
Pareto-optimal dynamic knob settings. The exploration of the
trade-off space during training is therefore required to find good
points in the trade-off space. The graphs also show that because
the Pareto-optimal settings are reasonably consistent across the
training and production inputs, the training exploration results ap-
propriately generalize to the production inputs.

5.4 Elastic Response to Power Capping

The PowerDial system makes it possible to dynamically adapt ap-
plication behavior to preserve performance (measured in heart-
beats) in the face of any event that degrades the computational ca-
pacity of the underlying platform. We next investigate a specific
scenario — the external imposition of a temporary power cap via
a forced reduction in clock frequency. We first start the applica-
tion running on a system with uncapped power in its highest power
state (2.4 GHz). We instruct the PowerDial control system to main-
tain the observed performance (time between heartbeats). Approx-
imately one quarter of the way through the computation we impose
a power cap that drops the machine into its lowest power state (1.6
GHz). Approximately three quarters of the way through the com-
putation we lift the power cap and place the system back into its
highest power state (2.4 GHz).

Figures 7a–7d present the dynamic behavior of the benchmarks
as they respond to the power cap and corresponding processor fre-
quency changes. Each graph plots the observed performance (com-
puted as the sliding mean of the last twenty times between heart-
beats times normalized to the target heart rate of the application)
of the application (left y axis) as a function of time. We present the

207

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500
 0

 0.5

 1

 1.5

 2

 2.5

 3

M
ea

n
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce

K
no

b
G

ai
n

Time

Powercap
Baseline

Dynamic Knobs
Knob Gain

(a) swaptions

 0

 0.5

 1

 1.5

 2

 100 200 300 400 500 600
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

M
ea

n
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce

K
no

b
G

ai
n

Time

Powercap
Baseline

Dynamic Knobs
Knob Gain

(b) x264

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250
 0

 0.5

 1

 1.5

 2

 2.5

 3

M
ea

n
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce

K
no

b
G

ai
n

Time

Powercap
Baseline

Dynamic Knobs
Knob Gain

(c) bodytrack

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 100 200 300 400 500 600 700 800 900 1000
 0

 0.5

 1

 1.5

 2

 2.5

 3

M
ea

n
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce

K
no

b
G

ai
n

Time

Powercap
Baseline

Dynamic Knobs
Knob Gain

(d) swish++

Figure 7: Behavior of benchmarks with dynamic knobs in response to power cap.

 0

 200

 400

 600

 800

 1000

 0 0.2 0.4 0.6 0.8 1
 0

 0.001

 0.002

 0.003

 0.004

 0.005

P
ow

er
 in

 W
at

ts

Q
oS

 L
os

s

Utilization

QoS Loss
Consolidated Power

Original Power

(a) swaptions

 0

 200

 400

 600

 800

 1000

 0 0.2 0.4 0.6 0.8 1
 0

 2

 4

 6

 8

 10

 12

 14

P
ow

er
 in

 W
at

ts

Q
oS

 L
os

s

Utilization

QoS Loss
Consolidated Power

Original Power

(b) x264

 0

 200

 400

 600

 800

 1000

 0 0.2 0.4 0.6 0.8 1
 0

 2

 4

 6

 8

 10

 12

 14

P
ow

er
 in

 W
at

ts

Q
oS

 L
os

s

Utilization

QoS Loss
Consolidated Power

Original Power

(c) bodytrack

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100
 0

 10

 20

 30

 40

 50

P
ow

er
 in

 W
at

ts

Q
oS

 L
os

s
--

 P
@

10

Utilization

QoS Loss
Consolidated Power

Original Power

(d) swish++

Figure 8: Using dynamic knobs for system consolidation.
208

performance of three versions of the application: a version with-
out dynamic knobs (marked with an ×), a baseline version run-
ning with no power cap in place (black points), and a version that
uses dynamic knobs to preserve the performance despite the power
cap (circles). We also present the knob “gain” or the instantaneous
speedup achieved by the dynamic knob runtime (right y axis).

All applications exhibit the same general pattern. At the im-
position of the power cap, PowerDial adjusts dynamic knobs, the
gain increases (Knob Gain line), and the performance of the ap-
plication first spikes down (circles), then returns back up to the
baseline performance. When the power cap is lifted, the dynamic
knobs adjust again, the gain decreases, and the application perfor-
mance returns to the baseline after a brief upward spike. For most of
the first and last quarters of the execution, the application executes
with essentially no QoS loss. For the middle half of the execution,
the application converges to the low power operating point plotted
in Figures 6a–6d as a function of the 1.6 GHz processor frequency.
Without dynamic knobs (marked with ×), application performance
drops well below the baseline as soon as the power cap is imposed,
then rises back up to the baseline only after the power cap is lifted.

Within this general pattern the applications exhibit varying de-
grees of noise in their response. Swaptions exhibits very predictable
performance over time with little noise. swish++, on the other
extreme, has relatively unpredictable performance over time with
significant noise. x264 and bodytrack fall somewhere in between.
Despite the differences in application characteristics, our dynamic
adaptation mechanism makes it possible for the applications to
largely satisfy their performance goals in the face of dynamically
fluctuating power requirements.

5.5 Peak Load Provisioning

We next evaluate the use of dynamic knobs to reduce the number
of machines required to service time-varying workloads with in-
termittent load spikes, thereby reducing the number of machines,
power, and indirect costs (such as cooling costs) required to main-
tain responsive execution in the face of such spikes:

• Target Performance: We set the target performance to the per-
formance achieved by running one instance of the application
on an otherwise unloaded machine.
• Baseline System: We start by provisioning a system to deliver

target performance for a specific peak load of the applications
running the baseline (default command line) configuration. For
the three PARSEC benchmarks we provision for a peak load of
32 (four eight-core machines) concurrent instances of the ap-
plication. For swish++ we provision for a peak load of three
concurrent instances, each with eight threads. This system load
balances all jobs proportionally across available machines. Ma-
chines without jobs are idle but not powered off.
• Consolidated System: We impose a bound of either 5% (for

the PARSEC benchmarks) or 30% (for swish++) QoS loss. We
then use Equation 21 to provision the minimum number of ma-
chines required for PowerDial to provide baseline performance
at peak load subject to the QoS loss bound. For the PARSEC
benchmarks we provision a single machine. For swish++ we
provision two machines.
• Power Consumption Experiments: We then vary the load

from 0% utilization of the original baseline system (no load at
all) to 100% utilization (the peak load). For each load, we mea-
sure the power consumption of the baseline system (which de-
livers baseline QoS at all utilizations) and the power consump-
tion and QoS loss of the consolidated system (which uses Pow-
erDial to deliver target performance. At low utilizations the con-
solidated system will configure the applications to deliver max-
imum QoS. As the utilization increases, PowerDial will pro-

gressively manipulate the dynamic knobs to maintain the target
performance at the cost of some QoS loss.

Figures 8a–8d presents the results of these experiments. Each
graph plots the mean power consumption of the original (circles)
and consolidated (black dot) systems (left y axis) and the mean
QoS loss (solid line, right y axis) as a function of system utiliza-
tion (measured with respect to the original, fully provisioned sys-
tem). These graphs show that using dynamic knobs to consolidate
machines can provide considerable power savings across a range
of system utilization. For each of the PARSEC benchmarks, at a
system utilization of 25% consolidation can provide an average
power savings of approximately 400 Watts, a reduction of 66%.
For swish++ at 20% utilization, we see a power savings of approx-
imately 125 Watts, a reduction of 25%. These power savings come
from the elimination of machines that would be idle in the baseline
system at these utilization levels.

Of course, it is not surprising that reducing the number of ma-
chines reduces power consumption. A key benefit of the dynamic
knob elastic response mechanism is that even with the reduction in
computational capacity, it enables the system to maintain the same
performance at peak load while consuming significantly less power.
For the PARSEC benchmarks at a system utilization of 100%, the
consolidated systems consume approximately 75% less power than
the original system while providing the same performance. For
swish++ at 100% utilization, the consolidated system consumes
25% less power.

The consolidated systems save power by automatically reducing
QoS to maintain performance. For swaptions, the maximum QoS
loss required to meet peak load is 0.004%, for x264 it is 7.6%,
and for bodytrack it is 2.5%. For swish++ with P@10, the QoS
loss is 8% at a system utilization of 65%, rising to 30% at a system
utilization of 100%. We note, however, that the majority of the QoS
loss for swish++ is due to a reduction in recall — top results are
generally preserved in order but fewer total results are returned.
Precision is not affected by the change in dynamic knob unless
the P@N is less than the current knob setting. As the lowest knob
setting used by PowerDial is five, precision is always perfect for
the top 5 results.

For common usage patterns characterized by predominantly
low utilization punctuated by occasional high-utilization spikes [9],
these results show that dynamic knobs can substantially reduce
overall system cost, deliver the highest (or close to highest) QoS
in predominant operating conditions, and preserve performance
and acceptable QoS even when the system experiences intermittent
load spikes. Note that system designers can use the equations in
Section 3 to choose a consolidation appropriate for their envisioned
usage pattern that minimizes costs yet still delivers acceptable QoS
even under the maximum anticipated load spike.

6. Related Work

Adaptive, or self-aware, computing systems have the flexibility
to meet multiple goals in changing computing environments. A
number of adaptive techniques have been developed for both soft-
ware [45] and hardware [6]. Adaptive hardware techniques are
complementary to the Dynamic Knobs approach for developing
adaptive applications. If such hardware chooses to save power by
reducing computational capacity, Dynamic Knobs can enable the
software to respond and maintain performance. This section fo-
cuses on related software techniques.

Trading accuracy of computation for other benefits is a well-
known technique. It has been shown that one can trade off ac-
curacy for performance [16, 32, 40, 43, 44], energy consump-
tion [12, 13, 16, 20, 34, 43, 47] and fault tolerance [13, 43, 47]. The
Dynamic Knobs system presented in this paper, along with loop

209

perforation [26, 39] and task skipping [43, 44], is unique in that it
enables applications to adaptively trade accuracy for performance
and does so without requiring a developer to change the application
source code.

Autotuners explore a range of equally accurate implementation
alternatives to find the alternative or combination of alternatives
that deliver the best performance on the current computational
platform [17, 52, 54]. Researchers have also developed APIs that
an application can use to expose variables for external control
(by, for example, the operating system) [29, 42, 49]. This paper
presents a system (PowerDial) that transforms static configuration
parameters into dynamic knobs and contains a control system that
uses the dynamic knobs to maintain performance in the face of load
fluctuations, power fluctuations, or any other event that may impair
the ability of the application to successfully service its load with the
given computational resources. It also presents experimental results
that demonstrate the effectiveness of its approach in enabling server
consolidation and effective execution through power reductions
(imposed, for example, by power caps).

Researchers have developed several systems that allow pro-
grammers to provide multiple implementations for a given piece
of functionality, with different implementations occupying dif-
ferent points in the performance versus accuracy trade-off space.
Such systems include the tunability interface [14], Petabricks [7],
Green [8], and Eon [46]. Chang and Karamcheti’s tunability inter-
face allows application developers to provide multiple configura-
tions of an application (specified by the programmer through com-
piler directives). A tunable application is then modeled in a virtual
execution environment, to determine which configuration is best
suited for different system states. Petabricks is a parallel language
and compiler that developers can use to provide alternate imple-
mentations of a given piece of functionality. Green also provides
constructs that developers can use to specify alternate implementa-
tions. The alternatives typically exhibit different performance and
QoS characteristics. PetaBricks and Green both contain algorithms
that explore the trade-off space to find points with desirable perfor-
mance and QoS characteristics. Eon [46] is a coordination language
for power-aware computing that enables developers to adapt their
algorithms to different energy contexts. In a similar vein, energy-
aware adaptation for mobile applications [16], adapts to changing
system demands by dynamically adjusting application input qual-
ity. For example, to save energy the system may switch to a lower
quality video input to reduce the computation of the video decoder.

Each of these systems requires the developer to intervene di-
rectly in the source code to provide or specify multiple implementa-
tions of the same functionality. They can therefore increase the size
and development cost of the application and require the presence
of a developer who understands the internal structure of the imple-
mentation and can appropriately modify the implementation. These
systems are therefore of little or no use when such a developer is un-
available, either because the original developers are no longer with
the organization or are dedicated to other projects; the organization
that originally developed the software no longer exists, is no longer
developing or maintaining the application, or is simply unwilling to
incorporate the functionality into their code base; or when the cost
of performing the modifications is prohibitively expensive.

In contrast, PowerDial works directly on unmodified and unan-
notated applications. It automatically transforms existing config-
uration parameters into dynamic knobs and automatically inserts
the appropriate Application Heartbeats API calls into the applica-
tion. It can therefore enable third-party users to automatically aug-
ment their applications with desirable dynamic adaptation proper-
ties without the need to involve knowledgeable developers or the
organization that originally developed the application.

None of Petabricks, Green, or Eon provides a control mecha-
nism which can react to changes that affect performance. Petabricks
does not have a dynamic control component. Green uses heuristic
control to manage quality of service but does not control or even
monitor performance. Similarly, Eon uses a heuristic control sys-
tem to manage the energy consumption of the system, but does
not directly control performance. Both control systems are com-
pletely heuristic, with no guaranteed convergence or predictability
properties whatsoever. The Chang/Karamcheti approach does di-
rectly control performance using a heuristic decision mechanism.
This controller monitors system state and attempts to select a con-
figuration appropriate for the current state, but does not use direct
feedback from the application.

In contrast, PowerDial uses a decision mechanism grounded in
control science with provably good convergence and predictability
properties [35]. By relying on a modeling phase to discover Pareto-
optimal knob settings, the PowerDial control system is able to solve
constrained optimization problems to dynamically maintain perfor-
mance while minimizing quality loss. In addition, the PowerDial
control system uses Heartbeats as its feedback mechanism. By us-
ing direct feedback from the application the control system is able
to operate maintain performance without having to infer applica-
tion performance from low measurements of system state.

Researchers have also explored the use of loop perforation
(which automatically transforms loops to skip loop iterations)
to augment applications with the ability to operate at different
points in an induced performance versus quality of service trade-
off space [26, 39]. The results show that loop perforation can help
developers find computations that are suitable for further optimiza-
tion [39] and enables applications to adapt to fluctuations in the
delivered computational resources [26]. Task skipping [43, 44] has
also been shown to automatically augment applications with the
ability to trade off quality of service in return for increased per-
formance. This paper presents a system that uses dynamic knobs
instead of loop perforation, has a control system with guaranteed
performance and predictability properties, and more fully demon-
strates how to use dynamic knobs to solve power management
issues.

Hellerstein et al [23] and Karamanolis et al [28] have both iden-
tified standard control theoretic techniques as a general solution for
managing dynamic behavior in computing systems. Other authors
have shown how control techniques can be generalized allowing
software developers to incorporate them without having to develop
expertise in control science [21, 25, 33, 35, 55]. The PowerDial
control system furthers this idea, showing how standard control
techniques can be automatically embedded into an application to
dynamically manage performance. The control system presented
in this paper uses Application Heartbeats as a feedback mechanism
(or sensor) combined with a novel actuation strategy which con-
verts static configuration options into dynamically tunable parame-
ters. Control theory provides predictable behavior, making it a good
match for applications with performance constraints.

7. Conclusion

The PowerDial system augments applications with dynamic knobs
that the PowerDial control system can use to adapt the behavior of
the application to execute successfully in the face of load spikes,
power fluctuations, or (in general) any event that changes the bal-
ance between the computational demand and the resources avail-
able to meet that demand. Our results demonstrate that PowerDial
can enable applications to maintain responsive execution in the face
of power caps and load spikes (thereby reducing or even elimi-
nating the over-provisioning otherwise required to service these
spikes). We see PowerDial as an early example of an emerging
class of management systems that will enable applications to oper-

210

ate successfully in complex modern computing environments char-
acterized by fluctuations in power, load, and other key operating
characteristics.

Acknowledgements

Henry Hoffmann and Anant Agarwal are grateful for support
from DARPA, the NSF, and Quanta Computer. Stelios Sidiroglou,
Michael Carbin, Sasa Misailovic, and Martin Rinard are supported
in part by the National Science Foundation under Grant Nos.
0937060 to the Computing Research Association for the CIFel-
lows Project, Nos. CNS-0509415, CCF-0811397 and IIS-0835652,
DARPA under Grant No. FA8750-06-2-0189 and Massachusetts
Institute of Technology. We note our earlier technical reports on
performance versus QoS trade-offs [26, 27].

References

[1] Intel Xeon Processor. http://www.intel.com/technology/Xeon.
[2] Project Gutenberg. http://www.gutenberg.org/.

[3] Intel Atom Processor. http://www.intel.com/technology/
atom.

[4] Wattsup .net meter. http://www.wattsupmeters.com/.
[5] Xiph.org. http://xiph.org.
[6] D. H. Albonesi, R. Balasubramonian, S. G. Dropsho, S. Dwarkadas,

E. G. Friedman, M. C. Huang, V. Kursun, G. Magklis, M. L. Scott,
G. Semeraro, P. Bose, A. Buyuktosunoglu, P. W. Cook, and S. E.
Schuster. Dynamically tuning processor resources with adaptive pro-
cessing. Computer, 36:49–58, December 2003.

[7] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman,
and S. Amarasinghe. Petabricks: A language and compiler for algo-
rithmic choice. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, Dublin, Ireland, June 2009.

[8] W. Baek and T. Chilimbi. Green: A framework for supporting energy-
conscious programming using controlled approximation. In ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation, June 2010.

[9] L. Barroso and U. Holzle. The case for energy-proportional comput-
ing. COMPUTER-IEEE COMPUTER SOCIETY-, 40(12):33, 2007.

[10] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: Characterization and architectural implications. In PACT-2008:
Proceedings of the 17th International Conference on Parallel Archi-
tectures and Compilation Techniques, October 2008.

[11] M. Carbin and M. Rinard. Automatically Identifying Critical Input
Regions and Code in Applications. In Proceedings of the International
Symposium on Software Testing and Analysis, 2010.

[12] L. N. Chakrapani, B. E. S. Akgul, S. Cheemalavagu, P. Korkmaz,
K. V. Palem, and B. Seshasayee. Ultra-efficient (embedded) soc
architectures based on probabilistic cmos (pcmos) technology. In
Proceedings of the conference on Design, automation and test in
Europe, DATE, pages 1110–1115, 2006.

[13] L. N. Chakrapani, K. K. Muntimadugu, A. Lingamneni, J. George,
and K. V. Palem. Highly energy and performance efficient embedded
computing through approximately correct arithmetic: a mathematical
foundation and preliminary experimental validation. In Proceedings
of the 2008 international conference on Compilers, architectures and
synthesis for embedded systems, CASES, pages 187–196, 2008.

[14] F. Chang and V. Karamcheti. Automatic configuration and run-time
adaptation of distributed applications. In Proceedings of the Interna-
tional ACM Symposium on High Performance Parallel and Distributed
Computing, HPDC, pages 11–20, 2000.

[15] J. Deutscher and I. Reid. Articulated body motion capture by stochas-
tic search. International Journal of Computer Vision, 61(2):185–205,
2005.

[16] J. Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile
applications. In Proceedings of the seventeenth ACM symposium on
Operating systems principles, page 63. ACM, 1999.

[17] M. Frigo and S. G. Johnson. FFTW: An adaptive software architecture
for the FFT. In Proc. 1998 IEEE Intl. Conf. Acoustics Speech and
Signal Processing, volume 3, pages 1381–1384. IEEE, 1998.

[18] A. Gandhi, M. Harchol-Balter, R. Das, C. Lefurgy, and J. Kephart.
Power capping via forced idleness. In Workshop on Energy-Efficient
Design, June 2009.

[19] V. Ganesh, T. Leek, and M. Rinard. Taint-based directed whitebox
fuzzing. In Proceedings of the 2009 IEEE 31st International Confer-
ence on Software Engineering, pages 474–484. IEEE Computer Soci-
ety, 2009.

[20] J. George, B. Marr, B. E. S. Akgul, and K. V. Palem. Probabilistic
arithmetic and energy efficient embedded signal processing. In Pro-
ceedings of the 2006 international conference on Compilers, archi-
tecture and synthesis for embedded systems, CASES, pages 158–168,
2006.

[21] A. Goel, D. Steere, C. Pu, and J. Walpole. Swift: A feedback control
and dynamic reconfiguration toolkit. In 2nd USENIX Windows NT
Symposium, 1998.

[22] H.264 reference implementation. http://iphome.hhi.de/
suehring/tml/download/.

[23] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback
Control of Computing Systems. John Wiley & Sons, 2004.

[24] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller, and
A. Agarwal. Application Heartbeats: A Generic Interface for Spec-
ifying Program Performance and Goals in Autonomous Computing
Environments. In 7th International Conference on Autonomic Com-
puting, ICAC, 2010.

[25] H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, and A. Agar-
wal. SEEC: A Framework for Self-aware Computing. Technical Re-
port MIT-CSAIL-TR-2010-049, CSAIL, MIT, October 2010.

[26] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal, and M. Ri-
nard. Using Code Perforation to Improve Performance, Reduce En-
ergy Consumption, and Respond to Failures . Technical Report MIT-
CSAIL-TR-2009-042, CSAIL, MIT, September 2009.

[27] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal,
and M. Rinard. Power-Aware Computing with Dynamic Knobs. Tech-
nical Report TR-2010-027, CSAIL, MIT, May 2010.

[28] C. Karamanolis, M. Karlsson, and X. Zhu. Designing controllable
computer systems. In Proceedings of the 10th conference on Hot
Topics in Operating Systems, pages 9–15, Berkeley, CA, USA, 2005.
USENIX Association.

[29] P. J. Keleher, J. K. Hollingsworth, and D. Perkovic. Exposing applica-
tion alternatives. In Proceedings of the 19th IEEE International Con-
ference on Distributed Computing Systems, ICDCS, page 384, Wash-
ington, DC, USA, 1999. IEEE Computer Society.

[30] C. Lattner and V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the
2004 International Symposium on Code Generation and Optimization
, CGO, Palo Alto, California, March 2004.

[31] C. Lefurgy, X. Wang, and M. Ware. Power capping: a prelude to power
shifting. Cluster Computing, 11(2):183–195, 2008.

[32] J. Letchner, C. Re, M. Balazinska, and M. Philipose. Approxima-
tion trade-offs in markovian stream processing: An empirical study.
In 2010 IEEE 26th International Conference on Data Engineering,
ICDE, pages 936 –939, 2010.

[33] B. Li and K. Nahrstedt. A control-based middleware framework for
quality-of-service adaptations. Selected Areas in Communications,
IEEE Journal on, 17(9):1632 –1650, September 1999.

[34] S. Liu, K. P. amd Thomas Moscibroda, and B. G. Zorn. Flicker: Saving
Refresh-Power in Mobile Devices through Critical Data Partitioning.
Technical Report MSR-TR-2009-138, Microsoft Research, Oct. 2009.

[35] M. Maggio, H. Hoffmann, M. D. Santambrogio, A. Agarwal, and
A. Leva. Controlling software applications via resource allocation
within the Heartbeats frame work. In 49th IEEE Conference on
Decision and Control, pages 3736 –3741, December 2010.

211

[36] J. Makhoul, F. Kubala, R. Schwartz, and R. Weischedel. Performance
measures for information extraction. In Broadcast News Workshop’99
Proceedings, page 249. Morgan Kaufmann Pub, 1999.

[37] D. Meisner, B. Gold, and T. Wenisch. PowerNap: eliminating server
idle power. ACM SIGPLAN Notices, 44(3):205–216, 2009.

[38] C. Middleton and R. Baeza-Yates. A comparison of open source
search engines. Technical report, Universitat Pompeu Fabra, Depart-
ment of Technologies, October 2007.

[39] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality
of service profiling. In Proceedings of the 32nd ACM/IEEE Inter-
national Conference on Software Engineering, ICSE, pages 25–34.
ACM, 2010.

[40] R. Narayanan, B. Ozisikyilmaz, G. Memik, A. Choudhary, and J. Zam-
breno. Quantization error and accuracy-performance tradeoffs for em-
bedded data mining workloads. In Proceedings of the 7th international
conference on Computational Science, ICCS, pages 734–741, Berlin,
Heidelberg, 2007. Springer-Verlag.

[41] S. Pelley, D. Meisner, P. Zandevakili, T. Wenisch, and J. Underwood.
Power routing: dynamic power provisioning in the data center. ACM
SIGPLAN Notices, 45(3):231–242, 2010.

[42] R. Ribler, J. Vetter, H. Simitci, and D. Reed. Autopilot: adaptive
control of distributed applications. In High Performance Distributed
Computing, July 1998.

[43] M. Rinard. Probabilistic accuracy bounds for fault-tolerant compu-
tations that discard tasks. In Proceedings of the 20th annual inter-
national conference on Supercomputing, pages 324–334. ACM New
York, NY, USA, 2006.

[44] M. C. Rinard. Using early phase termination to eliminate load im-
balances at barrier synchronization points. In Proceedings of the 22nd
annual ACM conference on Object-oriented programming systems and
applications, OOPSLA, pages 369–386, New York, NY, USA, 2007.
ACM.

[45] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and
research challenges. ACM Transactions on Autonomous and Adaptive
Systems, 4(2):1–42, 2009.

[46] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. D. Corner, and
E. D. Berger. Eon: a language and runtime system for perpetual sys-
tems. In Proceedings of the 5th international conference on Embedded
networked sensor systems, SenSys, New York, NY, USA, 2007. ACM.

[47] P. Stanley-Marbell, D. Dolech, A. Eindhoven, and D. Marculescu.
Deviation-Tolerant Computation in Concurrent Failure-Prone Hard-
ware. Technical Report ESR-2008-01, Eindhoven University of Tech-
nology, January 2008.

[48] SWISH++. http://swishplusplus.sourceforge.net/.
[49] C. Tapus, I. Chung, and J. Hollingsworth. Active harmony: Towards

automated performance tuning. In Proceedings of the 2002 ACM/IEEE
Conference on Supercomputing, pages 1–11, Los Alamitos, CA, USA,
2002. IEEE Computer Society Press.

[50] U.S. Environmental Protection Agency. EPA report to congress on
server and data center energy efficiency, 2007.

[51] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for
reduced CPU energy. Mobile Computing, pages 449–471, 1996.

[52] R. Whaley and J. Dongarra. Automatically tuned linear algebra soft-
ware. In Proceedings of the 1998 ACM/IEEE conference on Super-
computing, pages 1–27. IEEE Computer Society, 1998.

[53] x264. http://www.videolan.org/x264.html.
[54] J. Xiong, J. Johnson, R. W. Johnson, and D. Padua. SPL: A language

and compiler for DSP algorithms. In Proceedings of the ACM SIG-
PLAN 2001 conference on Programming language design and imple-
mentation, PLDI, pages 298–308, 2001.

[55] R. Zhang, C. Lu, T. Abdelzaher, and J. Stankovic. Controlware:
A middleware architecture for feedback control of software perfor-
mance. In Proceedings of the 22nd International conference on Dis-
tributed Computing Systems. IEEE computer society, 2002.

212

