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ABSTRACT
In recent years, there has been an explosion of large-scale real-
time analytics needs and a plethora of streaming systems have
been developed to support such applications. These systems are
able to continue stream processing even when faced with hard-
ware and software failures. However, these systems do not ad-
dress some crucial challenges facing their operators: the manual,
time-consuming and error-prone tasks of tuning various configu-
ration knobs to achieve service level objectives (SLO) as well as
the maintenance of SLOs in the face of sudden, unpredictable load
variation and hardware or software performance degradation.

In this paper, we introduce the notion of self-regulating stream-
ing systems and the key properties that they must satisfy. We then
present the design and evaluation of Dhalion, a system that pro-
vides self-regulation capabilities to underlying streaming systems.
We describe our implementation of the Dhalion framework on top
of Twitter Heron, as well as a number of policies that automatically
reconfigure Heron topologies to meet throughput SLOs, scaling re-
source consumption up and down as needed. We experimentally
evaluate our Dhalion policies in a cloud environment and demon-
strate their effectiveness. We are in the process of open-sourcing
our Dhalion policies as part of the Heron project.

1. INTRODUCTION
In a world where organizations are being inundated with data

from internal and external sources, analyzing data and reacting to
changes in real-time has become a key service differentiator. Ex-
amples for such needs abound - analyzing tweets to detect trending
topics within minutes, reacting to news events as soon as they oc-
cur, as well as surfacing system failures to data center operators
before they cascade.

The ubiquity of these use cases has led to a plethora of dis-
tributed stream processing systems being developed and deployed
at data center scale in recent years (see Apache Storm [26], Spark
Streaming [10] and Twitter’s Heron [22], LinkedIn’s Samza [4],
etc). Given the scales at which these systems are commonly de-
ployed, they are naturally designed to tolerate system failures and
coexist with other applications in the same clusters.
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However, a crucial challenge that has largely escaped the at-
tention of researchers and system developers is the complexity of
configuring, managing and deploying such applications. Conver-
sations with users of these frameworks suggest that these manual
operational tasks are not only tedious and time-consuming, but also
error-prone. Operators must carefully tune these systems to balance
competing objectives such as resource utilization and performance
(throughput or latency). At the same time, they must also account
for large and unpredictable load spikes during provisioning, and be
on call to react to failures and service degradations.

Motivated by these challenges, in this paper we present Dhalion1,
a system that is built on the core philosophy that stream processing
systems must self-regulate. Inspired by similar notions in complex
biological and social systems, we define three important capabili-
ties that make a system self-regulating.
Self-tuning: In the quest to support diverse applications and oper-

ational environments, modern stream processing systems are typ-
ically highly configurable, exposing various knobs that allow op-
erators to tune the system to their particular needs. However, this
feature is both a boon and bane. Users of streaming frameworks
frequently complain about the amount of manual effort that is re-
quired even for the simplest tasks, such as determining the degree
of parallelism at each stage of a streaming pipeline. Since there
is no principled way to fully determine the ideal configuration,
users typically try several configurations and pick the one that best
matches their service level objectives (SLO). A self-regulating
streaming system should take the specification of a streaming ap-
plication as well as a policy defining the objective, and automati-
cally tune configuration parameters to achieve the stated objective.

Self-stabilizing: Long-running streaming applications are in-
evitably faced with various external shocks that can threaten their
stability. For instance, it is common for Twitter’s tweet process-
ing applications to experience loads that are several times higher
than normal when users all over the world react to earthquakes,
celebrity faux pas or World Cup goals. Since these load variations
are largely unpredictable, operators are forced to over-provision
resources for these applications to avoid SLO violations. But
this choice implies that in most cases, the system resources are
underutilized, thus lowering the cluster operator’s return on in-
vestment (ROI). A self-regulating streaming system must react to
external shocks by appropriately reconfiguring itself to guaran-
tee stability (and SLO adherence) at all times. It may satisfy this
requirement by acquiring additional resources and scaling up un-
der load spikes, and thereafter relinquishing resources and scaling
back down after load stabilizes.

1In Greek mythology, Dhalion is a bird with magical healing capa-
bilities.
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Figure 1: Dhalion policy phases

Self-healing: Most streaming systems incorporate various fault-
tolerant mechanisms to recover from hardware or software fail-
ures. However, system performance can be affected not only by
failures but also by hardware and software delivering degraded
quality of service. For example, it is possible for a machine in a
cluster to be nominally available, while delivering abysmally low
performance either due to hardware issues (such as a slow disk)
or software issues (such as memory constraints leading to swap
thrashing). A self-regulating streaming system must identify such
service degradations, diagnose the internal faults that are at their
root, and perform the necessary actions to recover from them.

Dhalion is a system that essentially allows stream processing
frameworks to become self-regulating. Dhalion has been imple-
mented and evaluated on top of Twitter Heron [22] and we are in
the process of releasing it to open-source as a contribution to the
Heron code base. However, its architecture and basic abstractions
are also applicable to other streaming engines as well.

Dhalion sits on top of each Heron application and periodically
invokes a well-specified policy. The policy examines the status
of the streaming application and detects potential problems, such
as existence of slow processes, lack of resources, SLO violations
etc. After diagnosing a particular problem, the Dhalion policy at-
tempts to resolve it by performing the appropriate actions. An im-
portant aspect of Dhalion is its extensible and modular architec-
ture. Dhalion is flexible enough to incorporate new policies that
users can implement using well-specified APIs. Moreover, since
the policies employ several self-contained modules, Dhalion users
can reuse existing modules when specifying their own policies.

Motivated by the challenges that users of streaming systems
face, we designed two Dhalion policies, namely dynamic resource
provisioning for throughput maximization in the presence of load
variations, and auto-tuning of the Heron application for meet-
ing throughput SLOs. The first policy provides Heron with self-
stabilizing and self-healing capabilities. The second policy addi-
tionally provides self-tuning capabilities. To the best of our knowl-
edge, none of the existing streaming systems employs such sophis-
ticated policies, but they mostly rely on user intervention.

In this work, we make the following contributions:

1. Motivated by challenges that users face, we introduce the no-
tion of self-regulating streaming systems and discuss their major
properties.

2. We design Dhalion, a novel system that sits on top of stream-
ing engines and allows them to become self-regulating through
the invocation of well-specified Dhalion policies (Section 2).
Dhalion has a modular and extensible architecture and has been
implemented on top of Twitter Heron (Section 4).

3. We present two important Dhalion policies that allow Heron to
dynamically provision resources in the presence of load varia-
tions and to auto-tune Heron applications so that a throughput
SLO is met (Section 5).

4. We evaluate our policies on top of Heron in a cloud environment
and demonstrate the effectiveness of Dhalion (Section 6).

We discuss related work in Section 7. Finally, we conclude by
outlining directions for future work (Section 8). In what follows,
we start by presenting a high-level overview of Dhalion with an
emphasis on its key abstractions.

2. DHALION OVERVIEW
In this section, we present a high-level overview of Dhalion with

an emphasis on its key abstractions. In the following section, we
discuss Dhalion’s architecture in detail.

Dhalion sits on top of a streaming engine such as Heron, and
provides self-regulating capabilities to it through a modular and ex-
tensible architecture. Dhalion periodically invokes a policy which
evaluates the status of the topology, identifies potential problems
and takes appropriate actions to resolve them. Users and system
administrators can define new policies based on their particular
needs and workload requirements. For example, a user might create
a policy that attempts to maximize throughput without overprovi-
sioning resources or a policy that automatically provisions neces-
sary resources in order to meet a particular Service Level Objective
(SLO). Figure 1 presents the various phases of a Dhalion policy.
These phases will be discussed in detail in Section 4.

In the Symptom Detection phase, Dhalion observes the system
state by collecting various metrics from the underlying streaming
system. Some example metrics are the rate at which tuples are
processed at a particular topology stage or the number of packets
pending for processing at a particular task. Based on the metrics
collected, Dhalion attempts to identify symptoms that can poten-
tially denote that the health of the streaming application has been
compromised. For example, a Heron instance uses backpressure as



a mechanism to notify its upstream sources that is unable to keep up
with its input rate and requires its sources to slow down. Accord-
ingly, Dhalion identifies backpressure as a symptom that shows that
the streaming pipeline is not currently in a healthy state. Another
symptom is processing skew across the tasks of a particular stage
in the pipeline. If some tasks of a given stage process significantly
more tuples than the remaining instances of the same stage, then
this symptom is worth investigating further.

After collecting various symptoms, in the Diagnosis
Generation Phase, Dhalion attempts to find one or more
diagnoses that explain them. For example, the existence of
backpressure can be attributed to various reasons such as resource
underprovisioning at a particular stage, slow hosts/machines or
data skew. Dhalion produces all the possible diagnoses that can
explain the observed symptoms.

Once a set of diagnoses has been found, the system evaluates
them and explores the possible actions that can be taken to resolve
the problem during the Resolution Phase. For example, in case
Dhalion has diagnosed that backpressure is caused because of the
limited resources assigned to a specific stage, then to resolve the
issue, it can scale up the resources assigned to this stage. Similarly,
if backpressure is created because of one or more tasks are running
slower due to a slow machine, then Dhalion can potentially resolve
this issue by moving the tasks to a new location.

Note that it is possible that a diagnosis produced by Dhalion is
erroneous and thus, an incorrect action is performed that will not
eventually resolve the problem. For instance, Dhalion might diag-
nose that backpressure is caused because of limited resources as-
signed to the tasks of a given stage, whereas it is actually due to a
slow task. This can happen for example, when the task is not sig-
nificantly slower than its peers and thus Dhalion didn’t classify it
as an outlier. In this case, the system will incorrectly scale up the
topology resources. For this reason, after every action is performed,
Dhalion evaluates whether the action was able to resolve the prob-
lem or brought the system to a healthier state. If an action does not
produce the expected outcome then it is blacklisted and it is not re-
peated again. This mechanism is very powerful since it allows the
system to avoid repetition of erroneous actions. In the absence of a
blacklist mechanism, it is possible that the system can get stuck in
an unhealthy situation and fall into the trap of repeatedly invoking
fruitless (maybe even counter-productive) actions.

3. HERON BACKGROUND
We have implemented Dhalion by extending Twitter’s Heron [7]

system thereby providing self-regulating capabilities to Heron. Be-
fore describing our implementation, we present a brief overview of
Heron and its rate control mechanisms. An extensive discussion on
Heron’s architecture can be found in [17, 22].

3.1 Topology Architecture
Heron users deploy topologies which are essentially directed

graphs of spouts and bolts. The spouts are sources of input data
such as streams of tweets, whereas the bolts represent computations
on the streams they receive from spouts or other bolts. Spouts often
read data from queues, such as Kafka [3] or Distributed Log [6] and
generate a stream of tuples, which is in turn consumed by a network
of bolts that perform the actual computations on the stream. Fig-
ure 2 shows the architecture of a topology. In this section, we focus
on the gray components of the figure which depict the most impor-
tant Heron components of the topology. Dhalion (in blue), which is
implemented on top of Heron, will be extensively discussed in the
following sections.
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Figure 2: Topology architecture

Heron operates on top of a scheduling framework such as Au-
rora [1] or YARN [27]. Each Heron topology is deployed on con-
tainers managed by these frameworks. The Scheduler compo-
nent is responsible for requesting containers from the underlying
scheduling framework. The Topology Master process is respon-
sible for managing the topology throughout its existence and occu-
pies one container. The remaining containers each run a Stream
Manager, a Metrics Manager, and a number of processes called
Heron Instances which run the code that corresponds to the user
logic. Each spout/bolt is represented by a set of Heron Instances
that independently and in parallel, execute the user code that corre-
sponds to this spout/bolt. The Stream Manager is a critical com-
ponent of the system as it manages the routing of tuples among
Heron Instances. More specifically, each Heron Instance con-
nects to its local Stream Manager to send and receive tuples. All
the Stream Managers in a topology connect between themselves
to form n2 connections, where n is the number of containers of the
topology. Finally, the Metrics Manager is responsible for collect-
ing and reporting various metrics from the Stream Manager and
Heron Instances located in the same container.

3.2 Topology Backpressure
An important aspect of Heron is its rate control mechanism. Rate

control is crucial in topologies where different components can ex-
ecute at different speeds or where the processing speed of the com-
ponents can vary over time. This can happen due to various reasons
such as limited number of Heron Instances in one or more topol-
ogy stages (limited parallelism), data skew or because of slow ma-
chines/containers. Heron dynamically adjusts the rate at which data
flows through the topology using a backpressure mechanism. As an
example, consider a topology in which the downstream stages are
slow due to one of the reasons mentioned previously. If the up-
stream topology stages do not reduce the rate at which they emit
data, tuples will be accumulated in long queues and as a result the
system might start dropping tuples. Heron’s backpressure mech-
anism slows down the upstream stages so that such situations are
avoided. As we will discuss in Section 5, Dhalion treats the exis-
tence of topology backpressure as an indication that the system is



unstable and therefore, takes appropriate actions to bring the topol-
ogy back to a healthy state.

The Heron Stream Manager has a significant role in handling
and propagating backpressure across the topology stages. The back-
pressure mechanism works as follows: When one or more Heron
Instances in a container is slower than its peers, the local Stream
Manager recognizes that event as its buffer that keeps the tuples
to send will fill up. The Stream Manager then stops reading data
from the local spouts and sends special messages to the other Stream
Managers requesting them to stop reading data from the local spouts
as well. Once the slow Heron Instances catch up, the local Stream
Manager notifies the other Stream Managers and they in turn start
reading data from their local spouts again.

4. DHALION ARCHITECTURE
In this section, we describe Dhalion’s architecture in detail. As

shown in Figure 2, Dhalion consists of three major components,
namely the Health Manager, the Action Log and the Action
Blacklist. In the following sections, we discuss these three com-
ponents in detail.

4.1 Health Manager
The Health Manager is a critical component of Dhalion as it

is responsible for maintaining the health of the running topology.
The Health Manager is a long running process that periodically
invokes a policy which evaluates the status of the topology, iden-
tifies potential problems and takes appropriate actions to resolve
them. Dhalion supports two kinds of policies: invasive and non-
invasive. An invasive policy takes actions that adjust the topology
configuration (e.g, parallelism changes). A noninvasive policy on
the other hand, does not make any topology changes but typically
alerts the user when a particular event takes place. The Health
Manager can execute multiple noninvasive policies concurrently
but only one invasive policy at a time. This is because executing
multiple invasive policies concurrently might result in conflicting
actions and that can cause system instability.

As we will discuss in Section 5, Dhalion already implements
various policies. However, Dhalion’s Health Manager supports
an extensible set of policies by defining a policy API. This allows
users to create new invasive and noninvasive policies that can be in-
voked by the Health Manager. Figure 1 shows the various phases
of a policy. As shown in the figure, the policy evaluation consists
of three major phases that we describe below:

Symptom Detection Phase: During this phase, Dhalion col-
lects several metrics from the Metrics Managers and attempts to
identify symptoms that could potentially denote that the health of
the topology has been compromised (such as backpressure, skew,
etc.). The identification of symptoms is done through various
Symptom Detectors that collect the appropriate metrics and per-
form the necessary metric evaluations. The Symptom Detectors
employ a variety of anomaly detection techniques such as out-
lier detection and clustering of data points among others. Once
a symptom is identified, the Symptom Detector produces a symp-
tom description which is a compact representation of the symp-
tom along with the metrics and their corresponding values used
to identify this symptom. For example, once the Backpressure
Detector detects the existence of backpressure, it produces a de-
scription of the symptom specifying which bolt in the topology ini-
tiated the backpressure and how much time the Heron Instances
corresponding to this bolt suspended the input data consump-
tion. Dhalion implements various Symptom Detectors but also
provides well-specified APIs so that users can create their own
Symptom Detectors and incorporate them to their policies.

Diagnosis Generation Phase: The Diagnosis Generation
Phase collects various symptoms produced by the Symptom
Detection Phase and attempts to identify the root cause of these
symptoms. This is accomplished through various Diagnosers,
which are modules designed to get as input a set of symptom
descriptions and produce a diagnosis based on these symptoms
if possible. For example, as we discuss later, the Resource
Underprovisioning Diagnoser takes as input a backpressure
symptom description and determines whether the existence of
backpressure can be attributed to the small number of Heron
Instances in a particular stage of the topology (resource under-
provisioning). Similarly, the Slow Instances Diagnoser deter-
mines whether the cause of backpressure can be one or more in-
stances running slower than their peers in a particular topology
stage because one or more containers or machines might be slow.

The Diagnosers produce a diagnosis description, which is a
succinct representation of the root cause of the problem along with
the symptoms and their corresponding metric values that led to this
specific diagnosis. The current set of Diagnosers implemented
in Dhalion make a binary decision essentially determining whether
the symptoms can be attributed to a particular cause or not. How-
ever, users can also create Diagnosers that assign a confidence
level to the diagnosis that they produce if needed. Finally, similar
to the Symptom Detectors, the Diagnosers have a well-specified
API that allows the users to create new Diagnosers and incorpo-
rate them to their policies.

Resolution Phase: The Resolution Phase is the last phase
of the policy. Its major goal is to resolve the problems iden-
tified by the Diagnosis Generation Phase by taking the nec-
essary actions. The basic building block of this phase is the
Resolver module. A Resolver takes as input a diagnosis de-
scription and based on that, performs the appropriate action to
bring the topology back to a healthy state. There is typically
a 1-1 mapping between Diagnosers and Resolvers. For ex-
ample, the Scale Up Resolver can solve problems identified
by the Resource Underprovisioning Diagnoser by increasing
the number of Heron Instances that correspond to the topol-
ogy stage that initiates the backpressure. Similarly, the Restart
Instances Resolver moves the Heron Instances that have
been identified as slow by the Slow Instances Diagnoser to
new containers. In Section 5, we will extensively discuss the func-
tionality of these components. Similar to Symptom Detectors
and Diagnosers, users have the flexibility to incorporate new
Resolvers to Dhalion using the appropriate APIs.

The Resolution Phase consists of two steps. In the first step,
the diagnoses produced by the Diagnosis Generation Phase
are examined in order to determine the appropriate Resolver that
must be invoked. For example, as discussed before, the cause of
backpressure could be attributed to various reasons, such as limited
parallelism, slow instances or data skew. Depending on the diag-
noses produced by various Diagnosers, this step explores the can-
didate Resolvers and selects the one that is more likely to solve
the backpressure problem. Note that depending on the particular
policy, the Resolver selection step can be performed using var-
ious methods such as rule-based or machine learning techniques.
For example, given a set of diagnoses, one might always pick the
Resolver that is most likely to solve the problem, or might decide
to occasionally explore the space of Resolvers and pick an alter-
nate one. When a user creates a new policy using the Dhalion APIs,
she must also implement the policy’s Resolver selection method
that will be invoked in this step.

In the second step, the selected Resolver is invoked and per-
forms the appropriate topology changes. Note that major topology



changes such as scaling up and down resources or restarting con-
tainers, are typically invoked through the Heron Scheduler com-
ponent and thus as shown in Figure 2, the Resolvers that perform
such actions communicate with the Heron Scheduler.

Apart from the extensibility aspects, it is worth noting that a ma-
jor advantage of Dhalion’s policy architecture is its modularity. For
example, instead of creating a monolithic Diagnoser that gener-
ates a diagnosis by evaluating all the symptoms, we instead decided
to create multiple independent Diagnosers, each one evaluating a
specific set of symptoms. This approach has two major advantages.
First, it allows reusability of the Diagnosers by multiple policies
as it is easier to combine different Diagnosers to address the needs
of a particular policy. Second, it facilitates debugging and mainte-
nance of the policy code since the users can easily debug and tune
only specific Diagnosers without having to understand other parts
of the source code. For the same reasons, the policy architecture
and corresponding APIs incorporate multiple independent Symptom
Detectors and Resolvers.

Another important aspect of Dhalion is that it is unaffected by
noisy data and transient changes. This is mainly due to two reasons.
First, the Symptom Detectors take into account multiple readings
of a given metric over a large time period (e.g., 300 seconds) and
thus are not typically affected by outliers. Second, after an action
is performed by a Dhalion policy, the Health Manager waits for
some time for the topology to stabilize before invoking again the
policy. In this way, metric changes that occur while the action is
taking place are not taken into account when the Health Manager
re-evaluates the state of the topology and detects symptoms that
can potentially denote that the topology is not in a healthy state. In
Section 6, we experimentally show that by using these techniques,
Dhalion remains unaffected by transient changes.

4.2 Action Log
The Action Log is a log that captures the actions taken by the

Health Manager during policy execution. The log can be used for
debugging and tuning a particular policy and for reporting statistics
about the policy actions to the users or system administrators. As
we see in the next section, the Action Log can also be useful when
evaluating the effectiveness of a policy.

Each entry in the log contains the type of action that was taken
by the policy. For example, if the policy invoked the Scale Up
Resolver, a “scale up” action will be written to the log. The log
entry also captures the time the action was taken as well as the di-
agnosis that led to this particular action. The users can manage the
size of the log by configuring a log purge operation. More specifi-
cally, they can choose to keep the n most recent log entries or keep
the log entries corresponding to the last m hours.

4.3 Action Blacklist
Dhalion maintains a blacklist of diagnosis descriptions and cor-

responding actions taken that did not produce the expected out-
come. These actions will not be invoked again for a similar di-
agnosis during the execution of the policy. In particular, after a
diagnosis has been produced and a corresponding action was taken
by the policy, the Health Manager waits for some time to allow
the topology to reach a steady state and then evaluates the action
that was taken by obtaining the necessary information from the
Action Log. When a new policy is defined, an evaluation method
for this particular policy must be provided. For example, if a policy
takes actions in an attempt to maximize throughput, the evalua-
tion method of the policy can simply check whether an action has
resulted in a throughput increase. This can be achieved by compar-
ing the current topology state with the previous state captured in the

diagnosis description of the Action Log entry that corresponds to
the last action taken by the policy.

The system currently tracks the ratio of the number of times a
particular action has not been beneficial for a given diagnosis over
the total number of times the action has been invoked because of
the diagnosis. When the ratio is higher than a configurable thresh-
old, the diagnosis-action pair is placed in the Action Blacklist.
During the Resolution Phase of the policy, before the selected
Resolver is invoked, Dhalion automatically checks whether this
action has been blacklisted for a similar diagnosis. If the action
is already contained in the Action Blacklist, then the selected
Resolver is not invoked. In such cases, the users can specify the
behavior of the policy through the Resolver selection method that
they define when creating the policy. For example, a user might de-
cide to invoke another Resolver or wait until the policy is again ex-
ecuted by the Health Manager, possibly on a new topology state.

Finally, although Dhalion provides support for the Action
Blacklist, users have the flexibility to decide whether they want
to enable this mechanism when executing their policy.

5. DHALION USE CASES
As discussed in Section 4, Dhalion is a modular and extensible

system that allows users to implement their own policies in order to
meet their application requirements. In this section, we present two
use cases of Dhalion and extensively discuss the implementation of
the corresponding Dhalion policies on top of Heron. Note that our
policies can also be applied to other streaming engines as long they
employ a backpressure-based control rate mechanism.

5.1 Dynamic Resource Provisioning
Streaming jobs are typically long running with a time span of

weeks or even months. During the application’s lifecycle, the data
load the system observes can change significantly over time. For
example, the amount of data that needs to be processed in Twitter’s
data centers can vary significantly due to expected and unexpected
global events. During these events, there are spikes of tweets that
need to be processed in real-time. Users and system administrators
typically overprovision the resources assigned to each topology so
that the workload spikes can be efficiently handled. However, this
approach is suboptimal as it can significantly increase the operating
cost. Ideally, resources should be automatically scaled up and down
to efficiently handle load variations while avoiding resource under-
utilization. For this reason, we created an invasive Dhalion policy,
namely the Dynamic Resource Provisioning Policy, that ob-
serves the system behavior and dynamically provisions the topol-
ogy resources so that the overall throughput is maximized while at
the same time the resources are not underutilized.

The major goal of the Dynamic Resource Provisioning
Policy is to scale up and down topology resources as needed while
still keeping the topology in a steady state where backpressure is
not observed. This is because the existence of backpressure denotes
that the spouts are stalled which in turn means that the throughput
is not maximized. The policy uses various Symptom Detectors
and Diagnosers to determine whether the reason for topology in-
stability is lack of resources or to explore opportunities for scal-
ing down resources without sacrificing performance. Similarly, it
employs various Resolvers that attempt to address the diagnosed
problems. Figure 3 shows an overview of the policy’s phases. We
now discuss these phases in more detail.

Symptom Detection Phase: As shown in the figure, the
policy employs three Symptom Detectors namely the Pending
Packets Detector, the Backpressure Detector and the
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Processing Rate Skew Detector. Every time the policy is in-
voked by the Dhalion Health Manager, the Symptom Detectors
evaluate various metrics over a 300 second interval and attempt
to identify symptoms that can potentially denote that topology
is not in a healthy state. The Pending Packets Detector fo-
cuses on the Stream Manager queue corresponding to each Heron
Instance. Each Stream Manager queue temporarily stores pack-
ets that are pending for processing by the corresponding Heron
Instance. This Symptom Detector examines the number of
pending packets in the queues of the Heron Instances that belong
to the same bolt, and denotes whether these Heron Instances
have similar queue sizes or whether outliers are observed. As
we discuss later, the queue sizes can provide insights about po-
tential system bottlenecks. The Backpressure Detector exam-
ines whether the topology experiences backpressure by evaluating
the appropriate Stream Manager metrics. If backpressure is ob-
served, then the Backpressure Detector generates a symptom
description that consists of the particular bolt that is the source of
backpressure as well as the amount of time input data consump-
tion was suspended during the 300 second measurement period.
As discussed before, the existence of backpressure shows that the
system is not able to achieve maximum throughput. Finally, the
Processing Rate Skew Detector examines the number of tu-
ples processed by each Heron Instance during the measurement
period (processing rate). It then identifies whether skew in the pro-
cessing rates is observed at each topology stage.

Diagnosis Generation Phase: The symptom descriptions pro-
duced by the Symptom Detectors are then forwarded to a
set of Diagnosers as shown in Figure 3. The Resource
Overprovisioning Diagnoser is typically useful when the in-
put data load decreases and its major goal is to identify oppor-
tunities for scaling down resources when the topology is in a
healthy state. The Diagnoser takes as input the symptom de-
scriptions produced by the Pending Packets Detector and the
BackPressure Detector and examines whether resources have
been overprovisioned for the topology. More specifically, the
Resource Overprovisioning Diagnoser first checks whether
backpressure exists in the topology. In this case, it does not produce
a diagnosis since the topology is not in a healthy state that would
allow to identify opportunities for revoking resources. If back-
pressure is not observed, then the Resource Overprovisioning
Diagnoser examines the average number of pending packets for

the topology’s Heron Instances based on the symptom descrip-
tion produced by the Pending Packets Detector. If the aver-
age number of pending packets for each Heron Instance of a
bolt is almost zero then it is possible that the resources assigned
to this bolt are overprovisioned and thus revoking some resources
might not have a negative effect on the overall throughput. The
Resource Overprovisioning Diagnoser examines all the bolts
of the topology and produces a diagnosis description that describes
which bolts might be overprovisioned. The description additionally
contains information about the status of the remaining bolts with
respect to the number of packets pending for their corresponding
Heron Instances.

When the input load increases (workload spike), the topology
might experience backpressure since the Heron Instances might
become overloaded and thus, more resources must be provisioned
to accommodate a larger number of Heron Instances. However,
the existence of backpressure might not necessarily be attributed
to insufficient resources. As mentioned in Section 3, slow in-
stances or data skew in the workload might also cause backpres-
sure. Thus, carefully examining the underlying cause of back-
pressure is crucial since this can help avoid unnecessary allocation
of additional resources. The remaining three Diagnosers operate
on topologies that experience backpressure and attempt to identify
the cause of backpressure. As their names denote, the Resource
Underprovisioning Diagnoser examines whether backpressure
can be attributed to underprovisioned resources for the bolt that is
the source of backpressure. The Slow Instances Diagnoser ex-
amines whether one or more Heron Instances of the bolt that ini-
tiated the backpressure are running slower than their peers. In this
case, the slow Heron Instances might be the reason for the back-
pressure. Finally, the Data Skew Diagnoser examines whether
one or more Heron Instances receive more data than their peers
because of data skew and thus they are overloaded. Note that it
is possible that the effects of data skew or slow instances are not
significant enough to enable the backpressure mechanism of Heron
and thus do not have a negative impact on the overall throughput.
Our Diagnosers will not be able to diagnose such scenarios since
they operate only over topologies that are not in a healthy state.

The three Diagnosers take into account the symptom descrip-
tions produced by the Backpressure Detector, the Pending
Packets Detector and the Processing Rate Skew Detector
when generating a diagnosis. The Diagnosers first check whether



Table 1: The logic of various Diagnosers

Diagnosis Condition
Resource Underprovisioning ∀hi,h j ∈H :

ri ' r j and pi ' p j

Slow Instances ∀hi,h j ∈H : ri ' r j and
∑

hi∈B
pi/|B|> ∑

hi∈H−B
pi/|H −B|

Data Skew ∑
hi∈B

ri/|B|> ∑
hi∈H−B

ri/|H −B|

and
∑

hi∈B
pi/|B|> ∑

hi∈H−B
pi/|H −B|

backpressure exists. If backpressure is not observed then they do
not produce a diagnosis. Otherwise, they first examine which bolt
initiated the backpressure. Then, they collect information about the
processing rates of the Heron Instances of this bolt and their cor-
responding average number of pending packets. Let H be the set of
Heron Instances corresponding to the bolt. Then, for each Heron
Instance hi ∈ H , let ri, pi be its corresponding processing rate
and average number of pending packets, respectively. Also let B
be the subset of Heron Instances that suspended data consump-
tion during the measurement interval (B ⊂ H ). Table 1 provides
a description of the conditions that must be true so that the corre-
sponding diagnosis is produced by the appropriate Diagnoser.

As shown in the table, when all the Heron Instances of the
bolt have similar processing rates and their corresponding queues
have similar sizes, then the Resource Underprovisioning
Diagnoser determines that the observed symptoms are due to lim-
ited resources assigned to the bolt under consideration. This is
because in cases where the bottleneck is the limited number of
Heron Instances at a particular topology stage, all the Heron
Instances of this stage would be overloaded and thus they would
exhibit similar behaviors. The Slow Instances Diagnoser de-
termines that the cause of backpressure is the existence of slow
instances when the Heron Instances that initiated the backpres-
sure have a much higher number of pending packets than their peers
while operating at similar processing rates. Intuitively, one would
expect the slow instances to have lower processing rates than their
peers. However, because the slow instances initiate backpressure,
the remaining instances operate at the speed of the slow instances
without reaching their maximum capacity. Finally, the Data Skew
Diagnoser attributes the existence of backpressure to data skew
when the Heron Instances that initiated the backpressure have
a higher processing rate and a higher number of pending packets
than their peers. In case of data skew, some Heron Instances re-
ceive more data than their peers. If these instances do not have the
processing capacity required to handle the input load, the number
of their corresponding pending packets will be higher than that of
their peers. Moreover, if their peers do not receive enough data to
operate at full capacity, these Heron Instances will have higher
processing rates than their peers since they process more data over
the same time interval.

It is worth noting that the above techniques can correctly cate-
gorize backpressure-related problems as long as we can accurately
detect outliers. The outlier detection methods typically categorize
data based on some threshold. As a result, an incorrect diagnosis
might be produced if the threshold is not set correctly. For exam-
ple, when a Heron Instance is slightly slower than its peers, the
outlier detection method might not be able to detect the problem. In
this case, the Slow Instances Diagnoser will not produce a di-

agnosis but the Resource Underprovisioning Diagnoser will
produce one. Our policy is able to address such scenarios by mak-
ing use of the Action Blacklist and the appropriate Resolver
selection method as we discuss later. Finally, we’d like to point
out that only one out of the three conditions presented in Table 1
can be true at a time and as a result, only one Diagnoser will pro-
duce a diagnosis. As we discuss later, this observation simplifies
the Resolver selection methodology.

Resolution Phase: In this phase, the diagnoses produced by
the previous phase are examined in order to determine which
Resolver to invoke. The policy employs four Resolvers. The
Bolt Scale Down Resolver scales down resources of a particu-
lar bolt by decreasing the number of Heron Instances that corre-
spond to the bolt. This Resolver is invoked when the Resource
Overprovisioning Diagnoser produces a diagnosis. Note that if
this Diagnoser generates a diagnosis then it is guaranteed that the
remaining Diagnosers will not produce one. This is because the
Resource Overprovisioning Diagnoser operates on a healthy
topology whereas the remaining ones address backpressure-related
problems. Automatically computing the scale down factor is chal-
lenging since we cannot predict the behavior of the topology as re-
sources get revoked. Thus, in our current implementation the scale
down factor is configurable. Hovever, note that if a scale down
operation results in a state where backpressure is observed, the op-
eration will be blacklisted and the policy will subsequently invoke
a scale up operation to bring the topology back to a healthy state.

The Restart Instances Resolver, Data Skew Resolver,
and Bolt Scale Up Resolver address the diagnoses produced
by the Slow Instances Diagnoser, the Data Skew Diagnoser
and the Resource Underprovisioning Diagnoser respectively.
More specifically, the Restart Instances Resolver moves the
slow Heron Instances to new containers whereas the Data Skew
Resolver adjusts the hash function used to distribute the data to
the bolts. We now explain in more detail the Bolt Scale Up
Resolver since it is typically invoked when workload spikes are
observed. This Resolver is responsible for scaling up the re-
sources of the bolt that initiated the backpressure by automatically
increasing the number of Heron Instances belonging to this bolt.
To determine the scale up factor, the Resolver computes the per-
centage of the total amount of time that the Heron Instances
spent suspending the input data over the amount of time where
backpressure was not observed. This percentage essentially de-
notes the portion of the input load that the Heron Instances could
not handle. For example, if 20% of the time the data consumption
was suspended whereas 80% of the time the data flow was normal,
then the Heron Instances were not able to handle 1/4 of the in-
put load and thus a 25% increase in parallelism is required. After
determining the scale up factor, the Resolver invokes the appro-
priate Heron APIs to scale up the topology resources accordingly.

It is worth noting that since only one of the conditions pre-
sented in Table 1 is always true, only one Diagnoser produces
a diagnosis each time backpressure is observed. Thus, this pol-
icy’s Resolver selection method is straightforward as only one
Resolver can address the backpressure problem. Note that if the
selected Resolver is blacklisted for a particular diagnosis, then the
Resolver selection method will randomly select one of the remain-
ing two Resolvers.

5.2 Satisfying Throughput SLOs
We observe that in a large number of streaming applications,

users spend a significant amount of time tuning the topology to
meet the requirement of a throughput above a certain threshold.
This is because either they are not aware of the number of spouts



needed to fetch data at the required rate or they manually recon-
figure the parallelism of the bolts to alleviate backpressure. In this
section, we present the Throughput SLO Policy which addresses
this problem. More specifically, the users who want to deploy a
topology can use this policy to automatically configure the number
of Heron Instances both at the spout and the bolt level so that
their specific throughput SLO is satisfied.

The Throughput SLO Policy takes as input a throughput SLO
that denotes the total rate at which the spouts should emit data. For
example, a user might want to handle an input load of 3 million
tuples/minute. The policy keeps tracking the actual throughput ob-
served while the topology is running, and automatically adjusts the
parallelism of spouts or bolts with the goal of satisfying the perfor-
mance SLO. This policy can significantly reduce the time the users
spend tuning the topology; users can simply submit a topology that
contains spouts and bolts consisting of a single Heron Instance
(parallelism = 1), and let the policy tune the parallelism of the var-
ious topology stages, so that the performance objective is met.

The Dynamic Resource Provisioning Policy that we pre-
viously presented, assumes that the input data rate is given and at-
tempts to allocate resources so that the system can handle the input
data load as it varies over time. The Throughput SLO Policy
goes a step further by attempting to adjust the input data rate by
increasing the number of Heron Instances that belong to the
spouts, in order to meet the performance SLO. Note that it is possi-
ble that an SLO cannot be met because there is not enough data to
satisfy the requirement. In this case, the Throughput SLO Policy
will generate an alert. It is also possible that the policy might not
be able to increase the parallelism of the spouts beyond a certain
threshold. This typically happens when the spouts consume data
from systems like Kafka [3]. In such cases, the parallelism of the
spouts is limited by the number of the provisioned Kafka partitions.
The policy will not attempt to increase the spout parallelism beyond
this upper bound and will inform the user.

The Throughput SLO Policy reuses the components of the
Dynamic Resource Provisioning Policy since it might scale
up the resources assigned to the bolts of the topology. Apart
from these components, the Throughput SLO Policy uses an ad-
ditional Symptom Detector, Diagnoser and Resolver. More
specifically, the Emit Count Detector computes the total rate at
which spouts emit data and forwards it to the Throughput SLO
Violation Diagnoser. The Diagnoser first checks whether the
topology is in a healthy state. If backpressure is observed, the
Diagnoser does not produce a diagnosis. Otherwise, it examines
whether the current throughput meets the user’s performance re-
quirements. In case the user’s SLO is violated, the Diagnoser
produces a diagnosis description that is forwarded to the Spout
Scale Up Resolver which in turn increases the number of Heron
Instances of the spout. To determine the scale up factor, the
Resolver divides the user’s throughput requirement by the cur-
rently observed throughput.

In case the policy increases the spout parallelism, the topology
might experience backpressure due to the increase of the input load.
In this case, the Throughput SLO Policy employs the compo-
nents used by the Dynamic Resource Provisioning Policy to
automatically adjust the resources assigned to the bolts so that the
topology is brought back to a healthy state. In Section 6, we exper-
imentally evaluate the Throughput SLO Policy.

6. EXPERIMENTAL EVALUATION
In this section, we evaluate our Dhalion policies and provide an

analysis of the experimental results. We first evaluate the Dynamic
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Bolt

Counter 
Bolt

Round Robin
Hash 

Partitioning

Figure 4: Word Count topology with 3 stages

Resource Provisioning Policy and then the Throughput SLO
Policy. Our key results are the following:

1. Dhalion works well for multi-stage topologies where back-
pressure propagates from one stage to the other (see Fig-
ures 5, 7, 9, 10).

2. The system is able to dynamically adjust resources when load
variations occur while still reaching a steady state where through-
put is maximized (see Sections 6.2).

3. The system is able to automatically reconfigure a topology in
order to meet a user-specified throughput SLO, even in cases
where the user did not spend any time tuning the topology (see
Section 6.3)

4. Dhalion’s actions are unaffected by noise and transient changes
(see Section 6.2).

5. Dhalion can bring the topology to a healthy state even when
multiple problems occur (see Section 6.5).

In the following sections, we describe our experimental setup
and further analyze our findings.

6.1 Experimental Setup
Hardware and Software Configuration: All our experiments

were performed on Microsoft HDInsight [8] on top of Azure In-
stances of type D4. Each D4 instance has one 8-core Intel Xeon
E5-2673 CPU@2.40GHz and 28GB of RAM and runs Ubuntu ver-
sion 16.04.2. In all our experiments we use Heron version 0.14.5
on top of YARN version 2.7.3.

Heron Topology: Previous work on streaming systems [22, 26]
used a 2-stage Word Count topology to evaluate the systems un-
der consideration. In our work, we decided to use a 3-stage Word
Count topology that operates at the level of sentences and not sin-
gle words as the corresponding 2-stage topology. In this way, we
can demonstrate that our Dhalion policies can handle topologies
where backpressure propagates from one stage to another. In our
topology, the spout generates a 200 character long sentence by ran-
domly selecting words from a set of 450K English words and emits
it. The spouts distribute the sentences to the bolts belonging to
the 2nd stage of the topology (Splitter bolts) in a round robin
fashion. The Splitter bolts split the sentences into words that
subsequently forward to the 3rd stage bolts (Counter bolts) using
hash partitioning. Finally, the Counter bolts count the number of
times each word was encountered.

Evaluation Metrics: In our experiments, we often use through-
put as an evaluation metric. We note that the throughput for a
spout is defined as the number of tuples emitted by the spout over
a period of one minute. The throughput of a bolt is defined as the
number of tuples processed by the bolt over an one minute period.
To track resource allocation over time, we present the number of
Heron Instances provisioned at each topology stage.

6.2 Dynamic Resource Provisioning
In this experiment, we analyze the behavior of the Dynamic

Resource Provisioning Policy. We start by deploying the
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Figure 5: Dhalion’s reactions during load variations Figure 6: Number of Heron Instances provisioned
during load variations

Word Count topology using 40 spouts, 11 Splitter bolts and 11
Counter bolts. In this state the topology does not experience back-
pressure. We refer to this initial state as S1. We then decrease the
input load by 20% by manually reducing the number of spouts and
observe whether the policy invokes the appropriate scale down op-
erations. After some time, we increase the input load by 30% and
observe again the behavior of the policy. Note that we intentionally
avoid introducing dramatic load variations in order to demonstrate
that our Dhalion policy is capable of identifying smaller load varia-
tions and adjust resources accordingly. The policy is invoked every
2 minutes and monitors the topology state. When the policy per-
forms an action, the Health Manager waits for a few minutes for
the topology to stabilize before invoking the policy again.

Figure 5 shows the normalized throughput at each topology stage
during the execution of the experiment; the numbers plotted are
normalized to the corresponding throughput observed when the
topology was at state S1. Figure 6 shows the corresponding num-
ber of Heron Instances belonging to the Splitter and Counter
bolts during the execution of the experiment.

For the first 10 minutes the topology is at stable state S1. Then,
we manually decrease the input load by setting the number of
spouts to 32. At this point, the throughput temporarily becomes
zero since Heron stops processing new data while a parallelism
change happens. After the change is completed, the throughput
comes back to normal level. Note that the throughput observed
after the parallelism decrease is lower than that of state S1 since
the spouts emit fewer tuples. At this point, the policy successfully
detects that there is opportunity for scaling down resources. In par-
ticular, it first detects that the number of pending packets for the
Heron Instances of the Counter bolt are almost zero and thus, it
invokes the Scale Down Resolver at minute 14. As shown in
Figure 6, the Resolver removes two Heron Instances of the
Counter bolt bringing the number of instances down to 9. Note
that after this change, the observed throughput is the same as be-
fore. This clearly demonstrates that the policy was successful since
it reduced the overall resources without sacrificing performance.
Also note that Dhalion correctly decided to scale down resources
despite the fact that a few minutes ago there was a dramatic de-
crease in throughput. This demonstrates that Dhalion is unaffected
by transient changes or noisy data.

After the scale down operation is performed, the Health
Manager waits for sometime before invoking the policy again. At
minute 23, the policy is invoked and detects that there is oppor-

tunity for scaling down the resources assigned to the Splitter
bolt. It then removes two Heron Instances bringing the number
of instances down to 9. As seen in the figure, the throughput still
remains at the same levels indicating that the policy correctly ad-
justed the parallelism. After this change, the policy does not detect
other opportunities for scaling down and thus the topology operates
at stable state S2. At this state, both the Splitter and the Counter
bolt consist of 9 Heron Instances each.

At minute 40, we manually increase the number of spouts to
45, thus increasing the data load. As shown in Figure 5, after the
parallelism change, there is a gap between the throughput of the
spout and that of the bolts. This is because the Stream Manager
queues that hold the packets that are pending for processing at the
Splitter bolt keep accumulating packets. The queue sizes keep
increasing for about 5 minutes until a threshold is reached and
backpressure is invoked. At minute 46, the policy detects the back-
pressure, determines that the Splitter bolt is the bottleneck and
increases its parallelism by 1. After that change, the topology does
not experience backpressure and the throughput of the Splitter
bolt increases. Now the Counter bolt experiences higher load
and its corresponding queues start accumulating more packets. At
minute 53, the Counter bolt initiates backpressure. The policy de-
tects the backpressure and attributes it to the limited number of
Heron Instances at the last stage of the topology. As a result, it
scales up the resources assigned to the Counter bolt by increasing
its parallelism from 9 to 14. The topology requires two more rounds
of scaling before achieving stable state (S3). More specifically,
the Splitter bolt initiates backpressure at minute 65 and minute
93. The policy correctly increases the bolt’s parallelism by 1 in
both cases increasing the total number of Heron Instances pro-
visioned for this bolt to 12. At state S3, the Splitter and Counter
bolt consist of 12 and 14 Heron Instances respectively.

As we mention in Section 5, the policy scales up resources only
when backpressure is observed. As shown in this experiment, back-
pressure will not be initiated unless the size of at least one Stream
Manager queue increases beyond a threshold. However, the pro-
cess of filling up the queues might take some time during which our
policy will not initiate any scale up operation. This is typically ac-
ceptable in the context of long-running streaming applications, es-
pecially during the initial configuration phase where topologies are
extensively tuned before being deployed in production for weeks or
even months. However, as part of future work, we plan to further
improve our algorithms by taking into account the rate at which the
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Figure 7: Throughput achieved while attempting to
satisfy a throughput SLO

Figure 8: Number of Heron Instances provisioned
while attempting to satisfy a throughput SLO

average queue sizes change. In this way, the policy’s reaction time
can potentially be further minimized.

Our experiment shows that the Dynamic Resource
Provisioning Policy is able to adjust the topology resources
on-the-fly when workload spikes occur. Moreover, the policy is
able to eventually reach a healthy state where backpressure is
not observed and the overall throughput is maximized. Finally,
the policy can correctly detect and resolve bottlenecks even on
multi-stage topologies where backpressure is gradually propagated
from one stage of the topology to another.

6.3 Satisfying Throughput SLOs
In this experiment, we use the Word Count topology to evalu-

ate our Throughput SLO Policy. We evaluate a scenario where
the user does not tune the parallelism of the topology before de-
ploying it, but instead provides a throughput SLO and expects the
policy to automatically configure the topology. The topology is ini-
tially submitted with a single Heron Instance provisioned for the
spout and each of the bolts (parallelism =1). As part of the policy’s
configuration, the user specifies that the topology should handle at
least 4 million tuples/minute at a steady state.

Figure 7 shows how the throughput of the spouts and the bolts
adjusts over time. The SLO is defined based on the number of
tuples that are emitted by the spouts and thus once the blue line
reaches the desired level and the system is at a steady state, the
Throughput SLO Policy will not make any further adjustments.
Note that the throughput of the Counter bolt is much higher than
that of the Splitter bolt since the latter operates on top of sen-
tences whereas the former on top of the words contained in those
sentences and thus, it receives a much higher number of tuples. For
this reason, the throughput of the Counter bolt is plotted separately
on the right y-axis. Figure 8 shows the corresponding number of
Heron Instances at each topology stage during the experiment.

As shown in Figure 7, the policy applies several actions until the
throughput of the spout reaches the desired level. More specifically,
the policy increased the number of spouts 4 times. It also increased
the number of Splitter and Counter bolts, 4 times and 3 times,
respectively. In the beginning of the experiment, the policy ob-
serves that the actual throughput is much less than the desired one
and thus it decides to increase the number of spouts to 4. Note that
we have configured the policy to scale up the number of spouts at
most by a factor of 4 at a time in order to gradually propagate the
load change to the later stages of the topology. After we increased

the number of spouts, the system experienced backpressure initi-
ated by the Counter bolt and thus the policy assigned an additional
Heron Instance to this bolt. At this time, the topology is in a
healthy state but the desired throughput is not yet reached. The pol-
icy detects the problem and at minute 16, increases again the num-
ber of spouts to 16. After this parallelism change, backpressure
is propagated between the Splitter and Counter bolts causing
four scale up operations from minute 22 until minute 46. Figure 8
shows the number of Heron Instances for each bolt during this
time interval. From minute 51 until minute 71, the policy invokes
two more spout scale up operations and handles the existence of
backpressure by scaling up the bolts that initiated it. The topol-
ogy reaches steady state when the throughput observed is equal or
higher to the throughput SLO and backpressure is not observed.
During steady state, the observed throughput is about 4.3 milion
tuples/minute and the topology consists of 43 spouts, 11 Splitter
bolts and 11 Counter bolts.

Our experiment shows the Throughput SLO Policy can suc-
cessfully auto-tune the topology so that the throughput SLO is met.

6.4 Evaluating the Diagnosers
The previous experiments demonstrated the effectiveness of

the Resource Overprovisioning Diagnoser and the Resource
Underprovisioning Diagnoser in detecting opportunities for
scaling up and down resources. In this experiment, we evaluate the
effectiveness of the Slow Instances Diagnoser and Data Skew
Diagnoser. More specifically, we synthetically generate Word
Count topologies that either exhibit data skew or contain a Heron
Instance that is slower than its peers. We then evaluate whether
the Diagnosers of Dhalion’s Dynamic Resource Provisioning
Policy are able to correctly diagnose the cause of backpressure.

To generate topologies with a slow Heron Instance, we al-
tered the average tuple processing latency of one instance of the
Splitter bolt to make it perform slower than its peers. This slow-
down was achieved by introducing appropriate sleep operations.
As a result, an X% slower instance has a peak processing rate that
is X% lower than that of its peers. To generate topologies with
data skew, all the spout instances were configured to increase the
frequency of a specific word in the emitted sentences. To syntheti-
cally create a topology with X% data skew, a word appears X times
in a collection of 100 words used to form sentences.

Table 2 presents our results. For each scenario examined, the
second column of the table presents the ratio of the average process-



Table 2: Effectiveness of the Diagnosers in various scenarios

Scenario Processing Backpressure Correct
Rate Ratio Percentage Diagnosis

25% Slower Instance 1 15% Yes
50% Slower Instance 1 65% Yes
75% Slower Instance 1 87% Yes
5% Data Skew 1.4 24% No
15% Data Skew 2.5 34% Yes
25% Data Skew 4.1 90% Yes

ing rate of the Heron Instances that initiated backpressure over
the average processing rate of the remaining Heron Instances.
As discussed in Section 5.1, the Diagnosers produce a slow in-
stance diagnosis when this ratio is almost 1. If the ratio is greater
than 1 then a data skew diagnosis is produced. The table also con-
tains information about the percentage of time that was spent sus-
pending input data due to backpressure.

As shown in the table, the Slow Instances Diagnoser pro-
duced a successful diagnosis for the topologies with a slow in-
stance, even when the instance was only 25% slower than its peers.
Note that the ratios of processing rates observed in these scenarios
are 1 as expected. Another interesting observation is that the back-
pressure percentage increases as the instance becomes slower. This
behavior is expected since the slower the Heron Instance is, the
more time it will suspend input data consumption.

The Data Skew Diagnoser produced a succesful diagnosis in
all but one scenarios. As shown in the table, the ratio of the process-
ing rates observed is greater than 1 as expected. However, when
the data skew is small (5%), the Diagnoser did not consider the
variance in the processing rates significant enough to justify a data
skew diagnosis and thus a slow instance diagnosis was produced
by the Slow Instances Diagnoser. However, since Dhalion em-
ploys the blacklist mechanism, the correct diagnosis was eventually
produced even for this scenario.

6.5 Mixed Scenarios
In this experiment, we evaluate the Dynamic Resource

Provisioning Policy in a mixed scenario where multiple prob-
lems occur. More specifically, the Splitter and Counter bolts
are both underprovisioned. Additionally, the Splitter bolt con-
tains a slow instance. We experimented with both 25% and 75%
slower instances. In both experiments, the topology consists of 40
spouts, 8 Splitter and 8 Counter bolts when initially deployed
and backpressure is observed.

Figures 9 and 10 show our results. As shown in Figure 9, at
minute 8 the Dynamic Resource Provisioning Policy detects
the slow Splitter bolt and restarts it. This action results in an
increase of the total throughput. Hovever, because the Splitter
bolt is also underprovisioned, backpressure is still observed. At
minute 16, the policy scales up the resources of the Splitter bolt
by increasing its parallelism from 8 to 11. After the scale up op-
eration, the backpressure propagates to the Counter bolt which is
also underprovisioned. Thus, at minute 24, the policy increases
the number of Counter bolts to 12 which brings the topology to a
healthy state where backpressure is not observed.

Figure 10 shows the behavior of the policy when there is a 75%
slower instance. This scenario is more challenging since this in-
stance is not significantly slower than its peers. As a result the
policy, is not able to make a slow instance diagnosis but produces

a resource underprovisioning diagnosis for the Splitter bolt in-
stead. At minute 11, the policy invokes a scale up operation which
brings the number of Splitter bolts to 15. At this point, the slow
instance is not a bottleneck any more. However, backpressure is
observed because the Counter bolt is underprovisioned. At minute
19, a scale up operation increases the number of Counter bolts
to 11 which brings the topology to a healthy state. Note that ide-
ally, the topology should end up having a similar configuration as
in the 25% slower instance case where the slow instance problem
was detected and resolved before the first scale up operation. The
problem appears because the Slow Instances Diagnoser uses a
threshold-based function to determine whether the Splitter bolts
have similar behavior or whether outliers exist. In this experiment,
the slow instance is not significantly slower than its peers. Thus,
this function does not detect any outliers. As a result a resource un-
derprovisioning diagnosis is produced which triggers a Splitter
scale up operation. Note that this operation was not blacklisted
since it resolved the backpressure problem. As part of future work,
we plan to investigate whether machine learning techniques can
produce more accurate diagnoses in such scenarios.

7. RELATED WORK
Initial work on stream data processing began about a decade ago

when streaming engines such as STREAM [20], Aurora [13] and
Borealis [11] were developed. Over the last few years the need
for scalable streaming engines became more prominent as many
business operations depend on real-time analytics. Several systems
have been created [2, 4, 5, 9, 10, 12, 22, 26] and many of them,
such as Heron [22], Storm [26], Samza [4], Spark Streaming [10]
and Flink [2] have been open-sourced. These systems operate at
large-scale and can tolerate various hardware and software failures.

However, despite the significant progress made over the years,
none of the existing streaming systems are truly self-regulating.
Dhalion addresses this issue by operating on top of the streaming
engine and providing self-regulating capabilities to it. Note that
although Dhalion has been implemented on top of Heron, its ar-
chitecture and basic policy abstractions can be adopted by other
streaming engines as long as they provide a metrics collection API
and potentially a scaling API.

Dhalion provides the necessary abstractions to address perfor-
mance variability problems due to performance variance in multi-
ple hardware levels such as CPU and network I/O or software de-
livering degraded quality of service [15, 16, 25]. The policies pre-
sented in this paper automatically adjust the topology configuration
so that the performance objectives are met even in the presence of
slow machines/containers.

Similar to our dynamic resource provisioning policy, auto-scaling
techniques for streaming applications have previously been pro-
posed [18, 19]. These methods however are not directly applicable
to systems that employ backpressure mechanisms to perform rate
control. In such settings, one has to examine whether existence
of backpressure can be attributed to resource underprovisioning or
other factors. To the best of our knowledge, none of the existing
open-source streaming systems performs automatic scaling based
on the input load. The work in [24] presents an adaptive load man-
ager that performs load shedding based on the observed response
times. The Dhalion policies can potentially incorporate such load
shedding techniques in order to avoid system overload.

Self-tuning techniques for databases and Map Reduce systems
have been extensively studied in the past [14, 21]. Recent work
proposes self-driving relational database systems that predict future
workloads and proactively adjust the database physical design [23].
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Figure 9: Mixed scenario with underprovisioned
resources and a 25% slower instance

Figure 10: Mixed scenario with underprovisioned
resources and a 75% slower instance

These works mainly focus on the self-tuning aspects of the sys-
tems and do not discuss mechanisms for creating self-stabilizing
and self-healing systems. Moreover, the techniques presented in
these studies are not directly applicable to streaming systems since
they target different application scenarios.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we introduce the notion of self-regulating stream-

ing systems. We then present Dhalion, a modular and extensible
system that is deployed on top of streaming systems and provides
them with self-regulating capabilities through the execution of var-
ious Dhalion policies. Dhalion provides the necessary abstractions
for users to implement their own policies and incorporate them in
their streaming applications. We present a Dhalion policy that au-
tomatically scales up and down resources based on the input data
load and a policy that auto-tunes the topology by provisioning the
necessary resources to meet a throughput SLO. Both policies have
been implemented and evaluated on top of Heron.

As part of future work, we plan to expand Dhalion’s capabili-
ties by incorporating more policies that satisfy various application
requirements such as policies that enforce latency SLOs. We also
plan to investigate whether Dhalion’s decision making process can
be further automated using machine learning models. Finally, an
interesting direction for future work is to evaluate the applicability
of Dhalion to other categories of Big Data engines, such as batch
processing and machine learning systems.
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