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ABSTRACT

Creating and maintaining a platform for reliably producing
and deploying machine learning models requires careful or-
chestration of many components—a learner for generating
models based on training data, modules for analyzing and val-
idating both data as well as models, and finally infrastructure
for serving models in production. This becomes particularly
challenging when data changes over time and fresh models
need to be produced continuously. Unfortunately, such or-
chestration is often done ad hoc using glue code and custom
scripts developed by individual teams for specific use cases,
leading to duplicated effort and fragile systems with high
technical debt.

We present TensorFlow Extended (TFX), a TensorFlow-
based general-purpose machine learning platform implemented
at Google. By integrating the aforementioned components
into one platform, we were able to standardize the compo-
nents, simplify the platform configuration, and reduce the
time to production from the order of months to weeks, while
providing platform stability that minimizes disruptions.

‘We present the case study of one deployment of TFX in the
Google Play app store, where the machine learning models
are refreshed continuously as new data arrive. Deploying
TFX led to reduced custom code, faster experiment cycles,
and a 2% increase in app installs resulting from improved
data and model analysis.
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1 INTRODUCTION

It is hard to overemphasize the importance of machine learn-
ing in modern computing. More and more organizations
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adopt machine learning as a tool to gain knowledge from
data across a broad spectrum of use cases and products, rang-
ing from recommender systems [6, 7], to clickthrough rate
prediction for advertising [13, 15], and even the protection
of endangered species [5].

The conceptual workflow of applying machine learning
to a specific use case is simple: at the training phase, a
learner takes a dataset as input and emits a learned model;
at the inference phase, the model takes features as input and
emits predictions. However, the actual workflow becomes
more complex when machine learning needs to be deployed
in production. In this case, additional components are re-
quired that, together with the learner and model, comprise
a machine learning platform. The components provide au-
tomation to deal with a diverse range of failures that can
happen in production and to ensure that model training and
serving happen reliably. Building this type of automation is
non-trivial, and it becomes even more challenging when we
consider the following complications:

e Building one machine learning platform for many different
learning tasks: Products can have substantially different
needs in terms of data representation, storage infrastruc-
ture, and machine learning tasks. The machine learning
platform must be generic enough to handle the most com-
mon set of learning tasks as well as be extensible to support
one-off atypical use-cases.

Continuous training and serving: The platform has to
support the case of training a single model over fixed data,
but also the case of generating and serving up-to-date
models through continuous training over evolving data
(e.g., a moving window over the latest n days of a log
stream).

Human-in-the-loop: The machine learning platform needs
to expose simple user interfaces to make it easy for engi-
neers to deploy and monitor the platform with minimal
configuration. Furthermore, it also needs to help users
with various levels of machine-learning expertise under-
stand and analyze their data and models.

Production-level reliability and scalability: The platform
needs to be resilient to disruptions from inconsistent data,
software, user configurations, and failures in the underlying
execution environment. In addition, the platform must
scale gracefully to the high data volume that is common
in training, and also to increases in the production traffic
to the serving system.
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Having this type of platform enables teams to easily deploy
machine learning in production for a wide range of prod-
ucts, ensures best practices for different components of the
platform, and limits the technical debt arising from one-off
implementations that cannot be reused in different contexts.

This paper presents the anatomy of end-to-end machine
learning platforms and introduces TensorFlow Extended
(TFX), one implementation of such a platform that we built
at Google to address the aforementioned challenges. We
describe the key platform components and the salient points
behind their design and functionality. We also present a case
study of deploying the platform in Google Play, a commercial
mobile app store with over one billion active users and over
one million apps, and discuss the lessons that we learned in
this process. These lessons reflect best practices for machine-
learning platforms in a diverse set of contexts and are thus of
general interest to researchers and practitioners in the field.

2 PLATFORM OVERVIEW
2.1 Background and Related Work

Prior art has addressed a subset of the challenges in deploying
machine learning in production. Related work has reported
that the learning algorithm is only one component of a ma-
chine learning platform that represents a small fraction of the
code [19, 20]. Data and model parallelism require distributed
systems and orchestration that exceed capabilities of many
single-machine solutions [12, 16]. Beyond simply stitching
together components, a machine learning pipeline also needs
to be simple to set up [16], maybe even support automated
pipeline construction [20]. Once a team can train multiple
models it needs to keep track of their experiment history
in a centralized database [21]. Ideally, the platform auto-
matically surveys different machine learning techniques and
suggests the best solution, allowing even non-experts access
to machine learning [10]. However, putting together several
disjoint components to do the job can result in significant
technical debt in forms of hard-to-maintain glue code, hidden
dependencies, feedback loops, etc. [19].

2.2 Platform Design and Anatomy

In this paper we expand on existing literature and address
the challenges outlined in the introduction by presenting a
reusable machine learning platform developed at Google. Our
design adopts the following principles:

One machine learning platform for many learning
tasks. We chose to use TensorFlow [4] as the trainer but the
platform design is not limited to this specific library. One fac-
tor in choosing (or dismissing) a machine learning platform is
its coverage of existing algorithms [12]. TensorFlow provides
full flexibility for implementing any type of model architec-
ture. To name just a few, we have seen implementations of
linear, deep, linear and deep combined, tree-based, sequen-
tial, multi-tower, multi-head, etc. architectures. This allows
users of TFX to switch out the learning algorithm without
migrating the entire pipeline to a different stack. However,
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it also imposes requirements on all other components. Data
analysis, validation, and visualization tools need to support
sparse, dense, or sequence data. Model validation, evalua-
tion, and serving tools need to support all kinds of inference
types, including (among others) regression, classification, and
sequences.

Continuous training. Most machine learning pipelines are
set up as workflows or dependency graphs (e.g. [14, 20]) that
execute specific operations or jobs in a defined sequence. If
a team needs to train over new data, the same workflow or
graph is executed again. However, many real-world use-cases
require continuous training. TFX supports several continua-
tion strategies that result from the interaction between data
visitation and warm-starting options. Data visitation can
be configured to be static or dynamic (over a rolling range
of directories). Warm-starting initializes a subset of model
parameters from a previous state.

Easy-to-use configuration and tools. Providing a uni-
fied configuration framework is only possible if components
also share utilities that allow them to communicate and
share assets. A TFX user is only exposed to one common
configuration that is passed to all components and shared
where necessary. Utilities that are used by all components en-
able enforcement of global garbage collection policies, unified
debugging and status signals, etc.

Production-level reliability and scalability. Only a
small fraction of a machine learning platform is the actual
code implementing the training algorithm [19]. If the plat-
form handles and encapsulates the complexity of machine
learning deployment, engineers and scientists have more time
to focus on the modeling tasks. Since it is difficult to pre-
dict whether a learning algorithm will behave reasonably on
new data [8], model validation is critical. In turn, model
validation must be coupled with data validation in order to
detect corrupted training data and thus prevent bad (yet,
validated) models from reaching production. To give an
example, training data that accidentally includes the label
will lead to a good quality model that passes validation,
but would not perform well in production where the label
is not available. Validating the serving infrastructure before
pushing to the production environment is vital to the relia-
bility and robustness of any machine learning platform. Our
platform provides implementations of these components that
encode best practices observed in many production pipelines.
Moreover, our experience shows that the distributed data
processing model offered by Apache Beam [1] (and similar
internal infrastructure) is a good fit for handling the large
volume of data during training, model evaluation, and batch
inference.

Figure 1 shows a high-level component overview of a ma-
chine learning platform and highlights the components dis-
cussed in the following sections: data analysis (Sections 3.1),
data transformation (Section 3.2), data validation (Section
3.3), trainer (Section 4), model evaluation and validation
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Figure 1: High-level component overview of a machine learning platform.

(Section 5), and serving (Section 6). In isolation, these com-
ponents implement high-level functionality that is typical
in machine-learning platforms, e.g., data sampling, feature
generation, training, and evaluation [12, 14, 16]. However,
it is worth pointing out two differentiations. First, we built
these components to adhere to the aforementioned principles,
which introduced several technical difficulties. Second, the
integration of these components in a single platform, with
shared configuration and utilities, enabled key improvements
over existing alternatives. To give an example, transforma-
tions applied in the trainer and at serving time may need
statistics generated by the data analysis component. Integrat-
ing these components ensures consistency across the pipeline
and guarantees that the same transformations are applied
at training and serving, which in turn prevents one form of
training-serving skew (a common production headache in ma-
chine learning). Although almost all of the components can
be considered optional, TFX users find it beneficial to adopt
the full stack in order to achieve more robust and reliable
production systems and take advantage of all management
and visualization tools in the integrated frontend.

Throughout the paper, we refer to the engineers and ML
practitioners using our platform as “users”. In the case study
of Google Play (Section 7), we refer to people who visit the
Google Play store as “Play users”.

3 DATA ANALYSIS, TRANSFORMA-
TION, AND VALIDATION

Machine learning models are only as good as their training
data, so understanding the data and finding any anomalies
early is critical for preventing data errors downstream, which
are more subtle and harder to debug. Often the data is gener-
ated by adhoc pipelines involving multiple products, systems,
and usage logs. Faults (e.g., code bugs, system failures, or
human errors, to name a few) can occur at multiple points
of this generation process, which makes anomalies in the
data not an exception, but more the norm. As a machine
learning platform scales to larger data and runs continuously,
there is a strong need for a reusable component that enables
rigorous checks for data quality and promotes best practices
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for data management in the context of machine learning plat-
forms [11]. Small bugs in the data can significantly degrade
model quality over a period of time in a way that is hard
to detect and diagnose (unlike catastrophic bugs that cause
spectacular failures and are thus easy to track down), so
constant data vigilance should be a part of any long running
development of a machine learning platform.

Building such a component is challenging for several rea-
sons. First, the component needs to support a wide range
of data-analysis and validation cases that correspond to ma-
chine learning applications. The component must also be
easy to deploy for a basic set of useful checks without re-
quiring excessive customization, with additional checks being
possible at the cost of some setup by the user. Moreover, the
component should help the users monitor and react to data
quality problems in a way that is non-intrusive (users do
not receive “spammy” data-anomaly alerts) and actionable
(users understand how to debug a particular data anomaly).
Our experience has shown that users tend to switch off data-
quality checks if they receive a large number of false-negative
alerts or if the alerts are hard to understand.

The following subsections describe the implementation
of this component in TFX and how it addresses the afore-
mentioned challenges. The component treats data analysis,
transformation, and validation as separate yet closely related
processes, with complementary roles.

3.1 Data Analysis

For data analysis, the component processes each dataset fed
to the system and generates a set of descriptive statistics
on the included features. These statistics cover the presence
of each feature in the data, e.g., the distribution of the
number of values per example or the number of examples
with and without the feature. The component also gathers
statistics over feature values: for continuous features, the
statistics include quantiles, equi-width histograms, the mean
and standard deviation, to name a few, whereas for discrete
features they include the top-K values by frequency. The
component also supports statistics on configurable slices
of the data (e.g., on negative and positive examples in a
binary classification problem) and cross-feature statistics (e.g.,
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correlation and covariance between features). By looking
at these feature statistics, users can gain insights into the
shape of each dataset. Note that it is possible to extend the
component with further statistics, but we found that this
subset provides good coverage for the needs of our users.

In a continuous training and serving environment, the
above statistics must be computed efficiently at scale. Un-
available feature statistics may result in missed opportunities
to correct data anomalies, while outdated feature-to-integer
mappings and feature value distributions may result in a
drop in model quality. On large training data, some of these
statistics become difficult to compute exactly, and the com-
ponent resorts to distributed streaming algorithms that give
approximate results [9, 17].

3.2 Data Transformation

Our component implements a suite of data transformations
to allow feature wrangling for model training and serving.
For instance, this suite includes the generation of feature-
to-integer mappings, also known as vocabularies. In most
machine learning platforms that deal with sparse categor-
ical features, both training and serving require mappings
from string values of a sparse feature to integer IDs. The
integer IDs allow operations like looking up model weights
or embeddings given a specific value. Representing features
in ID space often saves memory and computation time as
well. Since there can be a large number (~1-100B) of unique
values per sparse feature, it is a common practice to assign
unique IDs only to the most “relevant” values. The less
relevant values are either dropped (i.e., no IDs assigned) or
are assigned IDs from a fixed set of IDs. There are different
ways to define relevance, including the common approach of
using the frequency of appearance in the data.

A crucial issue is ensuring consistency of the transforma-
tion logic during training and serving. Any discrepancies
imply that the model receives prediction requests with dif-
ferently transformed input features, which typically hurts
model quality. TFX exports any data transformations as
part of the trained model, which in turn avoids problems
with inconsistency.

3.3 Data Validation

After completing the analysis of the data, the component
deals with the task of validation: is the data healthy or are
there anomalies that need to be flagged to the user?

To perform validation, the component relies on a schema
that provides a versioned, succinct description of the expected
properties of the data. The following are examples of the
properties that can be encoded in the schema:

e Features present in the data.

e The expected type of each feature.

e The expected presence of each feature, in terms of a min-
imum count and fraction of examples that must contain

the feature.

The expected valency of the feature in each example, i.e.,
minimum and maximum number of values.
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e The expected domain of a feature, i.e., the small universe of
values for a string feature, or range for an integer feature.

Training Tcategory: Unexpected
feature { feature value ‘EDUCATION’
name: ‘category’ Fix: Add value to domain
value: ‘EDUCATION’ feature {
} name: ‘category’
feature { coo
name: ‘num_impressions’ domain {
value: ‘NULL' value: ‘GAMES’
} g value: ‘BUSINESS’
g 2 + value: ‘EDUCATION’
Schema E % > }
feature { © E— }
name: ‘category’ 8 8 Ve ™
presence: REQUIRED !'num_impressions: Expected
type: STRING INT value but found string
domain { ‘NULL’
value: ‘GAMES’ Fix: Deprecate feature
value: ‘BUSINESS’ feature {
} name: ‘num_impressions’
} type: INT
feature { + deprecated: true
name: ‘num_impressions’ }
type: INT I\ Y,
}

Figure 2: Sample validation of an example against a sim-
ple schema for an app store application. The schema in-
dicates that the expected type for the ‘category’ feature
is STRING and that for the ‘num_impressions’ feature is
INT. Furthermore, the category feature must be present
in all examples and assume values from the specified do-
main. On validating the example against this schema,
the module detects two anomalies with simple explana-
tions as well as suggested schema modifications. The
first suggestion reflects a schema change to account for
an evolution of the data (the appearance of a new value).
In contrast, the second suggestion reflects the fact that
there is an underlying data problem that needs to be
fixed, so the feature should be marked as problematic
while the problem is being investigated.

Using the schema, the component can validate the prop-
erties of specific (training and serving) datasets, flag any
deviations from the schema as potential anomalies, and in
most cases, provide actionable suggestions to fix the anomaly.
These actions may include recommending the user to block
training on particular features by marking them as “depre-
cated”, or for expected deviations in the data, updating the
schema itself to match the data. We assume that teams are
responsible for maintaining the schema and updating it to
newer versions as needed. We also provide tooling to help
generate the first version automatically by analyzing a sample
of the data as well as suggest concrete fixes to the schema
as data evolves. An example of a simple schema for an app
store application, the anomalies detected using this schema,
and the actionable suggestions are shown in Figure 2.

While the above list of properties captures a large class of
data errors that occur in practice, the schema can also encode
more elaborate properties, e.g., constrain the distribution of
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the values in a specific feature, or describe a specific inter-
pretation of a feature’s values (say, a string feature may have
the values “TRUE” and “FALSE”, which are interpreted as
booleans according to the schema). However, such complex
properties are often hard to specify since they involve thresh-
olds that are hard to tune, especially since some churn in
the characteristics of the data is expected in any real-life
deployment.

Based on our engagements with users, both in deciding the
properties that the schema should permit and in designing
the end-to-end data validation component, we relied on the
following key design principles:

e The user should understand at a glance which anomalies
are detected and their coverage over the data.

e Fach anomaly should have a simple description that helps
the user understand how to debug and fix the data. One
such example is an anomaly that says a feature’s value is
out of a certain range. As an antithetical example, it is
much harder to understand and debug an anomaly that
says the KL divergence between the expected and actual
distributions has exceeded some threshold.

e In some cases the anomalies correspond to a natural evo-
lution of the data, and the appropriate action is to change
the schema (rather than fix the data). To accommodate
this option, our component generates for each anomaly a
corresponding schema change that can bring the schema
up-to-date (essentially, make the anomaly part of the nor-
mal state of the data).

e We want the user to treat data errors with the same rigor
and care that they deal with bugs in code. To promote
this practice, we allow anomalies to be filed just like any
software bug where they are documented, tracked, and
eventually resolved.

These principles have affected both the logic to detect anom-
alies and the presentation of anomalies in the Ul component
of TFX.

Beyond detecting anomalies in the data, users can also look
at the schema (and its versions) in order to understand the
evolution of the data fed to the machine learning platform.
The schema also serves as a stable description of the data
that can drive other platform components, e.g., automatic
feature-engineering or data-analysis tools.

4 MODEL TRAINING

One of the core design philosophies of TFX is to streamline
(and automate as much as possible) the process of training
production quality models which can support all training
use cases. We chose to design the model trainer such that it
supports training any model configured using TensorFlow [4],
including implementations necessary for continuous training.
It takes minimal, one-time effort to integrate modeling code
written in TensorFlow with the trainer. Once done, users
can seamlessly switch from one learning algorithm to another

without any efforts to re-integrate with the trainer.
While continuously training and exporting machine learn-

ing models is a common production use case, often such
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models need to train on huge datasets to generate good qual-
ity models. This practice is becoming infeasible for many
teams because it is both time and resource intensive to retrain
these models. At Google, we have, on several occasions, lever-
aged warm-starting to attain high quality models without
spending too many resources.

4.1 Warm-Starting

For many production use cases, freshness of machine learning
models is critical (e.g., Google Play store, where thousands
of new apps are added to the store every day). A lot of such
use cases also have huge training datasets (O(100B) data
points) which may take hours (or days in some cases) of
training to attain models meeting desired quality thresholds.
This results in a trade-off between model quality and model
freshness. Warm-starting is a practical technique to offset
this trade-off and, when used correctly, can result in models
of same quality as one would obtain after training for many
hours in much less time and fewer resources.

Warm-starting is inspired by transfer learning [18]. One
of the approaches to transfer learning is to first train a base
network on some base dataset, then use the ‘general’ param-
eters from the base network to initialize the target network,
and finally train the target network on the target dataset [23].
The effectiveness of this technique depends on the generality
of the features whose corresponding parameters are trans-
ferred. The same approach can be applied in the context
of continuous training. In this approach, we identify a few
general features of the network being trained (e.g., embed-
dings of sparse features). When training a new version of
the network, we initialize (or warm-start) the parameters
corresponding to these features from the previously trained
version of the network and fine tune them with the rest of the
network. Since we are transferring parameters between dif-
ferent versions of the same network, this technique results in
much quicker convergence of the new version, thus resulting
in the same quality models using fewer resources.

In the past, many teams wrote and maintained custom
binaries to warm-start new models. This incurred a lot of
duplicated effort that went into writing and maintaining
similar code. While building TFX, the ability to selectively
warm-start selected features of the network was identified as
a crucial component and its implementation in TensorFlow
was subsequently open sourced.

Together with features like warm-starting, TensorFlow pro-
vides a high-level unified API to configure model training
using various learning techniques (e.g., deep learning, wide
and deep learning, sequence learning).

4.2 High-Level Model Specification API

We decided to use an established high-level TensorFlow model
specification API [22]. Our experience points to large pro-
ductivity gains via a higher-level abstraction layer that hides
implementation details and encodes best practices.

One of the useful abstractions we leveraged is FeatureColumns.

FeatureColumns help users focus on which features to use
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in their machine learning model. They are a declarative
way of defining the input layer of a model. Another compo-
nent of abstraction layer we relied on is the concept of an
Estimator. For a given model, Estimator handles training
and evaluation. It can be used on a local machine as well as
for distributed training. Following is a simplified example of
how training a feed-forward dense neural network looks like
in this framework:

# Declare a numeric feature:
numeric_column(’number-of-rooms’)
categorical feature:
country = categorical_column_with_vocabulary_list(
>country’, [’US’, ’CA’])
# Declare a categorical feature and use hashing:
zip_code categorical_column_with_hash_bucket(
’zip_code’, hash_bucket_size=1K)
# Define the model and declare the inputs
estimator = DNNRegressor (
hidden_units=[256, 128, 64],
feature_columns=[
num_rooms, country,
embedding_column(zip_code, 8)],
activation_fn=relu,
dropout=0.1)
# Prepare the training data
def my_training data():
# Read, parse training data and convert
# tensors. Returns a mini-batch of data every
# time returned tensors are fetched.
return features, labels
# Prepare the wvalidation data
def my_eval_data():
# Read, parse walidation data and convert it into
# tensors. Returns a mini-batch of data every
# time returned tensors are fetched.
return features, labels
estimator.train(input_fn=my_training_data)
estimator.evaluate(input_fn=my_eval_data)

num_rooms =
# Declare a

2t into

From our experience, users find it easier to first train a
simple model in the available setting (e.g., single machine
or distributed system) before experimenting with various
optimization settings [24, Rule #4]. Once a baseline is es-
tablished, users can experiment with these settings. A tuner
integrated with the trainer can also automatically optimize
the hyperparameters based on users’ objectives and data.

5 MODEL EVALUATION AND
VALIDATION

Machine-learned models are often parts of complex systems
comprising a large number of data sources and interacting
components, which are commonly entangled together [19].
This creates large surfaces on which bugs can grow and unex-
pected interactions can develop, potentially to the detriment
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of end-user experiences via the degradation of the machine-
learned model. Some examples of such bugs include: different
components expecting different serialized model formats, or
bugs in training or serving code causing binary crashes.

These issues can be difficult for humans to detect, espe-
cially in a continuous training setting where new models are
refreshed and pushed to production frequently. Having a
reusable component that automatically evaluates and vali-
dates models to ensure that they are “good” before serving
them to users can help prevent unexpected degradations in
the user experience.

5.1 Defining a “good” model

The model evaluation and validation component of TFX is
designed for this purpose. The key question that the compo-
nent helps answer is: is this specific model a “good” model?
We suggest two pieces: that a model is safe to serve, and
that it has the desired prediction quality.

By safe to serve, we mean obvious requirements such as:
the model should not crash or cause errors in the serving
system when being loaded, or when sent bad or unexpected
inputs, and the model shouldn’t use too many resources (such
as CPU or RAM). One specific problem we have encountered
is when the model is trained using a newer version of a ma-
chine learning library than is used at serving time, resulting
in a model representation that cannot be used by the serv-
ing system. Product teams care about user satisfaction and
product health, which are better captured by measures of
prediction quality (such as app install rate) on live traffic
than by the objective function on the training data.

5.2 Evaluation: human-facing metrics of
model quality

Evaluation is used as part of the interactive process where
teams try to iteratively improve their models. Since it is
costly and time-consuming to run A/B experiments on live
traffic, models are evaluated offline on held-out data to de-
termine if they are promising enough to start an online A/B
experiment. The evaluation component provides proxy met-
rics such as AUC or cost-weighted error that approximate
business metrics more closely than training loss, but are com-
putable offline. Once teams are satisfied with their models’
offline performance, they can conduct product-specific A/B
experiments to determine how their models actually perform
on live traffic on relevant business metrics.

5.3 Validation: machine-facing judgment
of model goodness

Once a model is launched to production and is continuously
being updated, automated validation is used to ensure that
the updated models are good. We validate that a model is
safe to serve with a simple canary process. We evaluate pre-
diction quality by comparing the model quality against a fixed
threshold as well as against a baseline model (e.g., the current
production model). Any new model failing any of these checks
is not pushed to serving, and product teams are alerted.
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One challenge with validating safety is that our canary
process will not catch all potential errors. Another challenge
with validation in a continuously training pipeline is that it
is hard to distinguish expected and unexpected variations in
a model’s behaviour. When the training data is continuously
changing, some variation in the model’s behaviour and its
performance on business metrics is to be expected.

Hence, there is a tension between being too conservative
and alerting users to small changes in these metrics, which
results in users tiring of and eventually ignoring the alerts;
and being too loose and failing to catch unexpected changes.
From our experience working with several product teams,
most bugs cause dramatic changes to model quality metrics
that can be caught by using loose thresholds. However, there
is a strong selection bias here, since more subtle issues may
not have drawn our attention.

5.4 Slicing

One of the features the evaluation component offers is the
ability to compute metrics on slices of data. We define a
slice as a subset of the data containing certain features. For
instance, a product team might be concerned about the
performance of their model in the US, so they might wish
to compute metrics on the subset of data that contains the
feature “Country = US”.

This is useful in both evaluating and validating models in
the case where product teams have specific slices which they
are concerned about, especially small slices, since metrics on
the entire dataset can fail to reflect the performance on these
small slices [15]. Slicing can help product teams understand
and improve performance on these slices, and also avoid
serving models that sacrifice quality on these slices for better
overall performance.

5.5 User Attitudes towards Validation

In the process of deploying the model and validation com-
ponent, we made an interesting discovery regarding user
attitudes towards validation in machine learning platforms.
Our general sense is that the value of validation is not im-
mediately apparent to users; however, the costs in terms of
additional configuration and greater resource consumption
immediately stand out to them. As an illustration, no prod-
uct teams actively requested the validation function when
the component was first built, and when the feature was
explained to them, few activated it. The fact that the valida-
tion feature did not directly improve their machine-learned
models’ performance, and on the contrary, could result in
them serving old models if the checks did not pass, also added
to their hesitation.

However, encountering a real issue in production which
could have been prevented by validation made the value of
the validation apparent to the teams, who were then eager
to activate validation. As a result of this observation, we
plan to provide a configuration-free validation setup that is
enabled by default for all users.
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6 MODEL SERVING

Reaping the benefits of sophisticated machine-learned models
is only possible when they can be served effectively. Ten-
sorFlow Serving [2] provides a complete serving solution for
machine-learned models to be deployed in production envi-
ronments. TensorFlow Serving’s framework is also designed
to be flexible, supporting new algorithms and experiments.

Scaling to varied traffic patterns is an important goal of
TensorFlow Serving. By providing a complete yet customiz-
able framework for machine learning serving, TensorFlow
Serving aims to reduce the boilerplate code needed to deploy a
production-grade serving system for machine-learned models.

Serving systems for production environments require low
latency, high efficiency, horizontal scalability, reliability and
robustness. This section elaborates on two specific system
challenges: low latency and high efficiency.

6.1 Multitenancy with Isolation

Multitenancy in the context of TensorFlow Serving means
enabling a single instance of the server to serve multiple
machine-learned models concurrently. Serving multiple mod-
els at production scale can lead to cross-model interference,
which is a challenging problem to solve. TensorFlow Serv-
ing provides soft model-isolation, so that the performance
characteristics of one model has minimal impact on other
models. While deploying servers that handle a high number
of queries per second, we encountered interference between
the request processing and model-load processing flows of
the system. Specifically, we observed latency peaks during
the interval when the system was loading a new model or a
new version of an existing model.

To enhance isolation between these operations, we imple-
mented a feature that allows the configuration of a separate
dedicated threadpool for model-loading operations. This is
built upon a feature in TensorFlow that allows any operation
to be executed with a caller-specified threadpool. As a result,
we were able to ensure that threads performing request pro-
cessing would not contend with the long operations involved
with loading a model from disk.

Empirically, we found that setting the threadpool size
for model-loading operations to 1 or 2 was ideal for system
performance. This configuration supports faster request pro-
cessing consistently, trading off slower model-loads. Prior
to defining a separate threadpool for load operations, for a
specific model, we observed that the 99.9-percentile inference
request latency measured during loads was in the range of
~500 to ~1500 msec. However, with the specification of
a separate threadpool, the 99.9-percentile inference request
latency during loads reduced to a range of ~75 to ~150 msec.

6.2 Fast Training Data Deserialization

Unlike previous machine learning libraries at Google, each
using custom input formats and parsing code, TensorFlow
uses a common data format. This approach enables the
community to share their data, models, tools, visualizations,
optimizations, and other techniques.
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On the other hand, the common format was a subopti-
mal solution for some sources of data. Choosing a common
format involves tradeoffs such as size of the data, cost of
parsing, and the need to write format-conversion code. We
decided on the tensorflow.Example [3] protocol buffer format
(cross-language, serializable data-structure).

Non neural network (e.g., linear) models are often more
data intensive than CPU intensive. For such models, data
input, output, and preprocessing tend to be the bottleneck.
Using a generic protocol buffer parser proved to be inefficient.

To resolve this, a specialized protocol buffer parser was
built based on profiles of various real data distributions in
multiple parsing configurations. Lazy parsing was employed,
including skipping complete parts of the input protocol buffer
that the configuration specified as unnecessary. In addition,
to ensure the protocol buffer parsing optimizations were con-
sistently useful, a benchmarking suite was built. This suite
was useful in ensuring that optimizing for one type of data
distribution or configuration did not negatively impact perfor-
mance for other types of data distributions or configurations.
While implementing this system, extreme care was taken to
minimize data copying. This was especially challenging for
sparse data configurations.

The application of the specialized protocol buffer parser
resulted in a speedup of 2-5 times on benchmarked datasets.

7 CASE STUDY: GOOGLE PLAY

One of the first deployments of TFX is the recommender
system for Google Play, a commercial mobile app store. The
goal of the Google Play recommender system is to recommend
relevant Android apps to the Play app users when they visit
the homepage of the store, with an aim of driving discovery
of apps that will be useful to the user. The input to the
system is a “query” that includes the information about the
app user and context. The recommender system returns a list
of apps, which the user can either click on or install. Since
the corpus contains over a million apps, it is intractable to
score every app for every query. Hence, the first step in this
system is retrieval, which returns a short list of apps based
on various signals. Once we have this short list of apps, the
ranking system uses the machine-learned model to compute
a score per app and presents a ranked list to the user. In
this case study, we focus on the ranking system.

The machine learning model that ranks the items is trained
continuously as fresh training data arrives (usually in batches).
The typical training dataset size is hundreds of billions of
examples where each example has query features (e.g., the
user’s context) as well as impression features (e.g., ratings
and developer of app being ranked). After rigorous valida-
tion (e.g., comparing quality metrics with models serving live
traffic), the trained models are deployed through TensorFlow
Serving in data centers around the globe and collectively
serve thousands of queries per second with a strict latency re-
quirement of tens of milliseconds. Due to fresh models being

trained daily, the servers have to reload multiple models (both
the production models, as well as other experimental models)

per day. This is done without any degradation in latency.
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As we moved the Google Play ranking system from its
previous version to TFX, we saw an increased velocity of
iterating on new experiments, reduced technical debt, and
improved model quality. To list a few, the overall product
has benefitted in the following ways:

e The data validation and analysis component helped in
discovering a harmful training-serving feature skew. By
comparing the statistics of serving logs and training data
on the same day, Google Play discovered a few features
that were always missing from the logs, but always present
in training. The results of an online A/B experiment
showed that removing this skew improved the app install
rate on the main landing page of the app store by 2%.

Warm-starting helped improve model quality and fresh-
ness while reducing the time and resources spent on train-
ing over hundreds of billions of examples. Training from
scratch can take several days to converge to a high-quality
model, making it hard for the model to recommend trend-
ing or recently added apps that were missing from the
training data. One option to produce new models more
frequently is to reduce the number of training iterations,
at the expense of lower quality models. This is the same
trade-off between model quality and model freshness de-
scribed in Section 4. Hence, Google Play, for whom it is
infeasible to train every new model from scratch, adopted
the technique of warm-starting to selectively initialize a
subset of model parameters (e.g., embeddings) from a pre-
viously trained model. This enabled Google Play to push
a high-quality fresh model for serving frequently.

Model validation helped in understanding and troubleshoot-
ing performance differences between the old and new mod-
els. The model validation component tests the new model
against the production model, preventing issues like acci-
dentally pushing partially-trained models to serving be-
cause of system failures.

The model serving component enabled deploying the trained
model to production, while guaranteeing high performance
and flexibility. Specifically, Google Play benefitted from
optimizations in the serving system, including support for
isolation in a multi-tenant environment and fast custom
proto parsing, described in Section 6.

8 CONCLUSIONS

We discussed the anatomy of general-purpose machine learn-
ing platforms and introduced TFX, an implementation of
such a platform with TensorFlow-based learners and support
for continuous training and serving with production-level
reliability. The key approach is to orchestrate reusable com-
ponents (data analysis and transformation, data validation,
model training, model evaluation and validation, and serving
infrastructure) effectively and provide a simple unified con-
figuration for users. TFX has been successfully deployed in
the Google Play app store, reducing the time to production
and increasing its app install rate by 2%.
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Many interesting challenges remain. While TFX is general-
purpose and already supports a variety of model and data
types, it must be flexible and accommodate new innova-
tions from the machine learning community. For example,
sequence-to-sequence models have recently been used to pro-
duce state-of-the-art results in machine translation. Sup-
porting these models required us to carefully think about
capturing sequential information in the common data format
and posed new challenges for the serving infrastructure and
model validation, among others. In general, each addition
may affect multiple components of TFX, so all components
must be extensible. Furthermore, as machine learning be-
comes more prevalent, there is a strong need for understand-
ability where a model can explain its decision and actions
to users. We believe the lessons we learned from deploying
TFX provide a basis for building an interactive platform that
provides deeper insights to users.
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