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Abstract

In many recen applications, data may take the form of

cortinuous data streans, rather than finite stored data
sebk. Several aspect of data managenern needto be re-

corsideredin the preserce of data streans, offering anew

reseach direcion for the databasecommunity. In this pa-

per we focus primarily on the problem of query process-
ing, specificdly onhow to define and evaluate cortinuous
gueriesover data streans. We addresssenantic isstes
aswell asefficiency concems. Our main cortributionsare

threefold First, we specify agereral and flexible architec-
ture for quety processig in the preseite of data streams.

Secoml, we use our basic architecure as a tool to clar-

ify altemative semantics and processig tecmiques for

cortinuous queries. The architectre also cgotures most
previouswork on cortinuous quetiesand data streams, as

well as related corcefs such as triggers and materialized

views. Finally, we map out reseech topicsin the areaof

guery processig over data streams, showing where pre-

viouswork is relevant and descibing problems yet to be

addressed

1

Traditiona database managemnen sysens (DBMSs) ex-
pectall datato be managedwithin soneform of persisternt
data ses. For many recen applications, the corcepg of
a cortinuous data streamis more appropriate than a data
set By nature,astoreddatasetis appropriatewhensignif-
icant portionsof the data are queried again and agan, and
updatesare small and/or reldivelyinfrequent. In cortrast,
a data stream is appropriate when the data is changing
corstantly (often exclusively through insetions of new
elerrens), and it is either unnecessgy or impractical to
operate on large portions of the data multiple times.
Severa applications naturally gererate data streams as
opposedto data ses: financia tickers, pefformance mea
suremertsin network monitoring and traffic managenert,
log recodsor click-streamsin webtracking and persordl-
ization, manufacturing processesjata feeds from sersor
applications, cdl detall recods in teleconmunications,
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emall messges, and others. Becaise today's database
sysens are ill-equippedto perform any kind of specid
storagemanagenert or query processig for data streams,
heavily stream-oriented applicationsterd to usea DBMS
largely as an offline storage sysem or not at al. Like
otherreldively recen new demands on data managemnent
(eg. triggers, objects), it would be bereficia to provide
strean-orientedprocessig as an integral part of aDBMS.
Severa aspect of data managenert needto be recon
sidered in the presere of data steams. The STREAM
(STanford stREamdatA Managenert) projectat Stanford
is addressiry the new demands imposedby data streans
on data managenent and processig techiques.

In this paper we focus on defining a solid frame-
work for query processig in the presere of cortinu-
ous data streans. We corsider in particular cortinuous
gueries] TGNO9Z], which are queriesthat areisstedonce
and thenlogicdly run cortinuously over the database (in
cortrastto traditional one-time querieswhich are run once
to conpletion overthe current data ses). In network traf-
fic managemnen, for example, cortinuous queriesmay be
usedto monitor network behavior online in order to de-
tectanomdlies (eg., link corgeston) and their cause(eg.,
hardware failure, denal-of-sewice attack). Continuous
gueries may aso be usedto support load balancing or
othernetwork performanceadjustmens[DGO00]. In finan-
cia applications,cortinuous queriesmay be usedto mon-
itor trends and detectfleetng opportunities[Tra]. Both of
theseapplications are characterized by aneedfor cortinu-
ous queriesthat go well beyond simple elenen-at-a-time
processig, by rapid datastreans, and by aneedfor timely
onlineanswes.

The organization of the restof the paperis as follows:

e In Secton 2 we provide a broad survey of previous
work relevant to data stream processig and cortinu-
ous queties. Alt houghthere has beenonly a handful
of papers addressiry the topic directy, a number of
papersin relaedaress contain usefu tecmiquesand
resuts.

¢ In Secton 3 we introducea corcrete example to mo-
tivate our discussionof cortinuous queriesover data
streans.

e In Secton 4 we define a gerera and flexible archi-
tecure for query processig in the preseice of data



streams. Also in Secton 4 we useour basic architec-
ture to specify atemative senantics for continuous
gueries, and to classify previous relaed work. We
also use the architecure to clarify how cortinuous
gueriesover datastreams relae to triggersand mate-
rialized views.

e In Secton 5 we map out, in somne detail, a number of
openrese&ch topics that must be addressedn order
to redize flexible and efficient processig of cortin-
uous queriesover data streans.

e Sectons 6 and 7 discussour vision of and plans for
agerera-purposeData SreamManagenernt System
(DaMS).

2 Reated Work

In this secton we provide a gerera discussionof past
work that relates in sone way to cortinuous quelies
and/or data streams. A more technical analysis of sorre of
the work will be providedin Secton 4.3, after we presen
our basic architecure.

Continuous queries were an important componert
of the Tapesty sysem [TGNO9Z], which performed
content-basedfiltering over an append-only database of
email and bulletin board messges. The sysemsupported
cortinuous queriesexpressedising a quiteresticted sub-
setof SQ., in order to make guaranteesabout efficiernt
(incremental) evaluation and apperd-only query resuts.
The notion of cortinuous queriesfor a much wider spec-
trum of environmertsis formalized in [Bar99]. The XFil-
ter cortert-basedfiltering sysem [AFOQ performs ef-
ficiert filteing of XML documerts based on user pro-
files. The profiles are expressedas cortinuous queries
in the XPath language [ XPA99]. Xyleme [NACPO]] is a
similar corternt-basedfiltering sysem that erables very
high throughput with a resticted query language. The
Tribeca strean database manager [SU96] provides re-
stricted querying capabilit y over network packetstreams.
We will revisit much of this work in Secton 4.3.

The Chronicle data model [IMS95] introducedappend-
only ordered sequercesof tuples (chronicles), a form of
data strean. They definedarestictedview definition lan-
guage and algelra that operatesover chroniclestogether
with traditional relaions. The view definition restictions,
along with restictions on the sequerce order within and
acrosschronicles, guaranteesthat the views can be main-
tainedincrementally without storingany of thechronicles.

Tworecen sysens, OpenCQ [LPT99 and NiagaraCQ
[CDTWOOQ], support cortinuous gueries for monitoring
persistert data ses spreal over a wide-aea network,
eg., web sitesover the intemet OpenCQ usesa query

processig agorithm based on incrementa view main-
terance, while NiagaraCQ addressesscdability in num-
ber of queries by proposing techiques for grouping
cortinuous queries for eficient evaluation. Within the
same project as NiagaraCQ, refeence [STD*00] dis-
cussesthe problem of providing partial resuts to long-
running querieson the intemet, where it is accepable to
provide an answer over sone portion of the input data.
The main tecica challengeis handling blocking opera
torsin query plans. As will be seenour architecure pro-
videsa framework that cgpturesand classifiesall of these
iSSLes.

The Alert sysem[SFAM91] providesa mechanism for
implemerting evert-cordition-action style triggers in a
convertional SQL database, by using cortinuous queries
defined over specid apperd-only active tables In Sec-
tion 4.3.3 we will discusshow Alert and trigger sysemns
in gereral relaeto continuous queriesover data streans.

Clealy there is a relaionshp between cortinu-
ous queries and the well-known area of materialized
views [GM95], since materialized views are effecively
gueriesthat needto be reesaluated or incremertally up-
dated whenrever the base data changes. There are ser-
era differerces between materialized views and con
tinuous queries: cortinuous queries may strean rather
than store their resudts, they may ded with apperd-
only input reldions, they may provide approximaterather
than exact answes, and their processig strategy may
adapt as characteristics of the data stream change. Nev-
ertheless, much work on materialized views is cagp-
tured by our architecure and is relevant to our pro-
posedapproach; seeSecton 4.3.4. Of particularly im-
portance is work on self-mainterance [BCL89, GIM96,
QGMW 96]—enrsuring that erough data has beensavedto
maintain a view evenwhenthe basedatais unavailable—
and the related problem of data expiration [GMLY98]—
detemrminingwhencettain basedatacan be discadedwith-
out cormpromising the abilit y to maintain a view.

The Telegraph project [AHOO, HF+00, MFQ1] sheres
sone target applications and basic techica idea with
our problem, athough the gerera approach is differ
ert. Telegraph usesan adaptive query ergine to process
convertional (one-time) querieseficiertly under volatile
and unpredctable ervironmerts (eg., autonomous data
souces over the intemet, or sersor networks). In
closely related recen work, [MF01] addressescortinu-
ous queries, focusing on query execuion strategiesover
data streans gererated by sersors. The Tukwila sysem
[IFFt99] also supports adaptive query processin, in or-
derto perform dynamic dataintegration overautonomous
data souces. Adaptive query processig is likely to be
usefd for cortinuous queries over data streams, as dis-
cussedn Secion 5.

Sone work corsiders traditional data ses but treds



them like (finite) data streams, processig the data in a
single passand possilly providingintermedate or “ealy”
query resuts [HHW97, UF01]. For example, online ag-
gregation [HHW97, HH99] is a techique for handling
long-running aggregdion queries, cortinualy providing
a running aggregae with improving probabilistic error
bounds. In more theoretical work, [HRR9§ studies ba-
sictradeofsin processig finite data streans, specificdly
among storage requrenerts, number of passesrequred
and resut approximations. The problem of conputing
approximate quantiles (equ-height histograms) over nu-
meric data streans of unknown length is addressedin
[MRL99] and [GKO1].

Recertly there has beenincreasing interestin data re-
duction techiques,where the gerera god is to trade ac-
curacy for performancein massie disk-resicen data ses,
with sone obvious possille applications to data streams.
A goodsurvey appeasin [BT97]. In relaedwork, syn-
opsis data structures [GM99] provide a summary of a
data setwithin accepable levels of accuracy while be-
ing much smreller in size, and a framework for extract-
ing synopses(signatureg from data streams is proposed
in [CFPROQ]. A variety of approximate query answer
ing answeing tecmiqueshave beendeveloped basedon
datareduction and synopsisteciquesincluding samples
[AGPR99, AGP00, CMN99], histograms [IP99, PG99],
and waveles [CGRS0Q VW99. Refeerce [GKSO0]
develops histogram-basedtechmiquesto provide approx-
imate answess for correlated aggregate queriesover data
streans. Refeerce [GKMSO0]] presems a gerera ap-
proach for building small-space summaries over data
streans to provide approximate answeis for many classes
of aggregae queries.

There has been sore initial work addressirg data
streans in the data mining conmunity. In terms of build -
ing classica datamining modelsoverasingledatastrean,
refelerce [Hid99 corsiders frequert itenses and asso-
ciation rules refeerce [GMMOOQ corsiders cluster-
ing, and refelerces [DHOO0, HSDO1] corsider decision
trees The only work we know of addressirg multiple data
streams appeas in [YSJt0Q], which develops algorithms
to analyze co-e/olving time seqercesto forecast future
vauesand detectcorrelaions and ouitliers.

Finally, strean data managerrent and query process-
ing tecmiques are likely to drawv on work in sequerce
databases (eg., [SLR94)]), time-sefes databases (eg.,
[FRM94]), main-menory databases(eg., [Te&9]), and
red-time databases(eg., [KGM95]).

3 A Concrete Example

Let us corsider a represetative application to illu strate
the needfor cortinuousqueriesoverdata streans and why

convertional DBMS tecmology is inadequate. Consider
thedomain of network traffic managenert for alarge net
work, eg., the backbone network of an Intemet Sewvice
Provider (ISP) [DGOQ]. Network-traffic-managernen ap-
plicationstypically procesgapid, unpredctable, and con
tinuousdata streams, including packettracesand network
performance measuremernts. Due to the inadequacy of
convertional DBMSs to provide the kind of online con
tinuousquery processig that would be mostbereficial in
this domain, currert traffic-managemnert tools are either
restictedto offline query processig or to online process-
ing of simple hard-codedcortinuous queries,oftenavoid-
ing the useof a DBMS atogeter. A traffic-managenert
sysem that coud provide online processig of ad-hoc
cortinuous queries over data streams would alow net-
work operators to instal, remove, and modify appropri-
ate monitoring queriesto support effecive managenen
of the ISP's network.

As a corcrete example, corsider an ISP that collects
packet tracesfrom two links (among others) in its net-
work. The firstlink, cdled the custormer link, comects
the network of a customer to the ISP's network. The sec-
ond link, cdled the badbone link, comecs two routers
within the ISPs network. Each packettraceis a cortinu-
ous strean of packethealers obsevedonthe coresppnd-
ing link. For simplicity, we assume that a packet header
comprisesthe five fields listed in Figure 1. We use PT.
and PT, to derote the packet tracescollecied from the
customer and backbone linksresgecively.

| Field name | Desciption

sacr IP addressof packetserder

daddr IP addressof packetdestnation

id Idertifi cation number givenby serder sothat
destnation can uniquely idertify each packet

length Length of packet

timesanp | Time whenpackethealer was recoded

Figure 1: Recod structure of a packetheader.

A first simple cortinuous query (@1) computes the
load on the backbone link averagedover one minute peti-
ods and notifiesthe network operator if the load exceed
athrestold 7. A SQL version of ()1 using two self-
explanatory functionsis:

Q1: Select notifyoperat or (sun(length))
From PT,
Group By get m nut e(timesamp)

Having sum(length) > T

Although @1's functionality might be achievable using
triggersin a corvertiona DBMS, performance concems
may dictate specid techiques. For instance, if the PT,
strean is coming velry fast (eg., packess in an optical



link), the only feasible approach might be to compute an
approximate answerto ; by sanpling the data, some-
thing corvertional triggers are cettainly not desigredfor.

A more conplex cortinuousquety (Q-) findsthe frac-
tion of traffic on the backbone link coming from the cus-
tomer network. @), is an example of an ad-hoc cortinuous
guery that a network operator might register to checkin
respnseto congeston, whether the customer is a likely
cause.

Q-o: (Select count (*)
From PT.AsC, PT,AsB
Where C.saldr = B.saldr and C.daddr = B.daddr
and C.id = B.id) /
(Selectcowunt (*) From PTy)

Q2 joins streans PT, and PT, on their keys to count

the number of common packets on the links. Since un-

bounded intermedate storage coud potertially be re-
quiredfor joining two cortinuous data streams, the net

work operator might want the sysemto cormpute an ap-

proximateanswer Possille approximation methods are to
allocate a fixed amount of storage and maintain synopses
of thetwo streams (recdl Secton 2), and/or exploit appli-

caion semantics—sLch as a high probabilit y that joining
tuplesoccu within a cettain time window—to bound the
requredstorage.

A fina example cortinuous query (@3) monitors the
top 5% souce-b-destnation pairs in terms of traffic on
the backbone link. (We usethe SQL3 W't h corstruct
[UW97] for easeof expressiry the query.)

@3: With Load As
(Select  saddr, daddr, sum(length) as traffic
From PT,
Group By saldr, daddr)

Select  saldr, daddr, traffic
From Load As L,
Where  (Select count(*)
From LoadasL,
Where Lo.traffic < Lq.traffic) >

(Select 0.95xcownt(*) From Load)
OrderBy traffic

Processig (03 overthe cortinuousdatastream P71}, is es-
pecidly chalenging due its overall conplexity and the
presere of G- oup By and Or der By clauses,which
are normally “blocking” operators in a query execttion
plan.

Note that in addition to the isswes discussedin eah
example, all three example queries are likely to berefit
from adaptive quety processig [AHOQ], giventhe unpre-
dictable nature of network packetstreans.

----<AB><BC><AD> - - - :>
Data Stream

0Q |:>A?

Answer

Continuous Query

Figure2: A cortinuousquety () overasingle datastrean.

4 Architecturefor Continuous
Queries

Now that we have seena corcrete example motivating
data streams and cortinuous queties, the remainder of
the paper addresseshe gererd problem. We begin in
Secton 4.1 by motivating, through an extrenely simple
scer@rio, some of the most basic isstesthat arise when
processig cortinuous queries over data streams. Then
in Secton 4.2 we preset our architecure, which allows
us in Secton 4.3 to classify previouswork in cortinuous
gueries, and to relate cortinuous queries to triggers and
meaterialized views. We corsider data streams that adhere
to the relational model (i.e, streams of tuples), athough
many of the ideas and techiquesare indeperdert of the
data model being corsidered

41 Motivation

Let us corsiderthe simplest possille scerario to illu strate
the differercesbetweenquerying data streams and tradi-

tional storeddata set. Supposewe have asingle, cortinu-

ousstream of tuplesand asinglequery @@ we areinteresed
in answeing over the stream, as illu stratedin Figure 2.

() is a continuous query—we issLe it once and it oper

ates cortinuously as new tuples appea in the stream—

and supposewe are interesed in the exact answerto )

(as opposedto an approximation). Let us further syppose
that the data stream is apperd-only—it has no updatesor
deleions—sowe can think of the strean as an unbounded
apperd-only database D. Evenin this simplest of cases,
there are differert possille ways to handle @, with differ

ert ramifi cations:

(1) Supposewe want to always store and make available
the current answer A to (). Sincethe “database” D
may be of unboundedsize,the sizeof A asomay be
unbounded(eg., if @ is aselecton quety).

(2) Supposeinsteal we choosenot to store answer A,
but rather to make new tuplesin A available when
they occu, eg., as another cortinuous data stream.
Alt houghwe no longer needunbounded storage for
A, wesstill may needunboundedstoragefor keepng
track of tuplesin the data stream in order to deter-

mine new tuplesin A (eg., if @ is aself-join).



Let us further conplicate the problem by corsidering
deleionsand updates:

(3) Evenif the stream is apperd-only, there may be up-
datesor delefonstotuplesin answerA (eg. if Qisa
group-by query with aggregation). Now, in case(2)
above we may needto sorrehow update and delee
tuplesin our output data stream, in addition to gen
erating new ones.

(4) In the most gerera scerario, the input data stream
also may contain updatesor deletfons. In this case,
typically more—possilly much more—of the stream
needsto be storedin orderto cortinuously determine

the exact answerto .

One way to addresstheseisslesis to restict the ex-
pressveressof () and/or impose corstraints on charac-
teristics of the data strean sothat we can guaranteethat
the sizeof ()'s answer A4 is bounded or that the amount
of extra storage neeckd to cortinuously conpute A is
bounded Previous work on cortinuous queries, eg.,
[IMS95 TGNO92, Bar99], has terded to take this ap-
proach. Another possilility is to relax the requrement
that we aways provide an exact answerto @, which re-
lates to the area of approximate query answering dis-
cussedn Sectons 2 and 3.

In this paper we do not specificdly advocae one of
theseapproaches. Insteal, we specify agereral and flex-
ible architecure that makesthe choicesabove, and their
ramifi cations, explicit. We further useour basic architec-
ture to explain how cortinuous querliesrelde to triggers
and materialized views, and to define a number of open
reseach problems in processig cortinuous queries over
data streams.

4.2 Architecture

We now introduceour gereral architecture for processig
cortinuous querlies over data streams, illu strated in Fig-
ure 3. For now let us corsider a single cortinuous query
@ with answer A, operating over any number of incomng
data streans. Multiple cortinuous queriescan be handled
within our architecure (as implied in the figure), and we
will discusssorre of theinterestng issiesthat arisein this
cortext in Secton 5.4. We also assune that the quety is
over data streans only, athough mixing streans and cor
vertiona relaions posesno particular problems.

Whenquely @ is notifiedof anew tuple ¢ in arelevant
datastrean, it can perform anumber of actions,which are
not mutually exclusive:

(i) It cen detemine that becaise of ¢ there are new tu-
plesin theanswer A. If it is knownthat a new tuple a
in A will remain in A “forever,” then may serd tu-
ple a to the Sreamcomponert illu stratedin Figure 3.

, Stream

Stream T - _ ’Jj -7
T~ _|-~ ——
Stream 2 - - _ _ _ _ Tl 0 i m
v ~< =
. /’,”” 7\
Streamn-~ "~
D
uml —
Throw)
Q2

Figure 3: Architecure for processig cortinuous queries
overdatastreans.

In otherwords, Sreamis adatastream cortaining tu-

plesapperdedto A, similar to case (2) discussedin

Secion 4.1.
(ii) If anew tuple a is determinedto be in A, but may
at sone time no longerbe in A, thena is added to
the Sore conmponert illu stratedin Figure 3. In other
words, togeher Streamand Sore define the currert
guery answer A. If our god is to minimize storage
for the quety resut, thenwe want to make sure that
tuplesare ser to Sreamrather than Sore wherever
possibe.
(i) Thenew strean tuple ¢t may causethe update or dele-
tion of answertuplesin Store. Answertuples might
also be movedfrom Storeto Stream
(iv) We may needto save ¢, or save data derivedfrom ¢,
sothat in the future we are assued of being able to
compute our quety resut. In this case,t (or the data
derivedfromit), is sen to the Scratch conponert of
Figure 3. Combinedwith action (iii) , we might also
move data from Store to Scratch.

(v) We may not needt now or later, in which caset is
sent to the Throw conmponert of Figure 3. Note that
Throw doesnot requreany actua storage (unlesswe
areinteresedin archiving unneeckd data).

(vi) As aresut of the new stream tuple ¢, we may take
data previously savedin Scratch (or Sore) and serd
it to Throw instead. If our god is to minimize stor-
age,we want to make sure that unneeceddatais sen

to Throw wherever possille, rather than Scratch.

4.3 TheArchitectureand Related Work

In this secton we revisit the isswes and scerarios dis-
cussedin Secton 4.1, revisit the relaed work discussed
in Secton 2, and corsidertriggersand materialized views.
In al caseswe useour basic architecure as atool for de-
tailed understanding and conparisors.



4.3.1 Query Processing Scenarios

Let us corsider quety processig scerarios (1)—(4) from
Secton 4.1 in light of the architecure specified in Sec-
tion 4.2. In scemrio (1), we want to aways store @'s
ertire currert answer A. In terms of our architecure, (1)
sa/s that Sreamis enpty, Sore aways cortains A, and
Scratch cortains any data that may be requredto keep
the answerin Store up-to-date. In the example casewhere
Q is a selecion query, Sore may be of unbounded size,
while Scratch is enpty. Corversely in scerario (2) we
want to make A available exclusively as a data strean,
i.e, Sreamstreans the ertire answerto A while Storeis
enpty. In the example casewhere @ is aself-join, we can
serd dl answertuplesto Sreamsincethey will remain in
the resut forever, but Scratch may needto grow without
bound.

Scerario (3) coversthe casewhere answer A can have
updates and deleions even when the input streans are
apperd-only, eg., aquety that performs grouping and ag-
gregation. Scerario (4) further exterds to the casewhere
the input streams may have updates and delefons. As
an example, suppose() is a group-by query over a single
data strean with a min aggregdion function. Sincemin is
monotonic for insetions, in scerario (3) A is maintained
in Store, and Scratch can remain enmpty. However, in sce-
nario (4) unboundedstorageis requiredfor Scratch to en
sure that the min valuesoverthe ertire stream can dways
be computed In both cases,the only time answertuples
can be sert to Sream or moved from Sore to Stream is
whenit is known that for some group there will be no fur-
ther insetions, updates,or deletions of tuplesfallin g into
that group.*

4.3.2 Previous Related Work

We now revisit sorre of therelaedwork discussedn Sec-
tion 2, characterizing it in terms of our basic architecture.
Note that citations are not repeaedin this secton except
when neeced to idertify the work being discussed Also
note that sone of the relaedwork from Secton 2 is revis-
itedinsteal in Secton 4.3.3 on triggers or Secion 4.3.4
onviews.

Recdl that the Tapesty sysemsupportsrestictedcort
tinuous queriesover apperd-only datases. In Tapesty, a
cortinuous quetry @ is rewritteninto its minimum bound-
ing monotone query @, which is thenrewritteninto an
incremertal query Q7. As a monotone cortinuous query,
QM has the property that its answerchangesonly by ad-

INotethat we are assuning Streamis constainedto beappend-only,
eventhoughin scenaio (4) we discussinput streams with updatesand
delefons. If we alow updatesand delefonsto Streamtuples,thenwe
are always free to sendanswertuplesto Steaminstead of Store, since
we can updateor delee themlater.

dition of new tuples,soin tems of our architecureall an-
swertuplescan be sert to Sreamand Store is enypty. The
incremertal version@’ of the query is meant to improve
the efficiency of conmputing new answertupleswhennew
input tuples are apperded but there is no mechanism for
guaranteeirg that Scratch will not grow without bound.

The work in [STD*00] on maintaining partial resuts
for long-running queriesis similar to Scerario (3) in Sec-
tion 4.1. It maintains the currert partial resut in Store
and any extraneeckdinformation in Scratch. Our discus-
sion of new query processig techiquesin Secion 5.3
is relevant to the problem addressedin [STD10(], and
we believe that basedon thesetechiquesit is possille to
exploit monotonicity more aggressvely to improve upon
the algorithm in [STD*0(], reducing the data saved in
Scratch. OpenCQ and NiagaraCQ corsider Scerario (4)
in Secton 4.1, but they are geaed towards data ses that
change primarily throughin-place updates. Thus, they do
not addressthe problem of Store or Scratch growing with-
out bound.

A number of sysemns perform tuple-a-a-time process-
ing overtheir input data streams: each time anew stream
elerren arrives,the elemert is moved directy to either
Streamor Throw, without corsuting any otherdatain the
strean. Packet routing and simple network algorithms
have this characteristic [Tan96], although for network
traffic managenen more sophisticatedstrean processig
is neeckd as seenin Secton 3. The XFilter and Xyleme
sysens discussedin Secton 2 also perform elenert-at-
atime processig although the elenerts are XML docu
merts.

Basic online aggregation [HHW97 maintains the cur-
rernt aggregaein Store along with an estmate of theerror,
and an enpty Scratch. Follow-onwork that exterds on-
line aggregdion to joins [HH99] doesneedto maintain
previously seentuples in Scratch. Finally, the body of
work in approximate query answeing focusesprimarily
on making the bestpossille useof a limitedsize Scratch
by storing only small synopses(summaries) of the data.
Refeerces [GMP97, MRL99, MVW 00, Vit85 address
the problem of updating the synopses(i.e., Scratch) ef-
ficiertly whenthe underlyin g data changes.

4.3.3 Triggers

Triggers, dso cdled evert-cordition-action rules, are
usedto monitor everts and conditions in databases,and
to execute actions automatically when specific situations
are deteced [WC96]. In the Alert sysemintroducedin
Secton 2, triggers are implemerted by means of cortin-
uous queries over active tables Each tuple in an active
table represerts an evert, which is an update ona corven
tional storedtable. When a new tuple is added to one of
the active tables, each continuous quety involving the ta-



ble is evaluated and thetriggeraction is invokedon eah
new tuple in the query resut.

Our mapping from triggers to the architecure of Fig-
ure 3 is basedon (and slightly gereraizes) the Alert ap-
proach. We assume that everts to be monitoredare gen
erated as data streans, and we alow cortinuous queries
over any number of data streams togeter with corven
tional stored tables. As in Alert, thesequeries perform
evert and cordition monitoring. For launching trigger
actions, like Alert we assume that the desired actions
are performed by SQL data manipulation conmands and
userdefined stored procedires specified as part of the
cortinuous queries (eg., quety (1 in Secton 3). In
terms of our architecure, sincethereis no quetry “answer
in triggers, Sreamand Sore may remain enpty, while
Scratch is usedfor any data requredto monitor conplex
evertsor evauate corditions. Alt ematively, deperding on
the desired trigger behavior and application interaction,
actions coud serd resutsto Stream

There are a number of berefits to using cortinuous
gueries over data streans to provide trigger functional-
ity. Continuous queries specified on evert streams to-
gether with corvertional tables ersble conplex multi-
table everts and conditions to be monitored, equivalent
to the most powerful triggerlanguage proposds we know
of [WC96]. More importantly, trigger processig would
berefit automatically from efficiernt datamanagenen and
processig techiques for cortinuous querlies over data
streans, suwch as specidized query optimization tech
niques(Secton 5.3).

434 Materialized Views

Materialized views, whether in a corvertiona DBMS or
in a data warehousing environmert [GM95], fall natu-
raly into our architecure. The base data over which the
views are defined, if not available in corvertional stored
tables, is storedin Scratch. The view itselfis maintained
in Store. Updatesto the base data can be represetted as
one or more datastreans, as discussedn Secton 4.3.3 for
triggers. In tems of this mapping, work on materialized
view self-mainterance and expiration, discussedin Sec-
tion 2, is geaed specificdly towards minimizing the size
of Scratch. Pure self-mainteranceguaranteesthat Scratch
is enpty [BCL89, GIM96], dthough for many views
pure self-meintainabilit y is impossibe, soauxiliary views
must be stored and maintained in Scratch [QGMW 96].
Data expiration exploitscorstraintsto determine precisely
when data can be rermoved from Scratch, athough no
bounds onthe sizeof Scratch are guaranteed The Chron-
icle data model discussedin Secton 2 for materialized
views is desigred to ersure bounded storage for Scratch,
but like pure self-meintainahilit y it resticts the allowable
view definitions significantly. To the bestof our knowl-

edye, no work on materialized views has addressedhe
problem of bounding the size of the materialized view it-
self, sothat the sizeof Store aso can be bounded

5 Research Problems

In this secton we outline a number of reseach problems
associged with processig cortinuous queries over data
streans. We begin at a relaively global level, becomng
more detailed as the secton progresses.n several cases
the architecure of Secton 4.2 is usedto make the prob-
lems and issuesmore corcrete.

5.1 Basic Problemsand Techniques

At the most global level, what ses cortinuous quelies
over data streans apart from previous work is a unique
combination of:

e Online processing. The applications discussedin
Secton 1 requre that cortinuous queries are pro-
cessedwell, cortinuously. Specificdly, when new
tuplesarrive in a data stream they gererally mustbe
“corsumed’ immedately, usually performing one or
more of actions (i)—(vi) from Secton 4.2. In some
applications the tuples may arrive so fast that sore
of themneedto beignoredertirely.

e Storage constraints. In the gerera case for con
tinuous data streans, the amount of storagerequred
for the answerto a cortinuous quety, or to ersure
that the answeraways can be computed, may be un-
bounded (recdl Secton 4.1). Furthemore, even if
thereis“nealy” unboundedstorageavailable ondisk
or other tertiary devices, perfformance requrenmens
may be such that Sore and/or Scratch from Figure 3
needto resick in alimitedamount of main menory.

While neither of theseproblems in isolaion is ertirely
new, deding with themtogether, while at the same time
offering the full functionality and efficiercy of a database
guery processaris a new challenge.

Next we mertion threebasic techiquesthat have been
explored primarily in other contexts within the database
or broader Computer Scierce reseach community. All of
themappea directy relevant to our problem.

e Summarization. Summaries(or data synopses pro-
vide a corciserepresetmation of a data setat the ex-
perseof somre accuracy. As discussedin Secton 2,
many teciquesfor summarization have beendevel-
oped including sanpling, histograms, and waweles.
(SeeSecton 2 for citations) We expect sunma
rization to play an important role in query process-
ing over data streams due to the storage corstraints



discussedabove. New isswesto resole in the data
strean ervironment include: (i) how to make guar-
anteesabout accuacy of cortinuous query resuts
basedon summaries; (i) how to maintain summaries
efficiertly in the preserceof very rapid data streans;
(iif) what summarization techiquesare bestfor un-
predctable data streans. We revisit sone of these
isswesin Secton 5.3.

e Online data structures. A data structure desigred
specificdly to handle cortinuous data-flow is typi-
cdly referedto as an online data structure [FW98].
Continuous queries by nature suggestthe use of on-
line data structuresfor query processig.

e Adaptivity. We expect cortinuous quetlies and the
data streans on which they operate to be long-
running. Unlike during the processig of a simple
one-time quety, during the lifetime of a cortinuous
guery parameters suwch as the amount of available
menory, strean data characteristics, and strean flow
ratesmay vary corsiderably. While adaptive query
processig techiques for more traditiona queries
have attracted interestrecertly (seeSecton 2 for a
discussion, the work sofar that we are aware of has
not corsideredall of the parameters or kindsof adap-
tivity (eg., changing approximations)that arisein a
data stream cortext.

Distillin g the basic problems and techiquesabove, we
seethat processig cortinuous queries over data streams
ertails making fundamenta tradeoffs among efficiercy,
accuacy, and storage Refelerces [AMS96, HRR9§
provide sorme initial cortributions from the theoty com
munity along theselines,but it is an open problemto un-
derstand the implications of thesetradeofsin ared sys-
tem processig cortinuous queries for one or more red
applications.

Next wewill corsiderin more detail several specific re-
seach challenges. We will start in Secton 5.2 by briefly
discussirg the isste of languagesfor specifying cortin-
uous queries. Then in Secton 5.3 we focus on query
evaluation and optimization, including execuion plans
and operators for cortinuous queries. We briefly address
reseach problems associged with multiple cortinuous
gueriesin Secton 5.4.

5.2 Languagesfor Continuous Queries

Alt hough we cettainly do not advocde inverting a new
guery language for the purposeof specifying cortinuous
gueries over data streans—particularly over streans of
relaional tuples—there are soneissuesthat must be con
sidered Let ustake SQL as an example, where queries
can now operate over streams as well as storedrelaions.

Most previous work on cortinuous queties has resticted
the language being corsidered in order to guarantee cer
tain propetrties such as bounding the size of Scratch (or
eliminating it ertirely), or ersuring that al query resuts
can be sen to Sreamand none to Sore. It appeas to be
an open problem to detemmine for arbitrary SQL queries
whetherthesekindsof propertiesare sdtisfied particularly
if we accep theuseof Scratch and Sore but want to make
sure they are boundedin sone way. We aso believe that
for cettain applications cortinuousquetrieswill needto re-
fer to the sequercing aspect of streans. Here SQL with
extersions for ordered relations [SLR94], or with built -
in time-seriessupport [FRM94], might be a reasoreble
choice.

5.3 Query Evaluation and Optimization

In any database sysemiit is the job of the query opti-
mizer to choosein advancethe “best quety plan for exe-
cuting each quety, basedon a variety of statistics main-
tained for this purpose. A cortinuous query processor
also should selecta “best execuion plan, athough we
expectthat fewer of the decisiorswill be made in advance
due to the long-running nature of cortinuous queries dis-
cussedn Secton 5.1. Techiquessich as eddies[AHOQ],
which corstruct and adapt query plans on-the-fly, come
the closestthat we know of to the query execttion style
we ervision. However, that work is still desigredfor one-
time rather than corntinuous queries, the query execuion
strategies do not adapt to al relevant parameters in the
data strean cortext, and the notion of adaptivity is geaed
solelytowards online processig.

Let us assume a standard pipelined(or iterator-based
approach to quetry processig [Gra93]. One of the funda-
mertal differencesbetweentraditiona quety plans oper
ating over stored relaions and plans operating over data
streans can be characterized as “push’ versus “pull.”
Specificdly, a traditional query plan uswely has a tree
shape and is executed top-down in a “pull” style: each
guery operator polls its childrenfor the requiredinput, ul-
timately accessig storedindexesor reldionsat the leaves
of the query tree.Paralel query plans relax this paradigm
to somre extert [Gra90], but uswally do not usethe fully
“push-based model that data streans may demand. In an
execuion plan for a cortinuous quety over data streams,
we expect that it will be the appeaance of a new tuple
in a relevant stream that ses the plan into action. Of
cousethis ideais not new, but rather a query processig
variant on triggers, aderts, and other “active” corstructs
in databases[WC96]. Sorre initial work on combining
“push’ versus “pull” query execttion plansin the cortext
of datastreams appeas in [MF01].

“Push’ versus “pull” aside, let us corsider other
changesthat may be requred to adapt traditiona query



plan operators to the data strean cortext. We will first
corsider true pipelined operators (such as selecions and
joins), then we will corsider blocking operators (such
as aggregaion and sotting). Finaly we will corsider a
new class of operators that may be usefd for cortinuous
gueriesover data streams.

5.3.1 Pipelined operators

The simplest standard pipelined operators, such as selec-
tions, can be translatedto the data strean cortext with lit -
tle modifi cation. However, as soonas we introducejoins
we are faced with a choice. We can either. (i) evaluate
portions of the query multiple timesas in a nesedloop
style join, which we assume is undesirable or even im-
possibe in the data stream context; or (ii) use Scratch to
hold temporary resuts during query processig, as in a
pipelinedhashjoin [WA91].

The caseof joins points out that when processiig con
tinuous queries over data streans, we not only want our
guery operators to be pipelined we aso want them to
operate with bounded intermedate storage (even in the
preserce of unboundedstreams). For example, we might
modify a pipelinedjoin operator to degrade gracefuly to
an approximate join when the requred storage begins to
reach limits. Senantic corstraintsin the sprit of data ex-
piration [GMLY9§], or online feeack acrossoperators
in the sprit of ripple joins [HH99], coud be applied to
compute approximations with minimal loss of informa-
tion.

As it turns out, the architecture we introducedin Sec-
tion 4.2 for cortinuous queries as a whole aso applies
nicely to individua query plan operators: Sore and
Scratch represenm the intermedate storage requiredby an
operator, while Sreamrepresets the pipelined operator
resuts. Thus, tecmiquesdevelopedat the query level for
summarization, approximation, or for moving data from
Scratch or Store to Sreamor Throw, might be applicable
recusively to query plan operators. It is important to bea
in mind, however, that Scratch and Storewill gererally be
boundedglobally, not on a peroperator basis.

5.3.2 Blocking Operators

A blocking operator is one that mustobtain itsertireinput
setbefore it can produce any output—typical examples
are sotting and aggregation. In a corvertiona pipelined
guery plan, al operators that follow a blocking operator
must wait until the operator obtains its ertire input and
begins producing its resdts. Obviously blocking oper
ators cannot behave in their corvertional fashion in the
presereof cortinuousdata streans, sincetheinput is un-
bounded and the operator would block “forever” Part of
the solution to this problem must be basedon senantic

corsiderations such as thosediscussedin Secion 4.1—
eg., what is the resut of an aggregation or a sott now
whenmore datamay be coming later? In additionto tech
niquessuch as onlineaggregaion [HHW97, HH99], there
has been sone work addressig closely-relaed prob-
lems [LPT99, STD*00] that develops techiquesbased
on incremernta view mainterance. Developing similar
teciquesfor cortinuous queries over data streans, and
even more fundamertally understanding the semantics
implied by the varioustechiques,remains an openprob-
lem.

5.3.3 SynopsisOperators

We discussedthe requiremert for sunmaries or synopses
in Secton 5.1 and cited sone of the most relevant work
in Secton 2. One approachto incorporating synopsisdata
structuresinto a database sysemis to ercgpsuate them
as basic operators that may appea in query plans. In sup-
port of this approach, refelerce[GM99] showsthat differ-
ert classef queriesare supportedefficiertly by differert
synopsisdata structures. Thus, the query optimizer coud
be charged with choosirg the bestsynopsis operator for
each purposeunder currert corditions.

Taking this ideaone stepfurther, synopsisquety opera-
tors coud providethe cgabilit y to “tune” cettain param-
eterswithin the operator, such as accuracy and corfiderce
of approximation (eg., probabilistic corfidence bounds
for aggregaes|[HHW97]), and maximum storagerequired
(eg., arandomsanple of sizeN). Particularly relevant in
this cortext are the senantic synopsisstructuresproposed
in [BGRO1], which sunmarize a massive disk-resicert re-
lation basedon error tolerance parameters provided in-
deperdertly for eah attribute. If we provide synopsis
operators with thesetypesof parameters, then approxi-
mate query plans can be corstructed carefuly basedon
the query structure and available storage. Of coursethis
power aso posessignificant chalengesfor the query op-
timizer.

54 Multiple Continuous Queries

In the paper so far we have assumed a single cortinuous
guery overmultiple data streans. Let us now corsiderthe
moreredistic scerario where an application registers mul-
tiple cortinuous queries simultaneotsly, probably over
shareddata streams. Becausecontinuousqueriesarelong-
running, and sorre applications may involvea vety large
number of cortinuous queries, we expectthat sone form
of multi-queryoptimization [Fin82, Sel88,CDTWOO] will

be a relevant and pethaps essetial techique. There has
been sone recen work on optimizing multiple cortin-
uous gueries, focusing either on very large numbers of
guerieswhere each query performs elenert-at-a-time pro-



cessig [AFO0, NACPO1], or on subquery merging in the
XML corntext [CDTWO0Q]. In tems of our architecture,
the queriesin thesesyserns are limited erough that they
always have enpty or bounded Sore and Scratch cornmpo-
nerns.

Reseé&ch yet to be performed includes exterding the
teciques from [AF00, NACPO1, CDTWOO] to handle
more conplex queries,coupling multi-query optimization
techiqueswith approximate query answeing, and opti-
mizing the use of bounded-size Scratch and Store when
they are shared among many cortinuous queties. More
gererdly, the overal problem of understanding and im-
plemerting the tradeoffs among efficiency, accuracy, and
storage becones a least one step more conmplex in the
preserce of multiple cortinuous queries.

6 A Data Stream Management Sys-
tem

Our ultimate god is to build a conplete data streamman-
agenert system (DSMS), with functionality and perfor-
mancesimilar to that of atraditional DBMS, but which al-
lowssorre or al of the data being managedto conein the
form of corntinuous, possilly very rapid, data streans. In
swchasysem traditional one-imequeriesare redacedor
augmented with cortinuous queries, and tecmiquessich
as synopsis and online data structures, approximate re-
suts, and adaptive query processig becone fundamen
tal feaures of the sysem Other aspects of a conplete
DBMS aso needto be recorsidered including storage
managerren, transaction managemnen, userand applica-
tion interfaces,and authorization.

Obviously building a conmplete DSMS—even a re-
seach prototype—ertails a signficant effort. One ap-
proachwould beto modify orexterd an existing DBMS to
include the functionality that we ervision. However, our
approachwill beto build a complete DSMSfrom scratch,
sowe can fully exploretheissuesunderour own cortrol.
We have descibed many novel and interestng reseach
problems that we expectto encounter along the way.

7 Conclusions and Resear ch Plan

Many recen applications needto processortinuousdata
streams in addition to or instead of corvertiona stored
data ses. In this paper we have specified a gereral and
flexible architecture for processig cortinuous queriesin
the presere of data streans. We have used our ba
sic architecture as a tool to clarify atemative serantics
and processig tecmiquesfor cortinuousqueries,as well
as to relae past and currert work to the gererd Data
Sream Managenent System (DSMS) we ervision. We

have mapped out a number of reseach topics in the area
of quety processig over data streams, including new re-
quirenmerts for online, approximate, and adaptive query
processig.

At Stanford we have begun to build a conplete proto-
typeDSMScdled STREAM (STanford stREamdatA Man-
ager). We are focusing initially on:

e A flexible interface for realing and storing data
streans—or strean synopses—as part of a hierarchi-
cd storage manager.

e A processorfor cortinuous queries specified using
SQL or relationa agebraincluding aggregation.

e A client Application Programming Interface (API)
for registering cortinuous queries and receving
query restits.

We expect that the development of our prototype sys-
tem as well as cortinuous detailed evauation of poten
tial applications such as the network monitoring sysem
descibed in Secton 3, will lead to further algorithmic
and sysemreseach issies. Pleasevisit ht t p: / / www
db. st anf ord. edu/ stream
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