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Abstract

This paper addresses the scalability challenge of architecture search by formulating
the task in a differentiable manner. Unlike conventional approaches of applying evo-
lution or reinforcement learning over a discrete and non-differentiable search space,
our method is based on the continuous relaxation of the architecture representation,
allowing efficient search of the architecture using gradient descent. Extensive ex-
periments on CIFAR-10, ImageNet, Penn Treebank and WikiText-2 show that our
algorithm excels in discovering high-performance convolutional architectures for
image classification and recurrent architectures for language modeling, while being
orders of magnitude faster than state-of-the-art non-differentiable techniques.

1 Introduction

Discovering state-of-the-art neural network architectures requires substantial effort of human experts.
Recently, there has been a growing interest in developing algorithmic solutions to automate the
manual process of architecture design. The automatically searched architectures have achieved highly
competitive performance in tasks such as image classification (Zoph and Le, 2016; Zoph et al., 2017;
Liu et al., 2017b,a; Real et al., 2018) and object detection (Zoph et al., 2017).

The best existing architecture search algorithms are computationally demanding despite their re-
markable performance. For example, obtaining a state-of-the-art architecture for CIFAR-10 and
ImageNet required 1800 GPU days of reinforcement learning (RL) (Zoph et al., 2017) or 3150 GPU
days of evolution (Real et al., 2018). Several approaches for speeding up have been proposed, such
as imposing a particular structure of the search space (Liu et al., 2017b,a), weights or performance
prediction for each individual architecture (Brock et al., 2017; Baker et al., 2018) and weight sharing
across multiple architectures (Pham et al., 2018b; Cai et al., 2018), but the fundamental challenge of
scalability remains. An inherent cause of inefficiency for the dominant approaches, e.g. based on RL,
evolution, MCTS (Negrinho and Gordon, 2017), SMBO (Liu et al., 2017a) or Bayesian optimization
(Kandasamy et al., 2018), is the fact that architecture search is treated as a black-box optimization
problem over a discrete domain, which leads to a large number of architecture evaluations required.

In this work, we approach the problem from a different angle, and propose a method for efficient
architecture search called DARTS (Differentiable ARchiTecture Search). Instead of searching over
a discrete set of candidate architectures, we relax the search space to be continuous, so that the
architecture can be optimized with respect to its validation set performance by gradient descent. The
data efficiency of gradient-based optimization, as opposed to inefficient black-box search, allows
DARTS to achieve competitive performance with the state of the art using orders of magnitude
less computation resources. It also outperforms another recent efficient architecture search method,
ENAS (Pham et al., 2018b). Notably, DARTS is simpler than many existing approaches as it does
not involve any controllers (Zoph and Le, 2016; Baker et al., 2016; Zoph et al., 2017; Pham et al.,
2018b), hypernetworks (Brock et al., 2017) or performance predictors (Liu et al., 2017a), yet it is
generic enough to search for both convolutional and recurrent architectures.

The idea of searching architectures within a continuous domain is not new (Saxena and Verbeek,
2016; Ahmed and Torresani, 2017; Shin et al., 2018), but there are several major distinctions. While
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prior works seek to fine-tune a specific aspect of an architecture, such as filter shapes or branching
patterns in a convolutional network, DARTS is able to discover high-performance architectures with
complex graph topologies within a rich search space. Moreover, DARTS is not restricted to any
specific architecture family, and is able to discover both convolutional and recurrent networks.

In our experiments (Sect. 3) we show that DARTS is able to design a convolutional cell that achieves
2.83 ± 0.06% test error on CIFAR-10 for image classification, which is competitive with the state-of-
the-art result by regularized evolution (Real et al., 2018) obtained using three orders of magnitude
more computation resources. The same convolutional cell also achieves 26.9% top-1 error when
transferred to ImageNet (mobile setting), which is comparable to the best RL method (Zoph et al.,
2017). On the language modeling task, DARTS discovers a recurrent cell that achieves 56.1 perplexity
on Penn Treebank (PTB) in a single GPU day, outperforming both extensively tuned LSTM (Melis
et al., 2017) and all the existing automatically searched cells based on NAS (Zoph and Le, 2016) and
ENAS (Pham et al., 2018b).

Our contributions can be summarized as follows:

• We introduce a novel algorithm for differentiable network architecture search that is applica-
ble to both convolutional and recurrent architectures.

• Through extensive experiments on image classification and language modeling tasks we show
that gradient-based architecture search achieves highly competitive results on CIFAR-10
and outperforms the state of the art on PTB. This is a very interesting result, considering
that so far the best architecture search methods used non-differentiable search techniques,
e.g. based on RL (Zoph et al., 2017) or evolution (Real et al., 2018; Liu et al., 2017b).

• We achieve remarkable architecture search efficiency (with 4 GPUs: 2.83% error on CIFAR-
10 in 1 day; 56.1 perplexity on PTB in 6 hours) which we attribute to the use of gradient-based
optimization as opposed to non-differentiable search techniques.

• We show that the architectures learned by DARTS on CIFAR-10 and PTB are transferable
to ImageNet and WikiText-2, respectively.

The implementation of DARTS is available at https://github.com/quark0/darts

2 Differentiable Architecture Search

We describe our search space in general form in Sect. 2.1, where the computation procedure for an
architecture (or a cell in it) is represented as a directed acyclic graph. We then introduce a simple
continuous relaxation scheme for our search space which leads to a differentiable learning objective
for the joint optimization of the architecture and its weights (Sect. 2.2). Finally, we propose an
approximation technique to make the algorithm computationally feasible and efficient (Sect. 2.3).

2.1 Search Space

Following Zoph et al. (2017); Real et al. (2018); Liu et al. (2017a,b), we search for a computation
cell as the building block of the final architecture. The learned cell could either be stacked to form a
convolutional network or recursively connected to form a recurrent network.

A cell is a directed acyclic graph consisting of an ordered sequence of N nodes. Each node x(i) is
a latent representation (e.g. a feature map in convolutional networks) and each directed edge (i, j)
is associated with some operation o(i,j) that transforms x(i). We assume the cell to have two input
nodes and a single output node. For convolutional cells, the input nodes are defined as the cell outputs
in the previous two layers (Zoph et al., 2017). For recurrent cells, these are defined as the input at
the current step and the state carried from the previous step. The output of the cell is obtained by
applying a reduction operation (e.g. concatenation) to all the intermediate nodes.

Each intermediate node is computed based on all of its predecessors:

x(i) =
∑
j<i

o(i,j)(x(j)) (1)

A special zero operation is also included to indicate a lack of connection between two nodes. The
task of learning the cell therefore reduces to learning the operations on its edges.
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Figure 1: An overview of DARTS: (a) Operations on the edges are initially unknown. (b) Continuous
relaxation of the search space by placing a mixture of candidate operations on each edge. (c) Joint
optimization of the mixing probabilities and the network weights by solving a bilevel optimization
problem. (d) Inducing the final architecture from the learned mixing probabilities.

2.2 Continuous Relaxation and Optimization

Let O be a set of candidate operations (e.g., convolution, max pooling, zero) where each operation
represents some function o(·) to be applied to x(i). To make the search space continuous, we relax
the categorical choice of a particular operation as a softmax over all possible operations:

ō(i,j)(x) =
∑
o∈O

exp(α
(i,j)
o )∑

o′∈O exp(α
(i,j)
o′ )

o(x) (2)

where the operation mixing weights for a pair of nodes (i, j) are parameterized by a vector α(i,j)

of dimension |O|. After the relaxation, the task of architecture search reduces to learning a set
of continuous variables α =

{
α(i,j)

}
, as illustrated in Figure 1. At the end of search, a discrete

architecture is obtained by replacing each mixed operation ō(i,j) with the most likely operation, i.e.,
o(i,j) = argmaxo∈O α

(i,j)
o . In the following, we refer to α as the (encoding of the) architecture.

After relaxation, our goal is to jointly learn the architecture α and the weights w within all the mixed
operations (e.g. weights of the convolution filters). Analogous to architecture search using RL (Zoph
and Le, 2016; Zoph et al., 2017; Pham et al., 2018b) or evolution (Liu et al., 2017b; Real et al., 2018)
where the validation set performance is treated as the reward or fitness, DARTS aims to optimize the
validation loss, but using gradient descent.

Denote by Ltrain and Lval the training and the validation loss, respectively. Both losses are deter-
mined not only by the architecture α, but also the weights w in the network. The goal for architecture
search is to find α∗ that minimizes the validation loss Lval(w∗, α∗), where the weights w∗ associated
with the architecture are obtained by minimizing the training loss w∗ = argminw Ltrain(w,α∗).

This implies a bilevel optimization problem (Anandalingam and Friesz, 1992; Colson et al., 2007)
with α as the upper-level variable and w as the lower-level variable:

min
α

Lval(w∗(α), α) (3)

s.t. w∗(α) = argminw Ltrain(w,α) (4)

The nested formulation also arises in gradient-based hyperparameter optimization (Maclaurin et al.,
2015; Pedregosa, 2016), which is related in a sense that the continuous architecture α could be viewed
as a special type of hyperparameter, although its dimension is substantially higher than scalar-valued
hyperparameters (such as the learning rate), and it is harder to optimize.

2.3 Approximation

Solving the bilevel optimization exactly is prohibitive, as it would require recomputing w∗(α) by
solving the inner problem (4) whenever there is any change in α. We thus propose an approximate
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Algorithm 1: DARTS – Differentiable Architecture Search

Create a mixed operation ō(i,j) parametrized by α(i,j) for each edge (i, j)
while not converged do

1. Update weights w by descending∇wLtrain(w,α)
2. Update architecture α by descending∇αLval(w − ξ∇wLtrain(w,α), α)

Replace ō(i,j) with o(i,j) = argmaxo∈O α
(i,j)
o for each edge (i, j)

iterative optimization procedure where w and α are optimized by alternating between gradient
descent steps in the weight and architecture spaces respectively (Alg. 1). At step k, given the
current architecture αk−1, we obtain wk by moving wk−1 in the direction of minimising the training
loss Ltrain(wk−1, αk−1). Then, keeping the weights wk fixed, we update the architecture so as to
minimize the the validation loss after a single step of gradient descent w.r.t. the weights:

Lval(wk − ξ∇wLtrain(wk, αk−1), αk−1) (5)

where ξ is the learning rate for this virtual gradient step. The motivation behind (5) is that we would
like to find an architecture which has a low validation loss when its weights are optimized by (a single
step of) gradient descent, where the one-step unrolled weights serve as the surrogate for w∗(α). A
related approach has been used in meta-learning for model transfer (Finn et al., 2017). Notably, the
dynamics of our iterative algorithm define a Stackelberg game (Von Stackelberg, 1934) between α’s
optimizer (leader) and w’s optimizer (follower), which typically requires the leader to anticipate the
follower’s next-step move in order to achieve an equilibrium. While we are not currently aware of
the convergence guarantees for our optimization algorithm, in practice it is able to converge with a
suitable choice of ξ1. We also note that when momentum is enabled for weight optimisation, the
one-step forward learning objective (5) is modified accordingly and all of our analysis still applies.

The architecture gradient is given by differentiating (5) w.r.t. α (we omit the step index k for brevity):

∇αLval(w′, α)− ξ∇2
α,wLtrain(w,α)∇w′Lval(w′, α) (6)

wherew′ = w−ξ∇wLtrain(w,α) denotes the weights for a one-step forward model. The gradient (6)
contains a matrix-vector product in its second term, which is expensive to compute. Fortunately, the
complexity can be substantially reduced using the finite difference approximation. Let ε be a small
scalar 2, w+ = w + ε∇w′Lval(w′, α) and w− = w − ε∇w′Lval(w′, α). Then:

∇2
α,wLtrain(w,α)∇w′Lval(w′, α) ≈ ∇αLtrain(w+, α)−∇αLtrain(w−, α)

2ε
(7)

Evaluating the finite difference requires only two forward passes for the weights and two backward
passes for α, and the complexity is reduced from O(|α||w|) to O(|α|+ |w|).

First-order Approximation: When ξ = 0, the second-order derivative in (6) will then disappear. In
this case, the architecture gradient is given by ∇αLval(w,α), corresponding to the simple heuristic
of optimizing the validation loss by assuming α and w are independent of each other. This leads to
some speed-up but empirically worse performance, according to our experimental results in Table 1
and Table 2. In the following, we refer to the case of ξ = 0 as the first-order approximation, and refer
to the gradient formulation with ξ > 0 as the second-order approximation.

2.4 Deriving Discrete Architectures

After obtaining the continuous architecture encoding α, the discrete architecture is derived by

1. Retaining k strongest predecessors for each intermediate node, where the strength of an
edge is defined as maxo∈O,o 6=zero

exp(α(i,j)
o )∑

o′∈O exp(α
(i,j)

o′ )
. To make our derived architecture

comparable with those in the existing works, we use k = 2 for convolutional cells (Zoph
et al., 2017; Real et al., 2018) and k = 1 for recurrent cells (Pham et al., 2018b).

2. Replacing every mixed operation as the most likely operation by taking the argmax.

1A simple working strategy is to set ξ equal to the learning rate for w’s optimizer.
2We found ε = 0.01/‖∇w′Lval(w

′, α)‖2 to be sufficiently accurate in all of our experiments.
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Figure 2: Learning dynamics of our iterative algorithm
when Lval(w,α) = αw − 2α+ 1 and Ltrain(w,α) =
w2 − 2αw + α2, starting from (α(0), w(0)) = (2,−2).
The analytical solution for the corresponding bilevel
optimization problem is (α∗, w∗) = (1, 1), which is
highlighted in the red circle. The dashed red line indi-
cates the feasible set where constraint (4) is satisfied
exactly (namely, weights in w are optimal for the given
architecture α). The example shows that a suitable
choice of ξ helps to converge to a better local optimum.

3 Experiments and Results

Our experiments on CIFAR-10 and PTB consist of two stages, architecture search (Sect. 3.1) and
architecture evaluation (Sect. 3.2). In the first stage, we search for the cell architectures using DARTS,
and determine the best cells based on their validation performance. In the second stage, we use these
cells to construct larger architectures, which we train from scratch and report their performance on
the test set. Finally, we investigate the transferability of the best cells learned on CIFAR-10 and PTB
by evaluating them on ImageNet and WikiText-2 (WT2) respectively (Sect. 3.4).

3.1 Architecture Search

3.1.1 Searching for Convolutional Cells on CIFAR-10

We include the following operations in O: 3× 3 and 5× 5 separable convolutions, 3× 3 and 5× 5
dilated separable convolutions, 3× 3 max pooling, 3× 3 average pooling, identity, and zero. All
operations are of stride one (if applicable) and the convolved feature maps are padded to preserve
their spatial resolution. We use the ReLU-Conv-BN order for convolutional operations, and each
separable convolution is always applied twice (Zoph et al., 2017; Real et al., 2018; Liu et al., 2017a).

Our convolutional cell consists of N = 7 nodes, among which the output node is defined as the
depthwise concatenation of all the intermediate nodes (input nodes excluded). The rest of the setup
follows Zoph et al. (2017); Liu et al. (2017a); Real et al. (2018), where a network is then formed by
stacking multiple cells together. The first and second nodes of cell k are set equal to the outputs of cell
k−2 and cell k−1, respectively, and 1×1 convolutions are inserted as necessary. Cells located at the
1/3 and 2/3 of the total depth of the network are reduction cells, in which all the operations adjacent
to the input nodes are of stride two. The architecture encoding therefore is (αnormal, αreduce), where
αnormal is shared by all the normal cells and αreduce is shared by all the reduction cells.

Since the architecture will be varying throughout the search process, we always use batch-specific
statistics for batch normalization rather than the global moving average. Learnable affine parameters
in all batch normalizations are disabled during the search process to avoid rescaling the outputs of the
candidate operations.

To carry out architecture search, we hold out half of the CIFAR-10 training data as the validation
set. A small network consisting of 8 cells is trained using DARTS for 50 epochs, with batch size 64
(for both the training and validation sets) and the initial number of channels 16. The numbers were
chosen to ensure the network can fit into a single GPU. We use momentum SGD to optimize the
weights w, with initial learning rate ηw = 0.025 (annealed down to zero following a cosine schedule),
momentum 0.9, and weight decay 3 × 10−4. We use Adam as the optimizer for the architecture
variables (the α’s in both the normal and reduction cells), with initial learning rate ηα = 3× 10−4,
momentum β = (0.5, 0.999) and weight decay 10−3. The search takes one day on a single GPU3.

3All of our experiments were performed using NVIDIA GTX 1080Ti GPUs.

5



0 10 20
GPU Hours

8

9

10

11

12

13

14

15

Be
st

 V
al

id
 E

rro
r S

o 
Fa

r (
%

)

CIFAR-10
DARTS (run 1)
DARTS (run 2)
DARTS (run 3)
DARTS (run 4)
AmoebaNet-A
NASNet-A

0 5 10 15 20 25
GPU Hours

8

9

10

11

12

13

14

15

Va
lid

 E
rro

r (
%

)

CIFAR-10
DARTS
AmoebaNet-A
NASNet-A

0 1 2 3 4
GPU Hours

63

64

65

66

67

68

69

70

71

Be
st

 V
al

id
 P

er
pl

ex
ity

 S
o 

Fa
r

Penn Treebank
DARTS (run 1)
DARTS (run 2)
DARTS (run 3)
DARTS (run 4)
ENAS

0 1 2 3 4
GPU Hours

63

64

65

66

67

68

69

70

71

Va
lid

 P
er

pl
ex

ity

Penn Treebank
DARTS
ENAS

Figure 3: Search progress of DARTS for convolutional cells on CIFAR-10 and recurrent cells on
Penn Treebank. We keep track of the most recent architectures over time. Each architecture snapshot
is re-trained from scratch using the training set (for 100 epochs on CIFAR-10 and for 300 epochs on
PTB) and then evaluated on the validation set. For each task, we repeat the experiments for 4 times
with different random seeds, and report the median and the best (per run) validation performance of
the architectures over time. As references, we also report the results (under the same evaluation setup;
with comparable number of parameters) of the best existing cells discovered using RL or evolution,
including NASNet-A (Zoph et al., 2017) (1800 GPU days), AmoebaNet-A (3150 GPU days) (Real
et al., 2018) and ENAS (0.5 GPU day) (Pham et al., 2018b).

3.1.2 Searching for Recurrent Cells on Penn Treebank

Our set of available operations includes the special zero operation, as well as linear transformations
followed by tanh, relu, sigmoid, and identity mapping, respectively. The choice of these candidate
operations follows Zoph and Le (2016); Pham et al. (2018b).

Our recurrent cell consists of N = 12 nodes. The very first intermediate node is obtained by linearly
transforming the two input nodes, adding up the results and then passing through a tanh activation
function, as done in the ENAS cell (Pham et al., 2018b). The rest of the cell is learned. Other settings
are similar to ENAS, where each operation is enhanced with a highway bypass (Zilly et al., 2016) and
the cell output is defined as the average of all the intermediate nodes. As in ENAS, we enable batch
normalization in each node to prevent gradient explosion during architecture search, and disable it
during architecture evaluation. Learnable affine parameters in batch normalization are disabled, as
we did for convolutional cells. Our recurrent network consists of only a single cell. Namely, we do
not assume any repetitive patterns within the architecture by vertically stacking the cells.

For architecture search, both the embedding and the hidden sizes are set to 300. The linear transforma-
tion parameters across all candidate operations on the same edge are shared (their shapes are all 300
× 300). This allows us to fit the continuous architecture within a single GPU. The network is then
trained for 50 epochs using SGD without momentum, with learning rate ηw = 20, batch size 256,
BPTT length 35, and weight decay 5× 10−7. We apply variational dropout (Gal and Ghahramani,
2016) of 0.2 to word embeddings, 0.75 to the cell input, and 0.25 to all the hidden nodes. A dropout
of 0.75 is also applied to the output layer. Other training settings are identical to those in Merity
et al. (2017); Yang et al. (2017). Similarly to the convolutional architectures, we use Adam for the
optimization of α, with initial learning rate ηα = 3× 10−3, momentum β = (0.9, 0.999) and weight
decay 10−3. The search takes 6 hours on a single GPU.

3.2 Architecture Evaluation

To select the architecture for evaluation, we run DARTS four times with different random seeds and
pick the best cell based on the validation performance. This is particularly important for recurrent
cells, as the optimization outcomes can be initialization-sensitive (Fig. 3).
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Figure 6: Recurrent cell learned on PTB.

To evaluate the selected architecture, we randomly initialize its weights (weights learned during the
search process are discarded), train it from scratch, and report its performance on the test set. We
note the test set is never used for architecture search or architecture selection.

3.2.1 CIFAR-10

A large network of 20 cells is trained for 600 epochs with batch size 96. Other hyperparameters
remain the same as the ones used for architecture search. Following existing works (Pham et al.,
2018b; Zoph et al., 2017; Liu et al., 2017a; Real et al., 2018), additional enhancements include cutout
(DeVries and Taylor, 2017), path dropout of probability 0.3 and auxiliary towers with weight 0.4.
The training takes 1.5 days on a single GPU with our implementation in PyTorch (Paszke et al., 2017).
Since the CIFAR results are subject to high variance even with exactly the same setup (Liu et al.,
2017b), we report the mean and standard deviation of 4 independent runs for our full model.

To avoid any discrepancy between different implementations or training settings (e.g. the batch sizes),
we incorporated the NASNet-A cell (Zoph et al., 2017) and the AmoebaNet-A cell (Real et al., 2018)
into our training framework and reported their results under the same settings as our cells.

3.2.2 Penn Treebank

A single-layer recurrent network with the discovered cell is trained for 1600 epochs with batch size
64 using averaged SGD (Polyak and Juditsky, 1992) (ASGD), with learning rate ηw = 20 and weight
decay 8× 10−7. To speedup, we start with SGD and trigger ASGD using the same protocol as in
Yang et al. (2017); Merity et al. (2017). Both the embedding and the hidden sizes are set to 850 to
ensure our model size is comparable with other baselines. Other hyperparameters, including dropouts,
remain exactly the same as those for architecture search. For fair comparison, we do not finetune our
model at the end of the optimization, nor do we use any additional enhancements such as dynamic
evaluation (Krause et al., 2017) or continuous cache (Grave et al., 2016). The training takes 1.5
days on a single 1080Ti GPU with our PyTorch implementation. To account for implementation
discrepancies, we also incorporated the ENAS cell (Pham et al., 2018b) into our codebase and trained
their network under the same setup as our discovered cells.

3.3 Results Analysis

The CIFAR-10 results for convolutional architectures are presented in Table 1. Notably, DARTS
achieved comparable results with the state of the art (Zoph et al., 2017; Real et al., 2018) while using
three orders of magnitude less computation resources (i.e. 1.5 or 4 GPU days vs 1800 GPU days for
NASNet and 3150 GPU days for AmoebaNet). Moreover, with slightly longer search time, DARTS
outperformed ENAS (Pham et al., 2018b) by discovering cells with comparable error rates but less
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Table 1: Comparison with state-of-the-art image classifiers on CIFAR-10. Results marked with †
were obtained by training the corresponding architectures using our setup.

Architecture Test Error Params Search Cost Search
(%) (M) (GPU days) Method

DenseNet-BC (Huang et al., 2017) 3.46 25.6 – manual

NASNet-A + cutout (Zoph et al., 2017) 2.65 3.3 1800 RL
NASNet-A + cutout (Zoph et al., 2017)† 2.83 3.1 3150 RL
AmoebaNet-A + cutout (Real et al., 2018) 3.34 ± 0.06 3.2 3150 evolution
AmoebaNet-A + cutout (Real et al., 2018)† 3.12 3.1 3150 evolution
AmoebaNet-B + cutout (Real et al., 2018) 2.55 ± 0.05 2.8 3150 evolution
Hierarchical Evo (Liu et al., 2017b) 3.75 ± 0.12 15.7 300 evolution
PNAS (Liu et al., 2017a) 3.41 ± 0.09 3.2 225 SMBO
ENAS + cutout (Pham et al., 2018b) 2.89 4.6 0.5 RL

Random + cutout 3.49 3.1 – –
DARTS (first order) + cutout 2.94 2.9 1.5 gradient-based
DARTS (second order) + cutout 2.83 ± 0.06 3.4 4 gradient-based

Table 2: Comparison with state-of-the-art language models on Penn Treebank. Results marked with †
were obtained by training the corresponding architectures using our setup.

Architecture Perplexity Params Search Cost Search
valid test (M) (GPU days) Method

Variational RHN (Zilly et al., 2016) 67.9 65.4 23 – manual
LSTM (Merity et al., 2017) 60.7 58.8 24 – manual
LSTM + skip connections (Melis et al., 2017) 60.9 58.3 24 – manual
LSTM + 5 softmax experts (Yang et al., 2017) – 57.4 – – manual
LSTM + 15 softmax experts (Yang et al., 2017) 58.1 56.0 22 – manual

NAS (Zoph and Le, 2016) – 64.0 25 1e4 CPU days RL
ENAS (Pham et al., 2018b)* 68.3 63.1 24 0.5 RL
ENAS (Pham et al., 2018b)† 60.8 58.6 24 0.5 RL

Random 64.1 61.5 23 – –
DARTS (first order) 62.7 60.5 23 0.5 gradient-based
DARTS (second order) 58.8 56.6 23 1 gradient-based
DARTS (second order) + 1e3 more training epochs 58.3 56.1 23 1 gradient-based

* The results were obtained using the code (Pham et al., 2018a) publicly released by the authors.

parameters. The longer search time is due to the fact that we have repeated the search process for
four times for cell selection. This practice is less important for convolutional cells however, because
the performance of discovered architectures does not strongly depend on initialization (Fig. 3).

Table 2 presents the results for recurrent architectures on PTB, where a cell discovered by DARTS
achieved the test perplexity of 56.1. This is competitive with the state-of-the-art model enhanced by a
mixture of softmaxes (Yang et al., 2017), and better than all the rest of the existing architectures that
are either manually or automatically discovered. To the best of our knowledge, this is the first time an
automatically searched architecture outperforms the extensively tuned LSTM (Melis et al., 2017),
demonstrating the importance of architecture search in addition to hyperparameter search. In terms
of efficiency, the overall cost (4 runs in total) is within 1 GPU day, which is comparable to ENAS and
significantly faster than NAS (Zoph and Le, 2016).

Finally, it is interesting to note that random architectures are competitive when used in both convolu-
tional and recurrent models, which reflects the importance of the search space design. Nevertheless,
DARTS is able to significantly improve upon random architectures in both cases (2.83 ± 0.06 vs 3.49
on CIFAR-10; 56.6 vs 61.5 on PTB).
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3.4 Transferability of Learned Architectures

3.4.1 ImageNet

We consider the mobile setting where the input image size is 224×224 and the number of multiply-add
operations in the model is restricted to be less than 600M. A network of 14 cells is trained for 250
epochs with batch size 128, weight decay 3× 10−5 and initial SGD learning rate 0.1 (decayed by a
factor of 0.97 after each epoch). Other hyperparameters follow Zoph et al. (2017); Real et al. (2018);
Liu et al. (2017a)4. The training takes 12 days on a single GPU.

Results in Table 3 show that the cell learned on CIFAR-10 is indeed transferable to ImageNet. It is
worth noticing that DARTS achieves competitive performance with the state-of-the-art RL method
(Zoph et al., 2017) while using three orders of magnitude less computation resources.

Table 3: Comparison with state-of-the-art image classifiers on ImageNet in the mobile setting.

Architecture Test Error (%) Params +× Search Cost Search
top-1 top-5 (M) (M) (GPU days) Method

Inception-v1 (Szegedy et al., 2015) 30.2 10.1 6.6 1448 – manual
MobileNet (Howard et al., 2017) 29.4 10.5 4.2 569 – manual
ShuffleNet 2× (v1) (Zhang et al., 2017) 29.1 10.2 ∼5 524 – manual
ShuffleNet 2× (v2) (Zhang et al., 2017) 26.3 – ∼5 524 – manual

NASNet-A (Zoph et al., 2017) 26.0 8.4 5.3 564 1800 RL
NASNet-B (Zoph et al., 2017) 27.2 8.7 5.3 488 1800 RL
NASNet-C (Zoph et al., 2017) 27.5 9.0 4.9 558 1800 RL
AmoebaNet-A (Real et al., 2018) 25.5 8.0 5.1 555 3150 evolution
AmoebaNet-B (Real et al., 2018) 26.0 8.5 5.3 555 3150 evolution
AmoebaNet-C (Real et al., 2018) 24.3 7.6 6.4 570 3150 evolution
PNAS (Liu et al., 2017a) 25.8 8.1 5.1 588 ∼225 SMBO

DARTS (searched on CIFAR-10) 26.9 9.0 4.9 595 4 gradient-based

3.4.2 WikiText-2

We use embedding and hidden sizes 700, weight decay 5×10−7, and hidden-node variational dropout
0.15. Other hyperparameters remain the same as in our PTB experiments.

Table 4 shows that the cell identified by DARTS transfers better than ENAS on WT2, though the
overall results are less strong than those presented in Table 2 for PTB. The weaker transferability
between PTB and WT2 (as compared to that between CIFAR-10 and ImageNet) could be explained by
the relatively small size of the source dataset (PTB) for architecture search. The issue of transferability
could potentially be circumvented by directly optimizing the architecture on the task of interest.

Table 4: Comparison with state-of-the-art language models on WT2. Results marked with † were
obtained by training the corresponding architectures using our setup.

Architecture Perplexity Params Search Cost Search
valid test (M) (GPU days) Method

LSTM + augmented loss (Inan et al., 2017) 91.5 87.0 28 – manual
LSTM + continuous cache pointer (Grave et al., 2016) – 68.9 – – manual
LSTM (Merity et al., 2017) 69.1 66.0 33 – manual
LSTM + skip connections (Melis et al., 2017) 69.1 65.9 24 – manual
LSTM + 15 softmax experts (Yang et al., 2017) 66.0 63.3 33 – manual

ENAS (Pham et al., 2018b)† (searched on PTB) 72.4 70.4 33 0.5 RL

DARTS (searched on PTB) 69.5 66.9 33 1 gradient-based

4We did not conduct extensive hyperparameter tuning due to limited computation resources.
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4 Conclusion

We presented DARTS, the first differentiable architecture search algorithm for both convolutional and
recurrent networks. By searching in a continuous space, DARTS is able to match or outperform the
state-of-the-art non-differentiable architecture search methods on image classification and language
modeling tasks with remarkable efficiency improvement by several orders of magnitude. In the future,
we would like to investigate direct architecture search on larger tasks (e.g. ImageNet) using DARTS.
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