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Abstract

Neural networks dominate the modern machine learning landscape, but their training and
success still suffer from sensitivity to empirical choices of hyperparameters such as model
architecture, loss function, and optimisation algorithm. In this work we present Population
Based Training (PBT), a simple asynchronous optimisation algorithm which effectively
utilises a fixed computational budget to jointly optimise a population of models and their
hyperparameters to maximise performance. Importantly, PBT discovers a schedule of hy-
perparameter settings rather than following the generally sub-optimal strategy of trying to
find a single fixed set to use for the whole course of training. With just a small mod-
ification to a typical distributed hyperparameter training framework, our method allows
robust and reliable training of models. We demonstrate the effectiveness of PBT on deep
reinforcement learning problems, showing faster wall-clock convergence and higher final
performance of agents by optimising over a suite of hyperparameters. In addition, we show
the same method can be applied to supervised learning for machine translation, where PBT
is used to maximise the BLEU score directly, and also to training of Generative Adversarial
Networks to maximise the Inception score of generated images. In all cases PBT results in
the automatic discovery of hyperparameter schedules and model selection which results in
stable training and better final performance.

1 Introduction

Neural networks have become the workhorse non-linear function approximator in a number of machine learn-
ing domains, most notably leading to significant advances in reinforcement learning (RL) and supervised
learning. However, it is often overlooked that the success of a particular neural network model depends upon
the joint tuning of the model structure, the data presented, and the details of how the model is optimised.
Each of these components of a learning framework is controlled by a number of parameters, hyperparam-
eters, which influence the learning process and must be properly tuned to fully unlock the network perfor-
mance. This essential tuning process is computationally expensive, and as neural network systems become
more complicated and endowed with even more hyperparameters, the burden of this search process becomes
increasingly heavy. Furthermore, there is yet another level of complexity in scenarios such as deep reinforce-
ment learning, where the learning problem itself can be highly non-stationary (e.g. dependent on which parts
of an environment an agent is currently able to explore). As a consequence, it might be the case that the ideal
hyperparameters for such learning problems are themselves highly non-stationary, and should vary in a way
that precludes setting their schedule in advance.

Two common tracks for the tuning of hyperparameters exist: parallel search and sequential optimisation,
which trade-off concurrently used computational resources with the time required to achieve optimal results.
Parallel search performs many parallel optimisation processes (by optimisation process we refer to neural
network training runs), each with different hyperparameters, with a view to finding a single best output from
one of the optimisation processes – examples of this are grid search and random search. Sequential opti-
misation performs few optimisation processes in parallel, but does so many times sequentially, to gradually
perform hyperparameter optimisation using information obtained from earlier training runs to inform later
ones – examples of this are hand tuning and Bayesian optimisation. Sequential optimisation will in general
provide the best solutions, but requires multiple sequential training runs, which is often unfeasible for lengthy
optimisation processes.
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In this work, we present a simple method, Population Based Training (PBT) which bridges and extends
parallel search methods and sequential optimisation methods. Advantageously, our proposal has a wall-
clock run time that is no greater than that of a single optimisation process, does not require sequential runs,
and is also able to use fewer computational resources than naive search methods such as random or grid
search. Our approach leverages information sharing across a population of concurrently running optimisation
processes, and allows for online propagation/transfer of parameters and hyperparameters between members of
the population based on their performance. Furthermore, unlike most other adaptation schemes, our method
is capable of performing online adaptation of hyperparameters – which can be particularly important in
problems with highly non-stationary learning dynamics, such as reinforcement learning settings. PBT is
decentralised and asynchronous, requiring minimal overhead and infrastructure. While inherently greedy,
we show that this meta-optimisation process results in effective and automatic tuning of hyperparameters,
allowing them to be adaptive throughout training. In addition, the model selection and propagation process
ensures that intermediate good models are given more computational resources, and are used as a basis of
further optimisation and hyperparameter search.

We apply PBT to a diverse set of problems and domains to demonstrate its effectiveness and wide appli-
cability. Firstly, we look at the problem of deep reinforcement learning, showing how PBT can be used
to optimise UNREAL (Jaderberg et al., 2016) on DeepMind Lab levels (Beattie et al., 2016), Feudal Net-
works (Vezhnevets et al., 2017) on Atari games (Bellemare et al., 2013), and simple A3C agents for StarCraft
II (Vinyals et al., 2017). In all three cases we show faster learning and higher performance across a suite
of tasks, with PBT allowing discovery of new state-of-the-art performance and behaviour, as well as the
potential to reduce the computational resources for training. Secondly, we look at its use in supervised learn-
ing for machine translation on WMT 2014 English-to-German with Transformer networks (Vaswani et al.,
2017), showing that PBT can match and even outperform heavily tuned hyperparameter schedules by opti-
mising for BLEU score directly. Finally, we apply PBT to the training of Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014) by optimising for the Inception score (Salimans et al., 2016) – the result is
stable GAN training with large performance improvements over a strong, well-tuned baseline with the same
architecture (Radford et al., 2016).

The improvements we show empirically are the result of (a) automatic selection of hyperparameters during
training, (b) online model selection to maximise the use of computation spent on promising models, and
(c) the ability for online adaptation of hyperparameters to enable non-stationary training regimes and the
discovery of complex hyperparameter schedules.

In Sect. 2 we review related work on parallel and sequential hyperparameter optimisation techniques, as
well as evolutionary optimisation methods which bear a resemblance to PBT. We introduce PBT in Sect. 3,
outlining the algorithm in a general manner which is used as a basis for experiments. The specific incarnations
of PBT and the results of experiments in different domains are given in Sect. 4, and finally we conclude in
Sect. 5.

2 Related Work

First, we review the methods for sequential optimisation and parallel search for hyperparameter optimisation
that go beyond grid search, random search, and hand tuning. Next, we note that PBT inherits many ideas
from genetic algorithms, and so highlight the literature in this space.

The majority of automatic hyperparameter tuning mechanisms are sequential optimisation methods: the result
of each training run with a particular set of hyperparameters is used as knowledge to inform the subsequent
hyperparameters searched. A lot of previous work uses a Bayesian optimisation framework to incorporate
this information by updating the posterior of a Bayesian model of successful hyperparameters for training
– examples include GP-UCB (Srinivas et al., 2009), TPE (Bergstra et al., 2011), Spearmint (Snoek et al.,
2012), and SMAC (Hutter et al., 2011). As noted in the previous section, their sequential nature makes these
methods prohibitively slow for expensive optimisation processes. For this reason, a number of methods look
to speed up the updating of the posterior with information from each optimisation process by performing
early stopping, using intermediate losses to predict final performance, and even modelling the entire time and
data dependent optimisation process in order to reduce the number of optimisation steps required for each
optimisation process and to better explore the space of promising hyperparameters (György & Kocsis, 2011;
Agarwal et al., 2011; Sabharwal et al., 2016; Swersky et al., 2013, 2014; Domhan et al., 2015; Klein et al.,
2016; Snoek et al., 2015; Springenberg et al., 2016).
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Figure 1: Common paradigms of tuning hyperparameters: sequential optimisation and parallel search, as compared to
the method of population based training introduced in this work. (a) Sequential optimisation requires multiple training
runs to be completed (potentially with early stopping), after which new hyperparameters are selected and the model
is retrained from scratch with the new hyperparameters. This is an inherently sequential process and leads to long
hyperparameter optimisation times, though uses minimal computational resources. (b) Parallel random/grid search of
hyperparameters trains multiple models in parallel with different weight initialisations and hyperparameters, with the
view that one of the models will be optimised the best. This only requires the time for one training run, but requires the use
of more computational resources to train many models in parallel. (c) Population based training starts like parallel search,
randomly sampling hyperparameters and weight initialisations. However, each training run asynchronously evaluates
its performance periodically. If a model in the population is under-performing, it will exploit the rest of the population
by replacing itself with a better performing model, and it will explore new hyperparameters by modifying the better
model’s hyperparameters, before training is continued. This process allows hyperparameters to be optimised online, and
the computational resources to be focused on the hyperparameter and weight space that has most chance of producing
good results. The result is a hyperparameter tuning method that while very simple, results in faster learning, lower
computational resources, and often better solutions.

Many of these Bayesian optimisation approaches can be further sped up by attempting to parallelise them –
training independent models in parallel to quicker update the Bayesian model (though potentially introducing
bias) (Shah & Ghahramani, 2015; González et al., 2016; Wu & Frazier, 2016; Rasley et al., 2017; Golovin
et al., 2017) – but these will still require multiple sequential model optimisations. The same problem is
also encountered where genetic algorithms are used in place of Bayesian optimisation for hyperparameter
evolution (Young et al., 2015).

Moving away from Bayesian optimisation, even approaches such as Hyperband (Li et al., 2016) which model
the problem of hyperparameter selection as a many-armed bandit, and natively incorporate parallelisation,
cannot practically be executed within a single training optimisation process due to the large amount of com-
putational resources they would initially require.

The method we present in this paper only requires a single training optimisation process – it builds upon
the unreasonable success of random hyperparameter search which has shown to be very effective (Bergstra
& Bengio, 2012). Random search is effective at finding good regions for sensitive hyperparameters – PBT
identifies these and ensures that these areas are explored more using partially trained models (e.g. by copying
their weights). By bootstrapping the evaluation of new hyperparameters during training on partially trained
models we eliminate the need for sequential optimisation processes that plagues the methods previously
discussed. PBT also allows for adaptive hyperparameters during training, which has been shown, especially
for learning rates, to improve optimisation (Loshchilov & Hutter, 2016; Smith, 2017; Massé & Ollivier,
2015).
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PBT is perhaps most analogous to evolutionary strategies that employ self-adaptive hyperparameter tuning
to modify how the genetic algorithm itself operates (Bäck, 1998; Spears, 1995; Gloger, 2004; Clune et al.,
2008) – in these works, the evolutionary hyperparameters were mutated at a slower rate than the parameters
themselves, similar to how hyperparameters in PBT are adjusted at a slower rate than the parameters. In
our case however, rather than evolving the parameters of the model, we train them partially with standard
optimisation techniques (e.g. gradient descent). Other similar works to ours are Lamarckian evolutionary
algorithms in which parameters are inherited whilst hyperparameters are evolved (Castillo et al., 2006) or
where the hyperparameters, initial weights, and architecture of networks are evolved, but the parameters are
learned (Castillo et al., 1999; Husken et al., 2000), or where evolution and learning are both applied to the
parameters (Ku & Mak, 1997; Houck et al., 1997; Igel et al., 2005). This mixture of learning and evolutionary-
like algorithms has also been explored successfully in other domains (Zhang et al., 2011) such as neural
architecture search (Real et al., 2017; Liu et al., 2017), feature selection (Xue et al., 2016), and parameter
learning (Fernando et al., 2016). Finally, there are parallels to work such as Salustowicz & Schmidhuber
(1997) which perform program search with genetic algorithms.

3 Population Based Training

The most common formulation in machine learning is to optimise the parameters θ of a model f to max-
imise a given objective function Q̂, (e.g. classification, reconstruction, or prediction). Generally, the trainable
parameters θ are updated using an optimisation procedure such as stochastic gradient descent. More impor-
tantly, the actual performance metric Q that we truly care to optimise is often different to Q̂, for example Q
could be accuracy on a validation set, or BLEU score as used in machine translation. The main purpose of
PBT is to provide a way to optimise both the parameters θ and the hyperparameters h jointly on the actual
metric Q that we care about.

To that end, firstly we define a function eval that evaluates the objective function, Q, using the current state
of model f . For simplicity we ignore all terms except θ, and define eval as function of trainable parameters
θ only. The process of finding the optimal set of parameters that maximise Q is then:

θ∗ = argmax
θ∈Θ

eval(θ). (1)

Note that in the methods we are proposing, the eval function does not need to be differentiable, nor does it
need to be the same as the function used to compute the iterative updates in the optimisation steps which we
outline below (although they ought to be correlated).

When our model is a neural network, we generally optimise the weights θ in an iterative manner, e.g. by using
stochastic gradient descent on the objective function Q. Each step of this iterative optimisation procedure,
step, updates the parameters of the model, and is itself conditioned on some parameters h ∈ H (often
referred to as hyperparameters).

In more detail, iterations of parameter update steps:
θ ← step(θ|h) (2)

are chained to form a sequence of updates that ideally converges to the optimal solution

θ∗ = optimise(θ|h) = optimise(θ|(ht)Tt=1) = step(step(. . . step(θ|h1) . . . |hT−1)|hT ). (3)
This iterative optimisation process can be computationally expensive, due to the number of steps T required
to find θ∗ as well as the computational cost of each individual step, often resulting in the optimisation of θ
taking days, weeks, or even months. In addition, the solution is typically very sensitive to the choice of the
sequence of hyperparemeters h = (ht)

T
t=1. Incorrectly chosen hyperparameters can lead to bad solutions or

even a failure of the optimisation of θ to converge. Correctly selecting hyperparameters requires strong prior
knowledge on h to exist or to be found (most often through multiple optimisation processes with different h).
Furthermore, due to the dependence of h on iteration step, the number of possible values grows exponentially
with time. Consequently, it is common practise to either make all ht equal to each other (e.g. constant learning
rate through entire training, or constant regularisation strength) or to predefine a simple schedule (e.g. learning
rate annealing). In both cases one needs to search over multiple possible values of h

θ∗ = optimise(θ|h∗), h∗ = argmax
h∈HT

eval(optimise(θ|h)). (4)

As a way to perform (4) in a fast and computationally efficient manner, we consider training N models
{θi}Ni=1 forming a population P which are optimised with different hyperparameters {hi}Ni=1. The objective
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Algorithm 1 Population Based Training (PBT)
1: procedure TRAIN(P) . initial population P
2: for (θ, h, p, t) ∈ P (asynchronously in parallel) do
3: while not end of training do
4: θ ← step(θ|h) . one step of optimisation using hyperparameters h
5: p← eval(θ) . current model evaluation
6: if ready(p, t,P) then
7: h′, θ′ ← exploit(h, θ, p,P) . use the rest of population to find better solution
8: if θ 6= θ′ then
9: h, θ ← explore(h′, θ′,P) . produce new hyperparameters h

10: p← eval(θ) . new model evaluation
11: end if
12: end if
13: update P with new (θ, h, p, t+ 1) . update population
14: end while
15: end for
16: return θ with the highest p in P
17: end procedure

is to therefore find the optimal model across the entire population. However, rather than taking the approach
of parallel search, we propose to use the collection of partial solutions in the population to additionally
perform meta-optimisation, where the hyperparameters h and weights θ are additionally adapted according
to the performance of the entire population.

In order to achieve this, PBT uses two methods called independently on each member of the population
(each worker): exploit, which, given performance of the whole population, can decide whether the worker
should abandon the current solution and instead focus on a more promising one; and explore, which given
the current solution and hyperparameters proposes new ones to better explore the solution space.

Each member of the population is trained in parallel, with iterative calls to step to update the member’s
weights and eval to measure the member’s current performance. However, when a member of the population
is deemed ready (for example, by having been optimised for a minimum number of steps or having reached
a certain performance threshold), its weights and hyperparameters are updated by exploit and explore.
For example, exploit could replace the current weights with the weights that have the highest recorded
performance in the rest of the population, and explore could randomly perturb the hyperparameters with
noise. After exploit and explore, iterative training continues using step as before. This cycle of local
iterative training (with step) and exploitation and exploration using the rest of the population (with exploit
and explore) is repeated until convergence of the model. Algorithm 1 describes this approach in more detail,
Fig. 1 schematically illustrates this process (and contrasts it with sequential optimisation and parallel search),
and Fig. 2 shows a toy example illustrating the efficacy of PBT.

The specific form of exploit and explore depends on the application. In this work we focus on opti-
mising neural networks for reinforcement learning, supervised learning, and generative modelling with PBT
(Sect. 4). In these cases, step is a step of gradient descent (with e.g. SGD or RMSProp (Tieleman &
Hinton, 2012)), eval is the mean episodic return or validation set performance of the metric we aim to op-
timise, exploit selects another member of the population to copy the weights and hyperparameters from,
and explore creates new hyperparameters for the next steps of gradient-based learning by either perturbing
the copied hyperparameters or resampling hyperparameters from the originally defined prior distribution. A
member of the population is deemed ready to exploit and explore when it has been trained with gradient
descent for a number of steps since the last change to the hyperparameters, such that the number of steps is
large enough to allow significant gradient-based learning to have occurred.

By combining multiple steps of gradient descent followed by weight copying by exploit, and perturbation of
hyperparameters by explore, we obtain learning algorithms which benefit from not only local optimisation
by gradient descent, but also periodic model selection, and hyperparameter refinement from a process that
is more similar to genetic algorithms, creating a two-timescale learning system. An important property of
population based training is that it is asynchronous and does not require a centralised process to orchestrate
the training of the members of the population. Only the current performance information, weights, and
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Figure 2: A visualisation of PBT on a toy example where our objective is to maximise a simple quadratic function
Q(θ) = 1.2 − (θ20 + θ21), but without knowing its formula. Instead, we are given a surrogate function Q̂(θ|h) =
1.2− (h0θ

2
0 +h1θ

2
1) that we can differentiate. This is a very simple example of the setting where one wants to maximise

one metric (e.g. generalisation capabilities of a model) while only being able to directly optimise other one (e.g. empirical
loss). We can, however, read out the values of Q for evaluation purposes. We can treat h as hyperparameters, which
can change during optimisation, and use gradient descent to minimise Q(θ|h). For simplicity, we assume there are
only two workers (so we can only run two full maximisations), and that we are given initial θ0 = [0.9, 0.9]. With
grid/random search style approaches we can only test two values of h, thus we choose [1, 0] (black), and [0, 1] (red).
Note, that if we would choose [1, 1] we would recover true objective, but we are assuming that we do not know that
in this experiment, and in general there is no h such that Q̂(θ|h) = Q(θ). As one can see, we increase Q in each
step of maximising Q(·|h), but end up far from the actual optimum (Q(θ) ≈ 0.4), due to very limited exploration of
hyperparameters h. If we apply PBT to the same problem where every 4 iterations the weaker of the two workers copies
the solution of the better one (exploitation) and then slightly perturbs its update direction (exploration), we converge to
a global optimum. Two ablation results show what happens if we only use exploration or only exploitation. We see that
majority of the performance boost comes from copying solutions between workers (exploitation), and exploration only
provides additional small improvement. Similar results are obtained in the experiments on real problems, presented in
Sect. 4.4. Left: The learning over time, each dot represents a single solution and its size decreases with iteration. Right:
The objective function value of each worker over time.

hyperparameters must be globally available for each population member to access – crucially there is no
synchronisation of the population required.

4 Experiments

In this section we will apply Population Based Training to different learning problems. We describe the spe-
cific form of PBT for deep reinforcement learning in Sect. 4.1 when applied to optimising UNREAL (Jader-
berg et al., 2016) on DeepMind Lab 3D environment tasks (Beattie et al., 2016), Feudal Networks (Vezhnevets
et al., 2017) on the Atari Learning Environment games (Bellemare et al., 2013), and the StarCraft II environ-
ment baseline agents (Vinyals et al., 2017). In Sect. 4.2 we apply PBT to optimising state-of-the-art language
models, transformer networks (Vaswani et al., 2017), for machine translation task. Next, in Sect. 4.3 we
apply PBT to the optimisation of Generative Adversarial Networks (Goodfellow et al., 2014), a notoriously
unstable optimisation problem. In all these domains we aim to build upon the strongest baselines, and show
improvements in training these state-of-the-art models by using PBT. Finally, we analyse the design space of
Population Based Training with respect to this rich set of experimental results to draw practical guidelines
for further use in Sect. 4.4.

4.1 Deep Reinforcement Learning

In this section we apply Population Based Training to the training of neural network agents with reinforce-
ment learning (RL) where we aim to find a policy π to maximise expected episodic return Eπ[R] within an
environment. We first focus on A3C-style methods Mnih et al. (2016) to perform this maximisation, along
with some state-of-the-art extensions: UNREAL (Jaderberg et al., 2016) and Feudal Networks (FuN) (Vezh-
nevets et al., 2017).
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Figure 3: The results of using PBT over random search on different domains. DM Lab: We show results for training
UNREAL with and without PBT, using a population of 40 workers, on 15 DeepMind Lab levels, and report the final
human-normalised performance of the best agent in the population averaged over all levels. Atari: We show results for
Feudal Networks with and without PBT, using a population of 80 workers on each of four games: Amidar, Gravitar, Ms-
Pacman, and Enduro, and report the final human-normalised performance of the best agent in the population averaged
over all games. StarCraft II: We show the results for training A3C with and without PBT, using a population of 30
workers, on a suite of 6 mini-game levels, and report the final human-normalised performance of the best agent in the
population averaged over all levels. Machine Translation: We show results of training Transformer networks for machine
translation on WMT 2014 English-to-German. We use a population of 32 workers with and without PBT, optimising the
population to maximise BLEU score. GAN: We show results for training GANs with and without PBT using a population
size of 45, optimising for Inception score. Full results on all levels can be found in Sect. A.2.

These algorithms are sensitive to hyperparameters, which include learning rate, entropy cost, and auxiliary
loss weights, as well as being sensitive to the reinforcement learning optimisation process which can suffer
from local minima or collapse due to the insufficient or unlucky policy exploration. PBT therefore aims to
stabilise this process.

4.1.1 PBT for RL

We use population sizes between 10 and 80, where each member of the population is itself a distributed
asynchronous actor critic (A3C) style agent (Mnih et al., 2016).

Hyperparameters We allow PBT to optimise the learning rate, entropy cost, and unroll length for UN-
REAL on DeepMind Lab, learning rate, entropy cost, and intrinsic reward cost for FuN on Atari, and learning
rate only for A3C on StarCraft II.

Step Each iteration does a step of gradient descent with RMSProp (Tieleman & Hinton, 2012) on the model
weights, with the gradient update provided by vanilla A3C, UNREAL or FuN.

Eval We evaluate the current model with the last 10 episodic rewards during training.

Ready A member of the population is deemed ready to go through the exploit-and-explore process using
the rest of the population when between 1× 106 to 10× 106 agent steps have elapsed since the last time that
population member was ready.

Exploit We consider two exploitation strategies. (a) T-test selection where we uniformly sample another
agent in the population, and compare the last 10 episodic rewards using Welch’s t-test (Welch, 1947). If the
sampled agent has a higher mean episodic reward and satisfies the t-test, the weights and hyperparameters
are copied to replace the current agent. (b) Truncation selection where we rank all agents in the population
by episodic reward. If the current agent is in the bottom 20% of the population, we sample another agent
uniformly from the top 20% of the population, and copy its weights and hyperparameters.

Explore We consider two exploration strategies in hyperparameter space. (a) Perturb, where each hy-
perparameter independently is randomly perturbed by a factor of 1.2 or 0.8. (b) Resample, where each
hyperparameter is resampled from the original prior distribution defined with some probability.
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Figure 4: Training curves of populations trained with PBT (blue) and without PBT (black) for individual levels on
DeepMind Lab (DM Lab), Atari, and Starcraft II (SC2), as well as GAN training on CIFAR-10 (CIFAR-10 Inception
score is plotted as this is what is optimised for by PBT). Faint lines represent each individual worker, while thick lines are
an average of the top five members of the population at each timestep. The hyperparameter populations are displayed to
the right, and show how the populations’ hyperparameters adapt throughout training, including the automatic discovery
of learning rate decay and, for example, the discovery of the benefits of large unroll lengths on DM Lab.

4.1.2 Results

The high level results are summarised in Fig. 3. On all three domains – DeepMind Lab, Atari, and StarCraft II
– PBT increases the final performance of the agents when trained for the same number of steps, compared to
the very strong baseline of performing random search with the same number of workers.

On DeepMind Lab, when UNREAL is trained using a population of 40 workers, using PBT increases the fi-
nal performance of UNREAL from 93% to 106% human performance, when performance is averaged across
all levels. This represents a significant improvement over an already extremely strong baseline, with some
levels such as nav maze random goal 01 and lt horse shoe color showing large gains in performance due
to PBT, as shown in Fig. 4. PBT seems to help in two main ways: first is that the hyperparameters are
clearly being focused on the best part of the sampling range, and adapted over time. For example, on
lt horse shoe color in Fig. 4 one can see the learning rate being annealed by PBT as training progresses,
and on nav maze random goal 01 in Fig. 4 one can see the unroll length – the number of steps the agent (a
recurrent neural network) is unrolled before performing N-step policy gradient and backpropagation through
time – is gradually increased. This allows the agent to learn to utilise the recurrent neural network for mem-
ory, allowing it to obtain superhuman performance on nav maze random goal 01 which is a level which
requires memorising the location of a goal in a maze, more details can be found in (Jaderberg et al., 2016).
Secondly, since PBT is copying the weights of good performing agents during the exploitation phase, agents
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Figure 5: A highlight of results of various ablation studies on the design space of PBT, reported as improvement over
the equivalent random search baseline. (a) Population size: We evaluate the effect of population size on the performance
of PBT when training FuN on Atari. In general we find that a smaller population sizes leads to higher variance and sub-
optimal results, however using a population of 20 and over achieves consistent improvements, with diminishing returns
for larger populations. (b) Exploiter: We compare the effect of using different exploit functions – binary tournament
and truncation selection. When training GANs, we find truncation selection to work better. (c) PBT over: We show the
effect of removing parts of PBT when training UNREAL on DeepMind Lab, in particular only performing PBT on hy-
perparameters (so model weights are not copied between workers during exploit), and only performing PBT on model
weights (so hyperparameters are not copied between workers or explored). We find that indeed it is the combination of
optimising hyperparameters as well as model selection which leads to best performance. (d) Hyperparameters: Since
PBT allows online adaptation of hyperparameters during training, we evaluate how important the adaptation is by com-
paring full PBT performance compared to using the set of hyperparameters that PBT found by the end of training. When
training UNREAL on DeepMind Lab we find that the strength of PBT is in allowing the hyperparameters to be adaptive,
not merely in finding a good prior on the space of hyperparameters.

which are lucky in environment exploration are quickly propagated to more workers, meaning that all mem-
bers of the population benefit from the exploration luck of the remainder of the population.

When we apply PBT to training FuN on 4 Atari levels, we similarly see a boost in final performance, with
PBT increasing the average human normalised performance from 147% to 181%. On particular levels, such
as ms pacman PBT increases performance significantly from 6506 to 9001 (Fig. 4), which represents state-
of-the-art for an agent receiving only pixels as input.

Finally on StarCraft II, we similarly see PBT improving A3C baselines from 36% huamn performance to 39%
human performance when averaged over 6 levels, benefiting from automatic online learning rate adaptation
and model selection such as shown in Fig. 4.

More detailed experimental results, and details about the specific experimental protocols can be found in
Appendix A.2.

4.2 Machine Translation

As an example of applying PBT on a supervised learning problem, we look at training neural machine trans-
lation models. In this scenario, the task is to encode a source sequence of words in one language, and output
a sequence in a different target language. We focus on English to German translation on the WMT 2014
English-to-German dataset, and use a state-of-the-art model, Transformer networks (Vaswani et al., 2017), as
the baseline model to apply PBT to. Crucially, we also use the highly optimised learning rate schedules and
hyperparameter values for our baselines to compare to – these are the result of a huge amount of hand tuning
and Bayesian optimisation.

4.2.1 PBT for Machine Translation

We use a population size of 32 workers, where each member of the population is a single GPU optimising a
Transformer network for 400× 103 steps.

Hyperparameters We allow PBT to optimise the learning rate, attention dropout, layer dropout, and ReLU
dropout rates.
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Figure 6: Model development analysis for GAN (left) and Atari (right) experiments – full phylogenetic tree of entire
training. Pink dots represent initial agents, blue ones the final ones. Branching of the graph means that the exploit
operation has been executed (and so parameters were copied), while paths represent consecutive updates using the step
function. Colour of the edges encode performance, from black (weak model) to cyan (strong model).

Step Each step does a step of gradient descent with Adam (Kingma & Ba, 2015).

Eval We evaluate the current model by computing the BLEU score on the WMT newstest2012 dataset. This
allows us to optimise our population for BLEU score, which usually cannot be optimised for directly.

Ready A member of the population is deemed ready to exploit and explore using the rest of the population
every 2× 103 steps.

Exploit We use the t-test selection exploitation method described in Sect. 4.1.1.

Explore We explore hyperparameter space by the perturb strategy described in Sect. 4.1.1 with 1.2 and 0.8
perturbation factors.

4.2.2 Results

When we apply PBT to the training of Transformer networks, we find that PBT actually results in models
which exceed the performance of this highly tuned baseline model: BLEU score on the validation set (new-
stest2012) is improved from 23.71 to 24.23, and on the test set of WMT 2014 English-to-German is improved
from 22.30 to 22.65 using PBT (here we report results using the small Transformer network using a reduced
batch size, so is not representative of state of the art). PBT is able to automatically discover adaptations of
various dropout rates throughout training, and a learning rate schedule that remarkably resembles that of the
hand tuned baseline: very initially the learning rate starts small before jumping by three orders of magnitude,
followed by something resembling an exponential decay, as shown in the lineage plot of Fig. 7. We can also
see from Fig. 4 that the PBT model trains much faster.

4.3 Generative Adversarial Networks

The Generative Adversarial Networks (GAN) (Goodfellow et al., 2014) framework learns generative models
via a training paradigm consisting of two competing modules – a generator and a discriminator (alternatively
called a critic). The discriminator takes as input samples from the generator and the real data distribution,
and is trained to predict whether inputs are real or generated. The generator typically maps samples from a
simple noise distribution to a complex data distribution (e.g. images) with the objective of maximally fooling
the discriminator into classifying or scoring its samples as real.

Like RL agent training, GAN training can be remarkably brittle and unstable in the face of suboptimal hyper-
parameter selection and even unlucky random initialisation, with generators often collapsing to a single mode
or diverging entirely. Exacerbating these difficulties, the presence of two modules optimising competing ob-
jectives doubles the number of hyperparameters, often forcing researchers to choose the same hyperparameter
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Figure 7: Agent development analysis for GAN (top) and machine translation (bottom) experiments – lineages of
hyperparameters changes for the final agents after given amount of training. Black lines show the annealing schedule
used by the best baseline run.

values for both modules. Given the complex learning dynamics of GANs, this unnecessary coupling of hy-
perparameters between the two modules is unlikely to be the best choice.

Finally, the various metrics used by the community to evaluate the quality of samples produced by GAN
generators are necessarily distinct from those used for the adversarial optimisation itself. We explore whether
we can improve the performance of generators under these metrics by directly targeting them as the PBT
meta-optimisation evaluation criteria.

4.3.1 PBT for GANs

We train a population of size 45 with each worker being trained for 106 steps.

Hyperparameters We allow PBT to optimise the discriminator’s learning rate and the generator’s learning
rate separately.

Step Each step consists ofK = 5 gradient descent updates of the discriminator followed by a single update
of the generator using the Adam optimiser (Kingma & Ba, 2015). We train using the WGAN-GP (Gulrajani
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et al., 2017) objective where the discriminator estimates the Wasserstein distance between the real and gener-
ated data distributions, with the Lipschitz constraint enforced by regularising its input gradient to have a unit
norm. See Appendix A.3 for additional details.

Eval We evaluate the current model by a variant of the Inception score proposed by Salimans et al. (2016)
computed from the outputs of a pretrained CIFAR classifier (as used in Rosca et al. (2017)) rather than an
ImageNet classifier, to avoid directly optimising the final performance metric. The CIFAR Inception scorer
uses a much smaller network, making evaluation much faster.

Ready A member of the population is deemed ready to exploit and explore using the rest of the population
every 5× 103 steps.

Exploit We consider two exploitation strategies. (a) Truncation selection as described in Sect. 4.1.1. (b)
Binary tournament in which each member of the population randomly selects another member of the popula-
tion, and copies its parameters if the other member’s score is better. Whenever one member of the population
is copied to another, all parameters – the hyperparameters, weights of the generator, and weights of the
discriminator – are copied.

Explore We explore hyperparameter space by the perturb strategy described in Sect. 4.1.1, but with more
aggressive perturbation factors of 2.0 or 0.5.

4.3.2 Results

We apply PBT to optimise the learning rates for a CIFAR-trained GAN discriminator and generator using
architectures similar to those used DCGAN (Radford et al., 2016). For both PBT and the baseline, the popu-
lation size is 45, with learning rates initialised to {1, 2, 5}× 10−4 for a total of 32 = 9 initial hyperparameter
settings, each replicated 5 times with independent random weight initialisations. Additional architectural
and hyperparameter details can be found in Appendix A.3. The baseline utilises an exponential learning rate
decay schedule, which we found to work the best among a number of hand-designed annealing strategies,
detailed in Appendix A.3.

In Fig. 5 (b), we compare the truncation selection exploration strategy with a simpler variant, binary tour-
nament. We find a slight advantage for truncation selection, and our remaining discussion focuses on results
obtained by this strategy. Fig. 4 (bottom left) plots the CIFAR Inception scores and shows how the learning
rates of the population change throughout the first half of training (both the learning curves and hyperparam-
eters saturate and remain roughly constant in the latter half of training). We observe that PBT automatically
learns to decay learning rates, though it does so dynamically, with irregular flattening and steepening, re-
sulting in a learnt schedule that would not be matched by any typical exponential or linear decay protocol.
Interestingly, the learned annealing schedule for the discriminator’s learning rate closely tracks that of the
best performing baseline (shown in grey), while the generator’s schedule deviates from the baseline schedule
substantially.

In Table 4 (Appendix A.3), we report standard ImageNet Inception scores as our main performance measure,
but use CIFAR Inception score for model selection, as optimising ImageNet Inception score directly would
potentially overfit our models to the test metric. CIFAR Inception score is used to select the best model
after training is finished both for the baseline and for PBT. Our best-performing baseline achieves a CIFAR
Inception score of 6.39, corresponding to an ImageNet Inception score of 6.45, similar to or better than
Inception scores for DCGAN-like architectures reported in prior work (Rosca et al., 2017; Gulrajani et al.,
2017; Yang et al., 2017). Using PBT, we strongly outperform this baseline, achieving a CIFAR Inception
score of 6.80 and corresponding ImageNet Inception score of 6.89. For reference, Table 4 (Appendix A.3)
also reports the peak ImageNet Inception scores obtained by any population member at any point during
training. Fig. 8 shows samples from the best generators with and without PBT.

4.4 Analysis

In this section we analyse and discuss the effects of some of the design choices in setting up PBT, as well as
probing some aspects of why the method is so successful.

Population Size In Fig. 5 (a) we demonstrate the effect of population size on the performance of PBT
when training FuN on Atari. In general, we find that if the population size is too small (10 or below) we tend
to encounter higher variance and can suffer from poorer results – this is to be expected as PBT is a greedy
algorithm and so can get stuck in local optima if there is not sufficient population to maintain diversity and
scope for exploration. However, these problems rapidly disappear as population size increases and we see
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improved results as the population size grows. In our experiments, we observe that a population size of
between 20 and 40 is sufficient to see strong and consistent improvements; larger populations tend to fare
even better, although we see diminishing returns for the cost of additional population members.

Exploitation Type In Fig. 5 (b) we compare the effect of using different exploit functions – binary
tournament and truncation selection. For GAN training, we find truncation selection to work better. Similar
behaviour was seen in our preliminary experiments with FuN on Atari as well. Further work is required to
fully understand the impact of different exploit mechanisms, however it appears that truncation selection is
a robustly useful choice.

PBT Targets In Fig. 5 (c) we show the effect of only applying PBT to subsets of parameters when training
UNREAL on DM Lab. In particular, we contrast (i) only performing exploit-and-explore on hyperparameters
(so model weights are not copied between workers during exploit); and (ii) only performing exploit-and-
explore on model weights (so hyperparameters are not copied between workers or explored). Whilst there is
some increase in performance simply from the selection and propagation of good model weights, our results
clearly demonstrate that in this setting it is indeed the combination of optimising hyperparameters as well as
model selection that lead to our best performance.

Hyperparameter Adaptivity In Fig. 5 (d) we provide another demonstration that the benefits of PBT go
beyond simply finding a single good fixed hyperparameter combination. Since PBT allows online adaptation
of hyperparameters during training, we evaluate how important the adaptation is by comparing full PBT
performance compared to using the set of hyperparameters that PBT found by the end of training. When
training UNREAL on DeepMind Lab we find that the strength of PBT is in allowing the hyperparameters to
be adaptive, not merely in finding a good prior on the space of hyperparameters

Lineages Fig. 7 shows hyperparameter sequences for the final agents in the population for GAN and Ma-
chine Translation (MT) experiments. We have chosen these two examples as the community has developed
very specific learning rate schedules for these models. In the GAN case, the typical schedule involves lin-
early annealed learning rates of both generator and discriminator in a synchronised way. As one can see, PBT
discovered a similar scheme, however the discriminator annealing is much more severe, while the generator
schedule is slightly less aggressive than the typical one.

As mentioned previously, the highly non-standard learning rate schedule used for machine translation has
been to some extent replicated by PBT – but again it seems to be more aggressive than the hand crafted
version. Quite interestingly, the dropout regime is also non-monotonic, and follows an even more complex
path – it first increases by almost an order of magnitude, then drops back to the initial value, to slowly crawl
back to an order of magnitude bigger value. These kind of schedules seem easy to discover by PBT, while at
the same time are beyond the space of hyperparameter schedules considered by human experts.

Phylogenetic trees Figure 6 shows a phylogenetic forest for the population in the GAN and Atari experi-
ments. A property made noticeable by such plots is that all final agents are descendants of the same, single
initial agent. This is on one hand a consequence of the greedy nature of specific instance of PBT used, as
exploit only uses a single other agent from the population. In such scenario, the number of original agents
can only decrease over time, and so should finally converge to the situation observed. On the other hand one
can notice that in both cases there are quite rich sub-populations which survived for a long time, showing that
the PBT process considered multiple promising solutions before finally converging on a single winner – an
exploratory capability most typical optimisers lack.

One can also note the following interesting qualitative differences between the two plots: in the GAN exam-
ple, almost all members of the population enjoy an improvement in score relative to their parent; however,
in the Atari experiment we note that even quite late in learning there can be exploration steps that result in a
sharp drop in cumulative episode reward relative to the parent. This is perhaps indicative of some instability
of neural network based RL on complex problems – an instability that PBT is well positioned to correct.

5 Conclusions

We have presented Population Based Training, which represents a practical way to augment the standard
training of neural network models. We have shown consistent improvements in accuracy, training time and
stability across a wide range of domains by being able to optimise over weights and hyperparameters jointly.
It is important to note that contrary to conventional hyperparameter optimisation techniques, PBT discovers
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an adaptive schedule rather than a fixed set of hyperparameters. We already observed significant improve-
ments on a wide range of challenging problems including state of the art models on deep reinforcement
learning and hierarchical reinforcement learning, machine translation, and GANs. While there are many im-
provements and extensions to be explored going forward, we believe that the ability of PBT to enhance the
optimisation process of new, unfamiliar models, to adapt to non-stationary learning problems, and to incor-
porate the optimisation of indirect performance metrics and auxiliary tasks, results in a powerful platform to
propel future research.
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A Population Based Training of Neural Networks Appendix

A.1 Practical implementations

In this section, we describe at a high level how one might concretely implement PBT on a commodity train-
ing platform. Relative to a standard setup in which multiple hyperparameter configurations are searched in
parallel (e.g. grid/random search), a practitioner need only add the ability for population members to read and
write to a shared data-store (e.g. a key-value store, or a simple file-system). Augmented with such a setup,
there are two main types of interaction required:

(1) Members of the population interact with this data-store to update their current performance and can also
use it to query the recent performance of other population members.

(2) Population members periodically checkpoint themselves, and when they do so they write their perfor-
mance to the shared data-store. In the exploit-and-explore process, another member of the population may
elect to restore its weights from the checkpoint of another population member (i.e. exploiting), and would
then modify the restored hyperparameters (i.e. exploring) before continuing to train.

As a final comment, although we present and recommend PBT as an asynchronous parallel algorithm, it could
also be executed semi-serially or with partial synchrony. Although it would obviously result in longer training
times than running fully asynchronously in parallel, one would still gain the performance-per-total-compute
benefits of PBT relative to random-search. This execution mode may be attractive to researchers who wish to
take advantage of commodity compute platforms at cheaper, but less reliable, preemptible/spot tiers. As an
example of an approach with partial synchrony, one could imagine the following procedure: each member of
the population is advanced in parallel (but without synchrony) for a fixed number of steps; once all (or some
large fraction) of the population has advanced, one would call the exploit-and-explore procedure; and then
repeat. This partial locking would be forgiving of different population members running at widely varying
speeds due to preemption events, etc.

A.2 Detailed Results: RL

FuN - Atari

Table 1 shows the breakdown of results per game for FuN on the Atari domain, with and without PBT for
different population sizes. The initial hyperparameter ranges for the population in both the FuN and PBT-
FuN settings were the same as those used for the corresponding games in the original Feudal Networks
paper (Vezhnevets et al., 2017), with the exception of intrinsic-reward cost (which was sampled in the range
[0.25, 1] , rather than [0, 1] – since we have found that very low intrinsic reward cost weights are rarely
effective). We used fixed discounts of 0.95 in the worker and 0.99 in the manager since, for the games
selected, these were shown in the original FuN paper to give good performance. The subset of games were
themselves chosen as ones for which the hierarchical abstractions provided by FuN give particularly strong
performance improvements over a flat A3C agent baseline. In these experiments, we used Truncation as the
exploitation mechanism, and Perturb as the exploration mechanism. Training was performed for 2.5 × 108

agent-environmnent interactions, corresponding to 1×109 total environment steps (due to use of action-repeat
of 4). Each experiment condition was repeated 3 times, and the numbers in the table reflect the mean-across-
replicas of the single best performing population member at the end of the training run.

Game Pop = 10 Pop = 20 Pop = 40 Pop = 80

FuN PBT-FuN FuN PBT-FuN FuN PBT-FuN FuN PBT-FuN
amidar 1742 ±174 1511 ±400 1645 ±158 2454 ±160 1947 ±80 2752 ±81 2055 ±113 3018 ±269
gravitar 3970 ±145 4110 ±225 3884 ±362 4202 ±113 4018 ±180 4481 ±540 4279 ±161 5386 ±306
ms-pacman 5635 ±656 5509 ±589 5280 ±349 5714 ±347 6177 ±402 8124 ±392 6506 ±354 9001 ±711
enduro 1838 ±37 1958 ±81 1881 ±63 2213 ±6 2079 ±9 2228 ±77 2166 ±34 2292 ±16

Table 1: Per game results for Feudal Networks (FuN) with and without PBT for different population sizes (Pop).

UNREAL - DM Lab

Table 2 shows the breakdown on results per level for UNREAL and PBT-UNREAL on the DM Lab domain.
The following three hyperparameters were randomly sampled for both methods and subsequently perturbed
in the case of PBT-UNREAL: the learning rate was sampled in the log-uniform range [0.00001, 0.005],
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the entropy cost was sampled in the log-uniform range [0.0005, 0.01], and the unroll length was sampled
uniformly between 5 and 50 steps. Other experimental details were replicated from Jaderberg et al. (2016),
except for pixel control weight which was set to 0.1.

Game Pop = 40 Pop = 20

UNREAL PBT-UNREAL UNREAL PBT-Hypers-UNREAL PBT-Weights-UNREAL PBT-UNREAL
emstm non match 66.0 66.0 42.6 14.5 56.0 53.2
emstm watermaze 39.0 36.7 27.9 33.2 34.6 36.8
lt horse shoe color 75.4 90.2 77.4 44.2 56.3 87.5
nav maze random goal 01 114.2 149.4 82.2 81.5 74.2 96.1
lt hallway slope 90.5 109.7
nav maze all random 01 59.6 78.1
nav maze all random 02 62.0 92.4
nav maze all random 03 92.7 115.3
nav maze random goal 02 145.4 173.3
nav maze random goal 03 127.3 153.5
nav maze static 01 131.5 133.5
nav maze static 02 194.5 220.2
nav maze static 03 588.9 594.8
seekavoid arena 01 42.5 42.3
stairway to melon 01 189.7 192.4

Table 2: Per game results for UNREAL with and without PBT.

A3C - StarCraft II

Table 2 shows the breakdown on results per level for UNREAL on the DM Lab domain, with and without
PBT for different population sizes. We take the baseline setup of Vinyals et al. (2017) with feed-forward
network agents, and sample the learning rate from the log-uniform range [0, 0.001].

Game Pop = 30

A3C PBT-A3C
CollectMineralShards 93.7 100.5
FindAndDefeatZerglings 46.0 49.9
DefeatRoaches 121.8 131.5
DefeatZerglingsAndBanelings 94.6 124.7
CollectMineralsAndGas 3345.8 3345.3
BuildMarines 0.17 0.37

Table 3: Per game results for A3C on StarCraft II with and without PBT.

A.3 Detailed Results: GAN

This section provides additional details of and results from our GAN experiments introduced in Sect. 4.3.
Fig. 8 shows samples generated by the best performing generators with and without PBT. In Table 4, we
report GAN Inception scores with and without PBT.

Architecture and hyperparameters The architecture of the discriminator and the generator are similar to
those proposed in DCGAN (Radford et al., 2016), but with 4 × 4 convolutions (rather than 5 × 5), and a
smaller generator with half the number of feature maps in each layer. Batch normalisation is used in the
generator, but not in the discriminator, as in Gulrajani et al. (2017). Optimisation is performed using the
Adam optimiser (Kingma & Ba, 2015), with β1 = 0.5, β2 = 0.999, and ε = 10−8. The batch size is 128.

Baseline selection To establish a strong and directly comparable baseline for GAN PBT, we extensively
searched over and chose the best by CIFAR Inception score among many learning rate annealing strategies
used in the literature. For each strategy, we trained for a total of 2N steps, where learning rates were fixed to
their initial settings for the first N steps, then for the latter N steps either (a) exponentially decayed to 10−2

times the initial setting, or (b) linearly decayed to 0, searching over N = {0.5, 1, 2} × 105. (Searching over
the number of steps N is essential due to the instability of GAN training: performance often degrades with
additional training.) In each training run to evaluate a given combination of annealing strategy and choice
of training steps N , we used the same number of independent workers (45) and initialised the learning rates
to the same values used in PBT. The best annealing strategy we found using this procedure was exponential
decay with N = 1 × 105 steps. For the final baseline, we then extended this strategy to train for the same
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Baseline GAN

PBT-GAN

Figure 8: CIFAR GAN samples generated by the best performing generator of the Baseline GAN (top) and
PBT-GAN (bottom).
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GAN PBT-GAN (TS) PBT-GAN (BT)
CIFAR Inception 6.38±0.03 6.80±0.01 6.77±0.02
ImageNet Inception (by CIFAR) 6.45±0.05 6.89±0.04 6.74±0.05
ImageNet Inception (peak) 6.48±0.05 7.02±0.07 6.81±0.04

Table 4: CIFAR and ImageNet Inception scores for GANs trained with and without PBT, using the truncation
selection (TS) and binary tournament (BT) exploitation strategies. The ImageNet Inception (by CIFAR)
row reports the ImageNet Inception score for the best generator (according to the CIFAR Inception score)
after training is finished, while ImageNet Inception (peak) gives the best scores (according to the ImageNet
Inception score) obtained by any generator at any point during training.

number of steps as used in PBT (106) by continuing training for the remaining 8 × 105 steps with constant
learning rates fixed to their final values after exponential decay.

A.4 Detailed Results: Machine Translation

We used the open-sourced implementation of the Transformer framework1 with the provided
transformer base single gpu architecture settings. This model has the same number of parameters as
the base configuration that runs on 8 GPUs (6.5 × 107), but sees, in each training step, 1

16 of the number of
tokens (2048 vs. 8×4096) as it uses a smaller batch size. For both evolution and the random-search baseline,
we searched over learning rate, and dropout values applied to the attention softmax activations, the outputs
of the ReLU units in the feed-forward modules, and the output of each layer. We left other hyperparameters
unchanged and made no other changes to the implementation. For evaluation, we computed BLEU score
based on auto-regressive decoding with beam-search of width 4. We used newstest2012 and newstest2013
respectively as the evaluation set used by PBT, and as the test set for monitoring. At the end of training, we
report tokenized BLEU score on newstest2014 as computed by multi-bleu.pl script2. We also evaluated
the original hyperparameter configuration trained for the same number of steps and obtained the BLEU score
of 21.23, which is lower than both our baselines and PBT results.

1https://github.com/tensorflow/tensor2tensor
2https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
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