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Abstract

The design of good heuristics or approximation algorithms for NP-hard combi-
natorial optimization problems often requires significant specialized knowledge
and trial-and-error. Can we automate this challenging, tedious process, and learn
the algorithms instead? In many real-world applications, it is typically the case
that the same optimization problem is solved again and again on a regular basis,
maintaining the same problem structure but differing in the data. This provides
an opportunity for learning heuristic algorithms that exploit the structure of such
recurring problems. In this paper, we propose a unique combination of reinforce-
ment learning and graph embedding to address this challenge. The learned greedy
policy behaves like a meta-algorithm that incrementally constructs a solution, and
the action is determined by the output of a graph embedding network capturing
the current state of the solution. We show that our framework can be applied to a
diverse range of optimization problems over graphs, and learns effective algorithms
for the Minimum Vertex Cover, Maximum Cut and Traveling Salesman problems.

1 Introduction
Combinatorial optimization problems over graphs arising from numerous application domains, such
as social networks, transportation, telecommunications and scheduling, are NP-hard, and have thus
attracted considerable interest from the theory and algorithm design communities over the years. In
fact, of Karp’s 21 problems in the seminal paper on reducibility [19], 10 are decision versions of graph
optimization problems, while most of the other 11 problems, such as set covering, can be naturally
formulated on graphs. Traditional approaches to tackling an NP-hard graph optimization problem
have three main flavors: exact algorithms, approximation algorithms and heuristics. Exact algorithms
are based on enumeration or branch-and-bound with an integer programming formulation, but may
be prohibitive for large instances. On the other hand, polynomial-time approximation algorithms are
desirable, but may suffer from weak optimality guarantees or empirical performance, or may not even
exist for inapproximable problems. Heuristics are often fast, effective algorithms that lack theoretical
guarantees, and may also require substantial problem-specific research and trial-and-error on the part
of algorithm designers.

All three paradigms seldom exploit a common trait of real-world optimization problems: instances
of the same type of problem are solved again and again on a regular basis, maintaining the same
combinatorial structure, but differing mainly in their data. That is, in many applications, values of
the coefficients in the objective function or constraints can be thought of as being sampled from the
same underlying distribution. For instance, an advertiser on a social network targets a limited set of
users with ads, in the hope that they spread them to their neighbors; such covering instances need
to be solved repeatedly, since the influence pattern between neighbors may be different each time.
Alternatively, a package delivery company routes trucks on a daily basis in a given city; thousands of
similar optimizations need to be solved, since the underlying demand locations can differ.

⇤Both authors contributed equally to the paper.
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Figure 1: Illustration of the proposed framework as applied to an instance of Minimum Vertex Cover. The
middle part illustrates two iterations of the graph embedding, which results in node scores (green bars).

Despite the inherent similarity between problem instances arising in the same domain, classical
algorithms do not systematically exploit this fact. However, in industrial settings, a company may
be willing to invest in upfront, offline computation and learning if such a process can speed up its
real-time decision-making and improve its quality. This motivates the main problem we address:

Problem Statement: Given a graph optimization problem G and a distribution D of problem
instances, can we learn better heuristics that generalize to unseen instances from D?

Recently, there has been some seminal work on using deep architectures to learn heuristics for
combinatorial problems, including the Traveling Salesman Problem [37, 6, 14]. However, the
architectures used in these works are generic, not yet effectively reflecting the combinatorial structure
of graph problems. As we show later, these architectures often require a huge number of instances in
order to learn to generalize to new ones. Furthermore, existing works typically use the policy gradient
for training [6], a method that is not particularly sample-efficient. While the methods in [37, 6] can
be used on graphs with different sizes – a desirable trait – they require manual, ad-hoc input/output
engineering to do so (e.g. padding with zeros).

In this paper, we address the challenge of learning algorithms for graph problems using a unique
combination of reinforcement learning and graph embedding. The learned policy behaves like a
meta-algorithm that incrementally constructs a solution, with the action being determined by a graph
embedding network over the current state of the solution. More specifically, our proposed solution
framework is different from previous work in the following aspects:

1. Algorithm design pattern. We will adopt a greedy meta-algorithm design, whereby a feasible
solution is constructed by successive addition of nodes based on the graph structure, and is maintained
so as to satisfy the problem’s graph constraints. Greedy algorithms are a popular pattern for designing
approximation and heuristic algorithms for graph problems. As such, the same high-level design can
be seamlessly used for different graph optimization problems.

2. Algorithm representation. We will use a graph embedding network, called structure2vec
(S2V) [9], to represent the policy in the greedy algorithm. This novel deep learning architecture
over the instance graph “featurizes” the nodes in the graph, capturing the properties of a node in the
context of its graph neighborhood. This allows the policy to discriminate among nodes based on
their usefulness, and generalizes to problem instances of different sizes. This contrasts with recent
approaches [37, 6] that adopt a graph-agnostic sequence-to-sequence mapping that does not fully
exploit graph structure.

3. Algorithm training. We will use fitted Q-learning to learn a greedy policy that is parametrized
by the graph embedding network. The framework is set up in such a way that the policy will aim
to optimize the objective function of the original problem instance directly. The main advantage of
this approach is that it can deal with delayed rewards, which here represent the remaining increase in
objective function value obtained by the greedy algorithm, in a data-efficient way; in each step of the
greedy algorithm, the graph embeddings are updated according to the partial solution to reflect new
knowledge of the benefit of each node to the final objective value. In contrast, the policy gradient
approach of [6] updates the model parameters only once w.r.t. the whole solution (e.g. the tour in
TSP).
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The application of a greedy heuristic learned with our framework is illustrated in Figure 1. To
demonstrate the effectiveness of the proposed framework, we apply it to three extensively studied
graph optimization problems. Experimental results show that our framework, a single meta-learning
algorithm, efficiently learns effective heuristics for each of the problems. Furthermore, we show that
our learned heuristics preserve their effectiveness even when used on graphs much larger than the
ones they were trained on. Since many combinatorial optimization problems, such as the set covering
problem, can be explicitly or implicitly formulated on graphs, we believe that our work opens up a
new avenue for graph algorithm design and discovery with deep learning.

2 Common Formulation for Greedy Algorithms on Graphs
We will illustrate our framework using three optimization problems over weighted graphs. Let
G(V,E,w) denote a weighted graph, where V is the set of nodes, E the set of edges and w : E ! R+

the edge weight function, i.e. w(u, v) is the weight of edge (u, v) 2 E. These problems are:

• Minimum Vertex Cover (MVC): Given a graph G, find a subset of nodes S ✓ V such that every
edge is covered, i.e. (u, v) 2 E , u 2 S or v 2 S, and |S| is minimized.

• Maximum Cut (MAXCUT): Given a graph G, find a subset of nodes S ✓ V such that the weight
of the cut-set

P
(u,v)2C

w(u, v) is maximized, where cut-set C ✓ E is the set of edges with one
end in S and the other end in V \ S.

• Traveling Salesman Problem (TSP): Given a set of points in 2-dimensional space, find a tour
of minimum total weight, where the corresponding graph G has the points as nodes and is fully
connected with edge weights corresponding to distances between points; a tour is a cycle that visits
each node of the graph exactly once.

We will focus on a popular pattern for designing approximation and heuristic algorithms, namely
a greedy algorithm. A greedy algorithm will construct a solution by sequentially adding nodes to
a partial solution S, based on maximizing some evaluation function Q that measures the quality
of a node in the context of the current partial solution. We will show that, despite the diversity of
the combinatorial problems above, greedy algorithms for them can be expressed using a common
formulation. Specifically:

1. A problem instance G of a given optimization problem is sampled from a distribution D, i.e. the
V , E and w of the instance graph G are generated according to a model or real-world data.

2. A partial solution is represented as an ordered list S = (v1, v2, . . . , v|S|), vi 2 V , and S = V \ S
the set of candidate nodes for addition, conditional on S. Furthermore, we use a vector of binary
decision variables x, with each dimension xv corresponding to a node v 2 V , xv = 1 if v 2 S

and 0 otherwise. One can also view xv as a tag or extra feature on v.
3. A maintenance (or helper) procedure h(S) will be needed, which maps an ordered list S to a

combinatorial structure satisfying the specific constraints of a problem.
4. The quality of a partial solution S is given by an objective function c(h(S), G) based on the

combinatorial structure h of S.
5. A generic greedy algorithm selects a node v to add next such that v maximizes an evaluation

function, Q(h(S), v) 2 R, which depends on the combinatorial structure h(S) of the current
partial solution. Then, the partial solution S will be extended as

S := (S, v⇤), where v
⇤ := argmax

v2S
Q(h(S), v), (1)

and (S, v⇤) denotes appending v
⇤ to the end of a list S. This step is repeated until a termination

criterion t(h(S)) is satisfied.

In our formulation, we assume that the distribution D, the helper function h, the termination criterion
t and the cost function c are all given. Given the above abstract model, various optimization problems
can be expressed by using different helper functions, cost functions and termination criteria:

• MVC: The helper function does not need to do any work, and c(h(S), G) = � |S|. The termination
criterion checks whether all edges have been covered.

• MAXCUT: The helper function divides V into two sets, S and its complement S = V \ S,
and maintains a cut-set C = {(u, v) | (u, v) 2 E, u 2 S, v 2 S}. Then, the cost is
c(h(S), G) =

P
(u,v)2C

w(u, v), and the termination criterion does nothing.
• TSP: The helper function will maintain a tour according to the order of the nodes in S. The

simplest way is to append nodes to the end of partial tour in the same order as S. Then the cost
c(h(S), G) = �

P|S|�1
i=1 w(S(i), S(i + 1)) � w(S(|S|), S(1)), and the termination criterion is
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activated when S = V . Empirically, inserting a node u in the partial tour at the position which
increases the tour length the least is a better choice. We adopt this insertion procedure as a helper
function for TSP.

An estimate of the quality of the solution resulting from adding a node to partial solution S will
be determined by the evaluation function Q, which will be learned using a collection of problem
instances. This is in contrast with traditional greedy algorithm design, where the evaluation function
Q is typically hand-crafted, and requires substantial problem-specific research and trial-and-error. In
the following, we will design a powerful deep learning parameterization for the evaluation function,
bQ(h(S), v;⇥), with parameters ⇥.

3 Representation: Graph Embedding
Since we are optimizing over a graph G, we expect that the evaluation function bQ should take into
account the current partial solution S as it maps to the graph. That is, xv = 1 for all nodes v 2 S,
and the nodes are connected according to the graph structure. Intuitively, bQ should summarize the
state of such a “tagged" graph G, and figure out the value of a new node if it is to be added in
the context of such a graph. Here, both the state of the graph and the context of a node v can be
very complex, hard to describe in closed form, and may depend on complicated statistics such as
global/local degree distribution, triangle counts, distance to tagged nodes, etc. In order to represent
such complex phenomena over combinatorial structures, we will leverage a deep learning architecture
over graphs, in particular the structure2vec of [9], to parameterize bQ(h(S), v;⇥).

3.1 Structure2Vec
We first provide an introduction to structure2vec. This graph embedding network will compute
a p-dimensional feature embedding µv for each node v 2 V , given the current partial solution S.
More specifically, structure2vec defines the network architecture recursively according to an
input graph structure G, and the computation graph of structure2vec is inspired by graphical
model inference algorithms, where node-specific tags or features xv are aggregated recursively
according to G’s graph topology. After a few steps of recursion, the network will produce a new
embedding for each node, taking into account both graph characteristics and long-range interactions
between these node features. One variant of the structure2vec architecture will initialize the
embedding µ

(0)
v at each node as 0, and for all v 2 V update the embeddings synchronously at each

iteration as

µ
(t+1)
v

 F

⇣
xv, {µ(t)

u
}u2N (v), {w(v, u)}u2N (v) ;⇥

⌘
, (2)

where N (v) is the set of neighbors of node v in graph G, and F is a generic nonlinear mapping such
as a neural network or kernel function.

Based on the update formula, one can see that the embedding update process is carried out based on
the graph topology. A new round of embedding sweeping across the nodes will start only after the
embedding update for all nodes from the previous round has finished. It is easy to see that the update
also defines a process where the node features xv are propagated to other nodes via the nonlinear
propagation function F . Furthermore, the more update iterations one carries out, the farther away
the node features will propagate and get aggregated nonlinearly at distant nodes. In the end, if one
terminates after T iterations, each node embedding µ

(T )
v will contain information about its T -hop

neighborhood as determined by graph topology, the involved node features and the propagation
function F . An illustration of two iterations of graph embedding can be found in Figure 1.

3.2 Parameterizing bQ(h(S), v;⇥)

We now discuss the parameterization of bQ(h(S), v;⇥) using the embeddings from
structure2vec. In particular, we design F to update a p-dimensional embedding µv as:

µ
(t+1)
v

 relu
�
✓1xv + ✓2

X
u2N (v)

µ
(t)
u

+ ✓3

X
u2N (v)

relu(✓4 w(v, u))
�
, (3)

where ✓1 2 Rp, ✓2, ✓3 2 Rp⇥p and ✓4 2 Rp are the model parameters, and relu is the rectified linear
unit (relu(z) = max(0, z)) applied elementwise to its input. The summation over neighbors is one
way of aggregating neighborhood information that is invariant to permutations over neighbors. For
simplicity of exposition, xv here is a binary scalar as described earlier; it is straightforward to extend
xv to a vector representation by incorporating any additional useful node information. To make the
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nonlinear transformations more powerful, we can add some more layers of relu before we pool over
the neighboring embeddings µu.

Once the embedding for each node is computed after T iterations, we will use these embeddings
to define the bQ(h(S), v;⇥) function. More specifically, we will use the embedding µ

(T )
v for node

v and the pooled embedding over the entire graph,
P

u2V
µ
(T )
u , as the surrogates for v and h(S),

respectively, i.e.
bQ(h(S), v;⇥) = ✓

>
5 relu([✓6

X
u2V

µ
(T )
u

, ✓7 µ
(T )
v

]) (4)

where ✓5 2 R2p, ✓6, ✓7 2 Rp⇥p and [·, ·] is the concatenation operator. Since the embedding µ
(T )
u

is computed based on the parameters from the graph embedding network, bQ(h(S), v) will depend
on a collection of 7 parameters ⇥ = {✓i}7i=1. The number of iterations T for the graph embedding
computation is usually small, such as T = 4.

The parameters ⇥ will be learned. Previously, [9] required a ground truth label for every input
graph G in order to train the structure2vec architecture. There, the output of the embedding
is linked with a softmax-layer, so that the parameters can by trained end-to-end by minimizing the
cross-entropy loss. This approach is not applicable to our case due to the lack of training labels.
Instead, we train these parameters together end-to-end using reinforcement learning.

4 Training: Q-learning
We show how reinforcement learning is a natural framework for learning the evaluation function bQ.
The definition of the evaluation function bQ naturally lends itself to a reinforcement learning (RL)
formulation [36], and we will use bQ as a model for the state-value function in RL. We note that we
would like to learn a function bQ across a set of m graphs from distribution D, D = {Gi}mi=1, with
potentially different sizes. The advantage of the graph embedding parameterization in our previous
section is that we can deal with different graph instances and sizes seamlessly.

4.1 Reinforcement learning formulation
We define the states, actions and rewards in the reinforcement learning framework as follows:

1. States: a state S is a sequence of actions (nodes) on a graph G. Since we have already represented
nodes in the tagged graph with their embeddings, the state is a vector in p-dimensional space,P

v2V
µv. It is easy to see that this embedding representation of the state can be used across

different graphs. The terminal state bS will depend on the problem at hand;
2. Transition: transition is deterministic here, and corresponds to tagging the node v 2 G that was

selected as the last action with feature xv = 1;
3. Actions: an action v is a node of G that is not part of the current state S. Similarly, we will

represent actions as their corresponding p-dimensional node embedding µv , and such a definition
is applicable across graphs of various sizes;

4. Rewards: the reward function r(S, v) at state S is defined as the change in the cost function after
taking action v and transitioning to a new state S

0 := (S, v). That is,
r(S, v) = c(h(S0), G)� c(h(S), G), (5)

and c(h(;), G) = 0. As such, the cumulative reward R of a terminal state bS coincides exactly
with the objective function value of the bS, i.e. R(bS) =

P|bS|
i=1 r(Si, vi) is equal to c(h(bS), G);

5. Policy: based on bQ, a deterministic greedy policy ⇡(v|S) := argmax
v02S

bQ(h(S), v0) will be
used. Selecting action v corresponds to adding a node of G to the current partial solution, which
results in collecting a reward r(S, v).

Table 1 shows the instantiations of the reinforcement learning framework for the three optimization
problems considered herein. We let Q⇤ denote the optimal Q-function for each RL problem. Our graph
embedding parameterization bQ(h(S), v;⇥) from Section 3 will then be a function approximation
model for it, which will be learned via n-step Q-learning.

4.2 Learning algorithm
In order to perform end-to-end learning of the parameters in bQ(h(S), v;⇥), we use a combination
of n-step Q-learning [36] and fitted Q-iteration [33], as illustrated in Algorithm 1. We use the term
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Table 1: Definition of reinforcement learning components for each of the three problems considered.
Problem State Action Helper function Reward Termination
MVC subset of nodes selected so far add node to subset None -1 all edges are covered
MAXCUT subset of nodes selected so far add node to subset None change in cut weight cut weight cannot be improved
TSP partial tour grow tour by one node Insertion operation change in tour cost tour includes all nodes

episode to refer to a complete sequence of node additions starting from an empty solution, and until
termination; a step within an episode is a single action (node addition).

Standard (1-step) Q-learning updates the function approximator’s parameters at each step of an
episode by performing a gradient step to minimize the squared loss:

(y � bQ(h(St), vt;⇥))2, (6)

where y = �maxv0 bQ(h(St+1), v0;⇥)+ r(St, vt) for a non-terminal state St. The n-step Q-learning
helps deal with the issue of delayed rewards, where the final reward of interest to the agent is only
received far in the future during an episode. In our setting, the final objective value of a solution is
only revealed after many node additions. As such, the 1-step update may be too myopic. A natural
extension of 1-step Q-learning is to wait n steps before updating the approximator’s parameters, so
as to collect a more accurate estimate of the future rewards. Formally, the update is over the same
squared loss (6), but with a different target, y =

P
n�1
i=0 r(St+i, vt+i) + �maxv0 bQ(h(St+n), v0;⇥).

The fitted Q-iteration approach has been shown to result in faster learning convergence when using
a neural network as a function approximator [33, 28], a property that also applies in our setting, as
we use the embedding defined in Section 3.2. Instead of updating the Q-function sample-by-sample
as in Equation (6), the fitted Q-iteration approach uses experience replay to update the function
approximator with a batch of samples from a dataset E, rather than the single sample being currently
experienced. The dataset E is populated during previous episodes, such that at step t+ n, the tuple
(St, at, Rt,t+n, St+n) is added to E, with Rt,t+n =

P
n�1
i=0 r(St+i, at+i). Instead of performing

a gradient step in the loss of the current sample as in (6), stochastic gradient descent updates are
performed on a random sample of tuples drawn from E.

It is known that off-policy reinforcement learning algorithms such as Q-learning can be more sample
efficient than their policy gradient counterparts [15]. This is largely due to the fact that policy gradient
methods require on-policy samples for the new policy obtained after each parameter update of the
function approximator.

Algorithm 1 Q-learning for the Greedy Algorithm
1: Initialize experience replay memory M to capacity N

2: for episode e = 1 to L do
3: Draw graph G from distribution D
4: Initialize the state to empty S1 = ()
5: for step t = 1 to T do

6: vt =

(
random node v 2 St, w.p. ✏
argmax

v2St
bQ(h(St), v;⇥), otherwise

7: Add vt to partial solution: St+1 := (St, vt)
8: if t � n then
9: Add tuple (St�n, vt�n, Rt�n,t, St) to M

10: Sample random batch from B
iid.⇠ M

11: Update ⇥ by SGD over (6) for B
12: end if
13: end for
14: end for
15: return ⇥

5 Experimental Evaluation
Instance generation. To evaluate the proposed method against other approximation/heuristic algo-
rithms and deep learning approaches, we generate graph instances for each of the three problems.
For the MVC and MAXCUT problems, we generate Erdős-Renyi (ER) [11] and Barabasi-Albert
(BA) [1] graphs which have been used to model many real-world networks. For a given range on the
number of nodes, e.g. 50-100, we first sample the number of nodes uniformly at random from that
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range, then generate a graph according to either ER or BA. For the two-dimensional TSP problem,
we use an instance generator from the DIMACS TSP Challenge [18] to generate uniformly random
or clustered points in the 2-D grid. We refer the reader to the Appendix D.1 for complete details on
instance generation. We have also tackled the Set Covering Problem, for which the description and
results are deferred to Appendix B.

Structure2Vec Deep Q-learning. For our method, S2V-DQN, we use the graph representations and
hyperparameters described in Appendix D.4. The hyperparameters are selected via preliminary results
on small graphs, and then fixed for large ones. Note that for TSP, where the graph is fully-connected,
we build the K-nearest neighbor graph (K = 10) to scale up to large graphs. For MVC, where
we train the model on graphs with up to 500 nodes, we use the model trained on small graphs as
initialization for training on larger ones. We refer to this trick as “pre-training", which is illustrated in
Figure D.2.

Pointer Networks with Actor-Critic. We compare our method to a method, based on Recurrent
Neural Networks (RNNs), which does not make full use of graph structure [6]. We implement
and train their algorithm (PN-AC) for all three problems. The original model only works on the
Euclidian TSP problem, where each node is represented by its (x, y) coordinates, and is not designed
for problems with graph structure. To handle other graph problems, we describe each node by its
adjacency vector instead of coordinates. To handle different graph sizes, we use a singular value
decomposition (SVD) to obtain a rank-8 approximation for the adjacency matrix, and use the low-rank
embeddings as inputs to the pointer network.

Baseline Algorithms. Besides the PN-AC, we also include powerful approximation or heuristic
algorithms from the literature. These algorithms are specifically designed for each type of problem:

• MVC: MVCApprox iteratively selects an uncovered edge and adds both of its endpoints [30]. We
designed a stronger variant, called MVCApprox-Greedy, that greedily picks the uncovered edge
with maximum sum of degrees of its endpoints. Both algorithms are 2-approximations.

• MAXCUT: We include MaxcutApprox, which maintains the cut set (S, V \ S) and moves a node
from one side to the other side of the cut if that operation results in cut weight improvement [25].
To make MaxcutApprox stronger, we greedily move the node that results in the largest improvement
in cut weight. A randomized, non-greedy algorithm, referred to as SDP, is also implemented based
on [12]; 100 solutions are generated for each graph, and the best one is taken.

• TSP: We include the following approximation algorithms: Minimum Spanning Tree (MST),
Farthest insertion (Farthest), Cheapest insertion (Cheapest), Closest insertion (Closest), Christofides
and 2-opt. We also add the Nearest Neighbor heuristic (Nearest); see [4] for algorithmic details.

Details on Validation and Testing. For S2V-DQN and PN-AC, we use a CUDA K80-enabled cluster
for training and testing. Training convergence for S2V-DQN is discussed in Appendix D.6. S2V-DQN
and PN-AC use 100 held-out graphs for validation, and we report the test results on another 1000
graphs. We use CPLEX[17] to get optimal solutions for MVC and MAXCUT, and Concorde [3] for
TSP (details in Appendix D.1). All approximation ratios reported in the paper are with respect to the
best (possibly optimal) solution found by the solvers within 1 hour. For MVC, we vary the training
and test graph sizes in the ranges {15–20, 40–50, 50–100, 100–200, 400–500}. For MAXCUT and
TSP, which involve edge weights, we train up to 200–300 nodes due to the limited computation
resource. For all problems, we test on graphs of size up to 1000–1200.

During testing, instead of using Active Search as in [6], we simply use the greedy policy. This gives
us much faster inference, while still being powerful enough. We modify existing open-source code to
implement both S2V-DQN 2 and PN-AC 3. Our code is publicly available 4.

5.1 Comparison of solution quality
To evaluate the solution quality on test instances, we use the approximation ratio of each method
relative to the optimal solution, averaged over the set of test instances. The approximation ratio of a
solution S to a problem instance G is defined as R(S,G) = max(OPT (G)

c(h(S)) ,
c(h(S))
OPT (G) ), where c(h(S))

is the objective value of solution S, and OPT (G) is the best-known solution value of instance G.

2
https://github.com/Hanjun-Dai/graphnn

3
https://github.com/devsisters/pointer-network-tensorflow

4
https://github.com/Hanjun-Dai/graph_comb_opt
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(a) MVC BA (b) MAXCUT BA (c) TSP random

Figure 2: Approximation ratio on 1000 test graphs. Note that on MVC, our performance is pretty close to
optimal. In this figure, training and testing graphs are generated according to the same distribution.
Figure 2 shows the average approximation ratio across the three problems; other graph types are in
Figure D.1 in the appendix. In all of these figures, a lower approximation ratio is better. Overall,
our proposed method, S2V-DQN, performs significantly better than other methods. In MVC, the
performance of S2V-DQN is particularly good, as the approximation ratio is roughly 1 and the bar is
barely visible.

The PN-AC algorithm performs well on TSP, as expected. Since the TSP graph is essentially fully-
connected, graph structure is not as important. On problems such as MVC and MAXCUT, where
graph information is more crucial, our algorithm performs significantly better than PN-AC. For TSP,
The Farthest and 2-opt algorithm perform as well as S2V-DQN, and slightly better in some cases.
However, we will show later that in real-world TSP data, our algorithm still performs better.

5.2 Generalization to larger instances
The graph embedding framework enables us to train and test on graphs of different sizes, since the
same set of model parameters are used. How does the performance of the learned algorithm using
small graphs generalize to test graphs of larger sizes? To investigate this, we train S2V-DQN on
graphs with 50–100 nodes, and test its generalization ability on graphs with up to 1200 nodes. Table 2
summarizes the results, and full results are in Appendix D.3.

Table 2: S2V-DQN’s generalization ability. Values are average approximation ratios over 1000 test instances.
These test results are produced by S2V-DQN algorithms trained on graphs with 50-100 nodes.

Test Size 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200
MVC (BA) 1.0033 1.0041 1.0045 1.0040 1.0045 1.0048 1.0062

MAXCUT (BA) 1.0150 1.0181 1.0202 1.0188 1.0123 1.0177 1.0038
TSP (clustered) 1.0730 1.0895 1.0869 1.0918 1.0944 1.0975 1.1065

We can see that S2V-DQN achieves a very good approximation ratio. Note that the “optimal" value
used in the computation of approximation ratios may not be truly optimal (due to the solver time
cutoff at 1 hour), and so CPLEX’s solutions do typically get worse as problem size grows. This is
why sometimes we can even get better approximation ratio on larger graphs.

5.3 Scalability & Trade-off between running time and approximation ratio
To construct a solution on a test graph, our algorithm has polynomial complexity of O(k|E|) where k
is number of greedy steps (at most the number of nodes |V |) and |E| is number of edges. For instance,
on graphs with 1200 nodes, we can find the solution of MVC within 11 seconds using a single GPU,
while getting an approximation ratio of 1.0062. For dense graphs, we can also sample the edges for
the graph embedding computation to save time, a measure we will investigate in the future.

Figure 3 illustrates the approximation ratios of various approaches as a function of running time.
All algorithms report a single solution at termination, whereas CPLEX reports multiple improving
solutions, for which we recorded the corresponding running time and approximation ratio. Figure D.3
(Appendix D.7) includes other graph sizes and types, where the results are consistent with Figure 3.

Figure 3 shows that, for MVC, we are slightly slower than the approximation algorithms but enjoy a
much better approximation ratio. Also note that although CPLEX found the first feasible solution
quickly, it also has much worse ratio; the second improved solution found by CPLEX takes similar or
longer time than our S2V-DQN, but is still of worse quality. For MAXCUT, the observations are still
consistent. One should be aware that sometimes our algorithm can obtain better results than 1-hour
CPLEX, which gives ratios below 1.0. Furthermore, sometimes S2V-DQN is even faster than the
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(a) MVC BA 200-300 (b) MAXCUT BA 200-300

Figure 3: Time-approximation
trade-off for MVC and MAX-
CUT. In this figure, each dot
represents a solution found for
a single problem instance, for
100 instances. For CPLEX, we
also record the time and qual-
ity of each solution it finds, e.g.
CPLEX-1st means the first feasi-
ble solution found by CPLEX.

MaxcutApprox, although this comparison is not exactly fair, since we use GPUs; however, we can
still see that our algorithm is efficient.

5.4 Experiments on real-world datasets
In addition to the experiments for synthetic data, we identified sets of publicly available benchmark
or real-world instances for each problem, and performed experiments on them. A summary of results
is in Table 3, and details are given in Appendix C. S2V-DQN significantly outperforms all competing
methods for MVC, MAXCUT and TSP.

Table 3: Realistic data experiments, results summary. Values are average approximation ratios.

Problem Dataset S2V-DQN Best Competitor 2nd Best Competitor
MVC MemeTracker 1.0021 1.2220 (MVCApprox-Greedy) 1.4080 (MVCApprox)
MAXCUT Physics 1.0223 1.2825 (MaxcutApprox) 1.8996 (SDP)
TSP TSPLIB 1.0475 1.0800 (Farthest) 1.0947 (2-opt)

5.5 Discovery of interesting new algorithms
We further examined the algorithms learned by S2V-DQN, and tried to interpret what greedy heuristics
have been learned. We found that S2V-DQN is able to discover new and interesting algorithms which
intuitively make sense but have not been analyzed before. For instance, S2V-DQN discovers an
algorithm for MVC where nodes are selected to balance between their degrees and the connectivity
of the remaining graph (Appendix Figures D.4 and D.7). For MAXCUT, S2V-DQN discovers an
algorithm where nodes are picked to avoid cancelling out existing edges in the cut set (Appendix
Figure D.5). These results suggest that S2V-DQN may also be a good assistive tool for discovering
new algorithms, especially in cases when the graph optimization problems are new and less well-
studied.

6 Conclusions
We presented an end-to-end machine learning framework for automatically designing greedy heuris-
tics for hard combinatorial optimization problems on graphs. Central to our approach is the com-
bination of a deep graph embedding with reinforcement learning. Through extensive experimental
evaluation, we demonstrate the effectiveness of the proposed framework in learning greedy heuristics
as compared to manually-designed greedy algorithms. The excellent performance of the learned
heuristics is consistent across multiple different problems, graph types, and graph sizes, suggesting
that the framework is a promising new tool for designing algorithms for graph problems.
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