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Abstract

Borealis is a second-generation distributed stream pro-
cessing engine that is being developed at Brandeis Uni-

versity, Brown University, and MIT. Borealis inherits
core stream processing functionality from Aurora [14]
and distribution functionality from Medusa [51]. Bo-

realis modifies and extends both systems in non-trivial
and critical ways to provide advanced capabilities that
are commonly required by newly-emerging stream pro-

cessing applications.

In this paper, we outline the basic design and function-

ality of Borealis. Through sample real-world applica-
tions, we motivate the need for dynamically revising
query results and modifying query specifications. We
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be emphasized that the issues raised here represent general
challenges for the field as a whole. We present specifics of
our design as concrete evidence for why these problems are
hard and as a first cut at how they might be approached. We
envision the following three fundamental requirements for
second-generation SPEs:

1. Dynamic revision of query results In many real-
world streams, corrections or updates to previously pro-
cessed data are available only after the fact. For instance,
many popular data streams, such as the Reuters stock mar-
ket feed, often include so-callagvision records which
allow the feed originator to correct errors in previously re
ported data. Furthermore, stream sources (such as sensors)
as well as their connectivity, can be highly volatile and un-
predictable. As a result, data may arrive late and miss its

then describe how Borealis addresses these Cha||e”ge~°processing window, or may be ignored temporarily due to

through an innovative set of features, including revi-
sion records, time travel, and control lines. Finally, we

present a highly flexible and scalable QoS-based opti-

an overload situation [44]. In all these cases, application
are forced to live with imperfect results, unless the system
has means to revise its processing and results to take into

mization model that operates across server and Sensoryccount newly available data or updates.

networks and a new fault-tolerance model with flexible
consistency-availability trade-offs.

1 Introduction

Overthe last several years, a great deal of progress has bef
made in the area of stream processing engines (SPE). S
eral groups have developed working prototypes [1, 4, 16
and many papers have been published on detailed aspe
of the technology such as data models [2, 5, 46], schedu
ing [8, 15], and load shedding [9, 20, 44]. While this work
is an important first step, fundamental mismatches remai
between the requirements of many streaming application

and the capabilities of first-generation systems.

This paper is intended to illustrate our vision of what
second-generation SPE’s should look like. It is driven by
our experience in using Aurora [10], our own prototype, in
several streaming applications including the Linear Roa
Benchmark [6] and several commercial opportunities. W
present this vision in terms of our own design considera
tions for Borealis, the successor to Aurora, but it should
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2. Dynamic query modification: In many stream pro-
cessing applications, it is desirable to change certain at-
tributes of the query at runtime. For example, in the finan-
| services domain, traders typically wish to be alerted

I.e., the corresponding filter predicate) varies baseduon ¢
Nt context and results. In network monitoring, the system
may want to obtain more precise results on a specific sub-
network, if there are signs of a potential Denial-of-Seevic
ttack. Finally, in a military stream application from Mitr
ey wish to switch to a “cheaper” query when the system
is overloaded. For the first two applications, it is sufficien
to simply alter the operator parameters (e.g., window size,
filter predicate), whereas the last one calls for alterirgy th
operators that compose the running query. Although cur-

E_ interestingevents, where the definition of “interesting”

Jent SPEs allow applications to substitute query networks

with others at runtime, such manual substitutions impose
high overhead and are slow to take effect as the new query
network starts with an empty state. Our goal is to support
low overhead, fast, and automatic modifications.

Another motivating application comes again from the
financial services community. Universally, people working
on trading engines wish to test out new trading strategies
as well as debug their applications on historical data leefor
they go live. As such, they wish to perform “time travel” on
input streams. Although this last example can be supported



in most current SPE prototypes by attaching the engine to Section 2 provides an overview of the basic Borealis ar-

previously stored data, a more user-friendly and efficientchitecture. Section 3 describes supportréuision records

solution would obviously be desirable. the Borealis solution for dynamic revision of query results
3. Flexible and highly-scalable optimization Cur- Section 4 discusses two important features that facilitate

rently, commercial stream processing applications are popPn-line modification of continuous queriesontrol lines
ular in industrial process control (e.g., monitoring oit re andtime travel Control lines extend Aurora’s basic query

fineries and cereal plants), financial services (e.g., feed p Model with the ability to change operator parameters as
cessing, trading engine support and compliance), and nefY€ll @s operators themselves on the fly. Time travel al-
work monitoring (e.g., intrusion detection). Here we seelows multiple queries (d|ﬁer¢nt gueries or versions of the
aserver heavypptimization problem — the key challenge S&me query) to be easily defined and executed concurrently,

is to process high-volume data streams on a collection oftarting from different points in the past or *future” (henc
resource-rich “beefy” servers. Over the horizon, we sedhe name time travel). Section 5 discusses the basic Bore-

a large number of applications of wireless sensor technol@!iS Optimization model that is intended to optimize vari-
ogy (e.g., RFID in retail applications, cell phone servjces 0US Q0S metrics across a combined server and sensor net-

Here, we see aensor heavpptimization problem — the work. This is a challenging problem.due to not only the
key challenges revolve around extracting and processingh€€r number of machines that are involved, but also the
sensor data from a network of resource-constrained “tiny’Various resources (i.e., processing, power, bandwidtt), et
devices. Further over the horizon, we expect sensor nefiat may become bottlenecks. Our solution uses a hierar-
works to become faster and increase in processing powef!Y Of complementary optimizers that react to “problems

In this case the optimization problem becomes more paiat different timescales. Section 6 prese_nts our new fault-
anced, becomingensor heavy, server heavio date sys- tolerance approach that leverages CP, time travel, and re-
tems have exclusively focused on either a server-heavy er}iSion tuples to efficiently handle node failures, network
vironment [14, 17, 32] or a sensor-heavy environment [31]_fallure, and network partitions. Section 7 summarizes the
Off into the future, there will be a need for a more flexible '¢latéd work in the area, and Section 8 concludes the paper
optimization structure that can deal with a large numbeMith dlrectlopsforfuture work. _

of devices and perform cross-network sensor-heavy serve2 Borealis System Overview

heavy resource management and optimization. The tw@ 1 Architecture

main challenges of such an optimization framework are th
ability to simultaneously optimize different QoS metrics
such as processing latency, throughput, or sensor lifetim
and the ability to perform optimizations at different level

Borealis is a distributed stream processing engine. The col
lection of continuous queries submitted to Borealis can be
een as one giant network of operators (aka query diagram)
L7 whose processing is distributed to multiple sites. Sensor
of granularity: a node, a sensor network, a cluster of SeN: atworks can also participate in query processing behind a
sors and servers, etc. sensor proxy interface which acts as another Borealis site.
Such new integrated environments also require the sys- Each site runs a Borealis server whose major compo-
tem to tolerate various possibly frequent failures in inputnents are shown in Figure Query Processor (QPprms
sources, network connections, and processing nodes. Ifthe core piece where actual query execution takes place.
system favors consistency then partial failures, wheressomThe QP is a single-site processor. Input streams are fed into
inputs are missing, may appear as a complete failures tthe QP and results are pulled throug® Queueswhich
some applications. We therefore envision fault-tolerancgoute tuples to and from remote Borealis nodes and clients.
through more flexible consistency-availability tradesoff The QP is controlled by thAdminmodule that sets up

In summary, a strong need for many target stream-basel@cally running queries and takes care of moving query di-
applications is the ability to modify various data and query@gram fragments to and from remote Borealis nodes, when
attributes at run time, in an undisruptive manner. Furtherinstructed to do so by another module. System control
more, the fact that many applications are inherently dis‘messages issued by tAeiminare fed into the_ocal Op-
tributed and potentially span large numbers of heterogetimizer. Local Optimizer further communicates with major
neous devices and networks necessitates scalable, highun-time components of the QP to give performance im-
distributed resource allocation, optimization capaietit Proving directions. These components are:
and fault tolerance. As we will demonstrate, adding these o Priority Schedulerwhich determines the order of box
advanced capabilities requires significant changes to the  execution based on tuple priorities;
architecture of an SPE. As a result, we have designed a
second-generation SPE, appropriately caBedealis Bo-
realis inherits core stream processing functionality from
Aurora and distribution capabilities from Medusa. Borgali
does, however, radically modify and extend both systems
with an innovative set of features and mechanisms. This
paper presents the functionality and preliminary design ofThe QP also contains th8torage Manager which is
Borealis. responsible for storage and retrieval of data that flows

e Box Processotsone for each different type of box,
that can change behavior on the fly based on control
messages from the Local Optimizer;

e Load Shedder which discards low-priority tuples
when the node is overloaded.
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Figure 1: Borealis Architecture

through the arcs of the local query diagram. Lastly, theAdditionally, each Borealis message may carry QoS-

Local Catalogstores query diagram description and meta-related fields as described in Section 2.4.

data, and is accessible by all the components. New applications can take advantage of this extended
Other than the QP, a Borealis node has modules whicinodel by distinguishing the types of tuples they receive.

communicate with their peers on other Borealis noded-egacy applications may simply drop all replacement and

to take collaborative actions. Theighborhood Opti- deletion tuples.

mizer uses local load information as well as information 2.3  Query Model

from other Neighborhood Optimizers to improve load bal- g e gjis inherits the boxes-and-arrows model of Aurora for
ance between nodes. As discussed in Section 5, a singlgyecifying continuous queries. Boxes represent query op-
node can run several optimization algorithms that makeraiors and arrows represent the data flow between boxes.
load management decisions at different levels of granugeries are composed of extended versions of Aurora op-
larity. The High Availability (HA) modules on different o a0rs that support revision messages. Each operator pro-
nodes monitor each other and take over processing fofesses revision messages based on its available message
one another in case of failureLocal Monitor collects  pigtory and emits other revision messages as output. Au-
performance-related statistics as thg chal system runs tpy,4'sconnection pointéCPs) buffer stream messages that
report to local and neighborhood optimizer modules. Thecompose the message history required by operators. In ad-

Global Catalog which may be either centralized or dis- jtion o revision processing, CPs also support other Bore-
tributed across a subset of processing nodes, holds informajis features like time travel and CP views.

tion about the complete query ngtwqu and the location of  5p, important addition to the Aurora query model is the
all query fragments. All communication between the com-5pijiry to change box semantics on the fly. Borealis boxes
ponents within a Borealis node as well as between multipleyre provided with speciaontrol linesin addition to their
Borealis nodes is realized through transport independentianqdard data input lines. These lines carry control mes-
RPC, with the exception of data streams that go directlygyges that include revised box parameters and functions to
into the QP. change box behavior. Details of control lines and dynamic
2.2 Data Model guery modification are presented in Section 4.

Borealis uses an extended Aurora data model [2]. Auror&.4 QoS Model

models streams as append-only sequences of tuples of ti& in Aurora, a Quality of Service model forms the ba-
form (ki,...,kn,a1,...,am), whereky, ..., k, comprise  sis of resource management decisions in Borealis. Un-
a key for the stream and, . . ., a,, provide attribute val-  |ike Aurora, where each query output is provided with
ues. To support the revision of information on a stream,QoS functions, Borealis allows QoS to be predicted at any
Borealis generalizes this model to support three kinds opoint in a data flow. For this purpose, messages are sup-
stream messages (i.e. tuples): plied with aVector of Metrics (VM) These metrics include
content-related properties (e.g., message importance) or
e Insertionmessages+,t), wheret is a new tuple to  performance-related properties (e.g., message arriva, ti
be inserted with a new key value (note that all Auroratotal resources consumed for processing the message up to
messages implicitly are insertion messages). the current point in the query diagram, number of dropped
« Deletionmessages,—, t) such that: consists of the messages pre_cedlng th_|s m_essage). The attributes of the
key attributes for some previously processed message\{M are predefined and identical on all streams. As a mes-
sage flows through a box, some fields of the VM can be
e Replacementnessages(<, t), such thatt consists updated by the box code. A diagram administrator (DA)
of key attributes for some previously processed mes<€an also place special Map boxes into the query diagram to
sage, and non-key attributes with revised values forchange VM.
that message. Furthermore, there is a universal, parameteriz&8ulere



Functionfor an instantiation of the Borealis System that replaying processing from the point of the revision to the
takes in VM and returns a value [, 1], that shows the cur- present. In most cases, however, revisions on the input af-
rent predicted impact of a message on QoS. This function ifect only a limited subset of output tuples, and to regemerat
known to all run-time components (such as the scheduleminaffected output is wasteful and unnecessary. To mini-
and shapes their processing strategies. The overall goal mize run-time overhead and message proliferation, we as-
to deliver maximum average QoS at system outputs. Secsume alosedmodel for replay that generates revision mes-
tion 5 presents our optimization techniques to achieve thisages when processing revision messages. In other words,

goal. our model processes and generates “deltas” showing only
3 Dynamic Revision of Query Results the effects of revisions rather than regenerating the entir
result.

As most stream data management systems, Borealis’ pre-

; . - While the scheme that we describe below may appear
decessor, Aurora assumes an append-only model in whic, . o L
: o complicate the traditional stream model and add signif-
a message (i.e. tuple) cannot be updated once it is place

on a stream. If the messade gets dropoed or contains inco|Qant latency to processing, it should be noted that in most

L 9eg pped ; éystems, input revision messages comprise a small percent-

rect data, applications are forced to live with approximate :

or imoerfect results age (e.g, less than 1%) of all messages input to the system.
P ' Further, because a revision message refers to historital da

In_ many real-world streams, corrections or updates to and therefore the output it produces is stale regardless of
previously processed data are available after the fact. Th : L :
ow quickly it is generated), it may often be the case that

Borealis data model extends Aurora by supporting SUChrevision message processing can be deferred until times of

corrections _b_y way of Tevision messages. The goal is Yow load without significantly compromising its utility to
process revisions intelligently, correcting query restiat a{pplications
r: .

have already been emitted in a manner that is consiste
with the corrected data. Revision messages can arise a2 A Revision Processing Scheme
several ways: We begin by discussing how revision messages are pro-
1. The input can contain them. For example, a stockcessed in a simple single-box query diagram before con-
ticker might emit messages that fix errors in previ- sidering the general case. The basic idea of this scheme
ously emitted quotes. is to process a revision messagerbplayingthe diagram
2. They can arise in cases in which the system has shedlith previously processed inputs (tdegram history, but
load, as in Aurora in response to periods of high loadusing the revised values of the message in place of the orig-
[44]. Rather than dropping messages on the floor, anal values during the repldyTo minimize the number of
Borealis system might instead designate certain messutput tuples generated, the box would replay the original
sages for delayed processing. This could result indiagram history as well as the revised diagram history, and
messages being processed out-of-order, thus necesg&mit revision messages that specify the differences betwee
tating the revision of emitted results that were gener-the outputs that result.

ated earlier. The diagram history for a box is maintained in the con-
3. They can arise from time-travel into the past or future.nection point (CP) of the input queue to that box. Clearly,
This topic is covered in detail in Section 4. it is infeasible for a query diagram to maintain an entire di-

3.1 Revisions and “Replayability” agram history of all input messages it has ever seen. There-

Revision messages give us a way to recover from mistake®@'®, @ CP must have an associatestory bound(mea-
or problems in the input. Processing of a revision messaggUred in time or number of tuples) that specifies how much
must replay a portion of the past with a new or modified history to keep around. This in turn limits how far back

value. Thus, to process revision messages correctly, waistorically a revision message can be applied, and any re-
must make a query diagram “replayable”. visions for messages that exceed the history bound must be

Replayability is useful in other contexts such as recov-gnored. . . o
ery and high availability [28]. Thus, our revision scheme Given a diagram history, replay of box processing is
generalizes a replay-based high-availability (HA) mecha-Straightforward. Upon seeing a replacement messége,
nism. In HA, queued messages are pushed through t@sta}teleséaox will retrieve the 0r|g.|nal message, from
query diagram to recover the operational state of the sysis diagram history (by looking up its key value). The re-
tem at the time of the crash. In our revision mechanismplayed message will arrive at the box in its input queue,
messages are also replayed through the query diagram. Bldentifying itself as a replayed message, and the box will
failure is assumed to be an exceptional occurrence, an§Mit a revision message as appropriate. For example, filter
therefore, the replay mechanism for recovery can tolerat&Vith predicatep will respond in one of four ways:
some run-time overhead. On the other hagdisionsare a
part of normal processing, and therefore, the replay mech-
anism for processing revisions must be more sensitive to
run-time overhead to prevent disastrous effects on systent— Analogously, insertion messages would be added to theaiiabis-

throughput. o tory and the deletion messages would remove the deletedageé®mm
In theory, we could process each revision message byhe diagram history.

e if pistrue oft and also of’, the replacement message
is propagated,




e if p is true oft but not of ¢/, a deletion message is Note that the first aggregate box in the chain can correctly
emitted fort, process revisions for messages up to 3 hours old, as any

« if pis not true oft but is true oft’, an insertion mes- Messages older than this belonged to windows with mes-
sage is emitted for', and sages more than 5 hours old. As a result, the second aggre-
L . , ) ) gate box will have an effective history bound of 4 hours as

o if pis not true of either or ', no message is emittéd. i il never see revisions for messages more than 3 hours

The processing of revision messagesdtatefuloperators old, an_d therefore ne(_ed messages more than 1 hour older
(e.g., aggregate) is a bit more complex because stateful op?an this. Thus, the diagram can hermalizedas a result
erators process multiple input messages in generating asi@f this static analysis so that no history is stored that can
gle output message (e.g., window computations). Thus, t§€ver be used.
process a replacement messageor original message, While query diagrams can be normalized in this man-
an aggregate box must look up all messages in its diagramer, it may still be necessary to reduce the storage demands
history that belonged to some window that also contained®f diagram histories. This can be done by moving dia-
t, and reproduce the window computations both with anddram histories upstream so that they are shared by multiple
without the revision to determine what revision messageglownstream boxes. For example, given the two box dia-
to emit. For example, suppose that aggregate uses a wigram described above, a single diagram history of 5 hours
dow of size 15 minutes and advances in 5 minute increcould be maintained at the first aggregate box, and process-
ments. Then, every message belongs to exactly 3 window#)d of a revision message by this box would result in the
and every replacement message will result in replaying th€mission of new revision messag@sggybacked wittall
processing of 30 minutes worth of messages to emit up t@f the messages in the diagram history required by the sec-
3 revision messages. ond box to do its processing. This savings in storage comes
Revision processing for general query diagrams is zt the cost of having to dynamicallggeneratethe dia-
straightforward extension of the single-box diagram. ka th gram history for the second box by reprocessing messages
general case, each box has its own diagram history (in thé the first box. In the extreme case, minimal diagram his-
CP in its input queue). Because the processing model i#ry can be maintained by maintaining this history only at
closed, each downstream box is capable of processing tHge edges of the query diagram (i.e., on the input streams).
revision messages generated by its upstream neighbors. This means, however, that the arrival of a revision message
One complication concernmessage-basedindows  to the query diagram must result in emitting all input mes-
(i.e., windows whose sizes are specified in terms of numsages involved in its computation, and regenerating all in-
bers of messages). While replacement messages af@mediate results at every box. In other words, as we push
straightforward to process with such windows, insertiondiagram histories towards the input, revision processéag r
and deletion messages can trigger misalignment with results in the generation of fewer “delta’s” and more repeated
spect to the original windows, meaning that revision mes-Outputs.
sages must be generated from the point of the revision all At the other extreme, with more storage we can reduce
the way to the present. Unless the history bound for suclthe processing cost of replaying a diagram. For example, an
boxes are low, this can result in the output of many revi-aggregate box could potentially maintain a history of all of
sion messages. This issue is acute in the general query didis previous state computations so that a revision message
gram case, where messages can potentially increase expean increment this state rather than waiting for this state
nentially in the number of stateful boxes that process themto be regenerated by reprocessing earlier messages in the
We consider thisevision proliferationissue in Section 3.4, diagram history. This illustrates both extremes of theerad
but first we consider how one can reduce the size of diaoff between processing cost and storage requirements in
gram histories in a general query diagram at the expense gfrocessing revision messages.

Increasing revision processing cost. 3.4 Revision Proliferation vs. Completeness

3.3 Processing Cost vs. Storage Our previous discussion has illustrated how messages can
It is clear that the cost of maintaining a diagram niStOprr0|iferate as they pass through aggregates, thereby.intro
for every box can become prohibitive. It should be ob-ducing additional overhead. We now turn to the question of
served, however, that discrepancieshistory boundse-  how to limit the proliferation of revision messages that are
tween boxes contained in the same query make some digenerated in the service of a revision message. This is pos-
gram history unnecessary. For example, consider a chaigible provided that we can tolerate incompleteness in the
of two aggregate boxes such that: result. In other words, we limit revision proliferation by-i
1;noring revision messages or computations that are deemed
to be less important.
i _ o ) The first and simplest idea limits the paths along which
» the second aggregate in the chain specifies a windoWg,isions will travel. This can be achieved by allowing ap-
of 1 hour and has a history bound of 10 hours. plications to declare whether or not they are interested in
2The processing of insertion and deletion messages is simitd  d€aling with revisions. This can be specified directly as a
therefore omitted here. boolean value or it can be inferred from a QoS specifica-

¢ the first aggregate in the chain specifies a window o
2 hours and has a history bound of 5 hours, and




tion that indicates an application’s tolerance for impreci
sion. For example, high tolerance for imprecision might
imply a preference for ignoring revision messages. Revi-
sion processing might also be restricted to paths that con-
tain updates to tables since the implication of a relational
store is that the application likely cares about keeping an
accurate history. Further revision processing beyond the
point of the update may be unnecessary.

Another way to limit revision proliferation is to limit
which revisions are processed. If a tuple is considered to be
“unimportant”, then it would make sense to drop it. This is
similar to semantic load shedding [44]. In Borealis, the se
mantic value of a message (i.e.,iitgportancgis carried in t
the message itself. The score function that computes Qo%
value of a message can be applied to a revision message s
well, and revisions whose importance falls below a thresh
old can be discarded.

Handle: 10: F(x) = rand % 6 > X

(10) Handle: 11: G(x) = rand % 6 > (

FUNCTION
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Figure 2: Control-Line Example Use

‘with the function definition and optionally its parameters
ored in the associated record.

We expect that common practice will require parameters
a function to change at run-time. Hence a new operator
is required that will bind new parameters (that were poten-
tially produced by other Borealis boxes) to free variables

4 Dynamic Modification of Queries within a function definition, thereby creating a new func-
4.1 Control Lines tion. Borealis introduces a new operator, calBdd:
Basic Model. Borealis boxes are provided with special Bind(B; = Fi, ..., B, = F,)(S)

control lines in addition to their standard data input lines
Control lines carry messages with revised box parameterBind accepts one or more function handlds(¢), and
and new box functions. For example, a control messagéinds parameters to them, thereby creating a new function.
to a Filter box can contain a reference to a boolean-value@or example, Bind can create a specialized multiplier func-
function to replace its predicate. Similarly, a control mes tion, B;, by binding the fourth attribute of an input message
sage to an Aggregate box may contain a revised window$ to the second parameter of a general multiplier function.
size parameter. Control lines blur the distinction between Example. To illustrate the use of control lines and the
procedures and data, allowing queries to automaticalfy sel Bind operator, consider the example in Figure 2, which will
adjust depending on data semantics. This can be used iautomatically decrease the selectivity of a Filter box if it
for example, dynamic query optimization, semantic load-begins to process important data. Assume that the Map
shedding, data modeling (and corresponding parameter adperator is used to convert input messages into an impor-
justments), and upstream feedback. tance value ranging from 1 to 5. The Bind box subtracts
Each control message must indicate when the changie importance value from 5 and binds this valuertm
in box semantics should take effect. Change is triggeredunction 10. This creates a new function (with handle 11),
when a monotonically increasing attribute received on thawhich is then sent to the Filter box. This type of automatic
data line attains a certain value. Hence, control messageslectivity adjusting is useful in applications with expen
specify an<attribute, value- pair for this purpose. For sive operators or systems near overload, where processing
windowed operators like Aggregate, control messages mustnimportant data can be costly.
also contain a flag to indicate if open windows at the time Timing. Since control lines and data lines generally
of change must be prematurely closed for a clean start. come from separate sources, in some cases it is desirable
Borealis stores a selection of parameterizable functionso specify precisely what data is to be processed according
applicable to its operators. Two types of functions areto what control parameters. In such cases, two problems
stored in thdunction storage basdunctions with specified can potentially occur: the data is ready for processing too
parameters and functions with open parameters. Functioriate or too early.
with specified parameters indicate what their arguments are The former scenario occurs if tuples are processed out
in the function specification. For example($3,$4) =  of order. If a new control message arrives, out-of-order tu-
$3 * $4 will multiply the third and fourth attributes of the ples that have not yet been processed should use the older
input messages. In contrast, functions with open paramegarameters. The old parameters must thus be buffered
ters do not specify where to find their arguments. Insteadnd later applied to earlier tuples on the stream. In order
they use the same binding of arguments in the function thato bound the number of control messages which must be
they replace. For example, if a box was applying the func-buffered, the DA can specify a time bound after which old
tion: g(x,y) = x — y to input messages with data attributes control messages can be discarded.

x and y, then sending(z,y) = = + y along the control A latter scenario occurs if control line data arrives late
line will replace the subtraction with an addition function and the box has already processed some messages using
on the same two attributes of input messages. the old box functionality which were intended for the new

The design of the function store is fairly straight for- box parameters. In this case, Borealis can resort to revisio
ward; it is a persistent table hashed on the function handlenessages and time travel, which is discussed next.



4.2 Time Travel historical data to generate a stream of predicted future. dat

Borealis time travel is motivated by the desire of applica- T he undo operation “rewinds” the stream engine to some
tions to “rewind” history and then repeatit. In additioneon time in the past. To accomplish this, the CP view emits
would like a symmetric version of time travel, i.e., it shdul deletion messages for all messages transmitted since the
be possible to move forward into the future, typically by SPecified time. . ) - o

running a simulation of some sort. To support these capa- EVery CP view has a unique identifier that is either as-
bilities, we leverage and extemonnection pointéo allow  Signed by the application that creates it or generated au-

for CP views and generation of revision records. These extomatically. When multiple versions of the same query
tensions are described below. network fragment co-exist, a stream is uniquely identified

Connection Point (CP) Views. To enable time travel, b_y its originally gnique name and the ide_ntifi_ers of the CP
we leverage Aurora’s connection points [2] which store VIEWS that are directly upstream. An application that wants

message histories from specified arcs in the query diagranf© receive the output of a stream must specify the complete

CPs were originally designed to support ad-hoc querie identifier of the stream. For human users, a GUI tool hides

that can query historical as well as real-time data. We exihese details. The system may also create CP views for pur-

tend this idea WittCP Views independent views of a con- POS€S of high availability and replication. These CP views

nection point through which different branches of a query@'€ invisible to users and applications. .
diagram can access the data maintained at a CP. Every CP 1iMme Travel and Revision Records.A request to time
has at least one and possibly more CP views through whicf{avel can be issued on a CP view, and this can result in the
its data can be accessed. The CP view abstraction makg@§neration of revision records as described below. When a
every application appear to have exclusive control of thecP View time travels into thpastto some timef, it gen-

data contained in the associated CP. But in fact, a CP mairEa(es a set of revision (or more specifically, deletion)mes
tains all data defined by any of its associated views. sages that “undo” the messages sent along the arc associ-

. . 3 ’
We envision that time travel will be performed oeapy ated with a CP since® The effect of an operator process

: : . ing these revisions is to roll back its state to timeThe
of some portion of the running query diagram, so as not to

interfere with processing of current data by the running dia operalor in turn issues revision messages to undo/rewse th

gram. CP views help in this respect, by enabling time travePUtPut Since time. Therefore, the effect of deleting all
o ; . messages since timérom some CP view is to rollback the
applications, ad hoc queries, and the query diagram to ac-

cess the CP independently and in parallel. A new CP vievx?tate of all operators downstream from this view to time

can be associated with an automatically generated copy of Once the state s rolled back, the CP. view refransmits
. . messages from timeé on. If the query diagram is non-
the operators downstream of the connection point. Alter_deterministic (e.g., it contains timeouts) and/or histo
natively, the view can be associated with a new query dia; uc (€.9., ! &
gram been modified, reprocessing these messages may produce

E CP view is declared with i h different results than before. Otherwise, the operatolis wi
_ Every CPview is declared with dew rangethat spec- produce the exact same output messages for a second time.
ifies the data from the CP to which it has access. A vie

bl ind the dat tained in a CP When time traveling into the future, a prediction func-
range resembieswindowover the data contained in a L, s, is ysed to predict future values based on values cur-

and can eithemoveas new data arrives to the CP or re- oy stored at a CP. Predicted messages are emitted as if

main fixed. A CP view range is defined by two parametersip o "\vere the logical continuation of the input data, and

starttime gnd maxtime Starttime determmes_the oldest ownstream operators process them normally. If there is a
message in the view range, and can be specified as an

) ap between the latest current and the first predicted mes-
solute value or a value relative to the most recent messa ge, a window that spans this gap may produce strange
seen_by the CP. Matime determines the last message in results. To avoid such behavior, all operators support an

the view range, and can also be an absolute value (Wheg‘ptional reset command that clears their state
the CP view will stop keeping track of new input data) or y

latve to th " Cinput A CP view th As new data becomes available, more accurate predic-
relative to the most recent Input message. view thaf s can (but do not have to) be produced and inserted into
has both startime and maxime set to absolute values is

the stream as revisions. Additionally, when a predictor re-

fixed Any other CP view isnoving  ceives revision messages, it can also revise its previais pr
A CP view includes two operations that enable time yjctions.

travel: 5 B lis Optimizati
1. replay. replays a specified set of messages within the orealls Uptimiza _Ion S o
view’s range, and The purpose of the Borealis optimizer is threefold. First, i

2. unda produces deletion messages (revisions) for dS intended to optimize processing across a combined sen-
specified set of messages within the view’s range. ~ SOf and server network. To the best of our knowledge, no

The replay operation enables time travel either into theP"€Vious work has studied such a cross-network optimiza-

past or into the future. For time travel into the past, the CPHO" problet:n. ?jeconlq, QoS is admetr!c that is |mport§\nt|
view retransmits historical messages. For time travel intd" Stream-based applications, and optimization must dea

the future, the CP view uses a prediction function supplied 316 reduce the overhead of these deletions, these messagerscap-
as an argument to the replay operation in conjunction withsulated into a single macro-like message.




with this issue. Third, scalability, size-wise and geodwap at output sites

ical, is becoming a significant design consideration with _.i Global Optimizer
the proliferation of stream-based applications that detl w T

large volumes of data generated by multiple distributed
data sources. As a result, Borealis faces a unique, multi-
resource, multi-metric optimization challenge that is-sig momwr
nificantly different than those explored in the past.

7

Neighborhood Optimizer

|

Local Optimizer |

5.1 Overview at every site \\\|

A Borealis application, which is a single connected dia- -~ > statistics — = trigger — = decision
gram of processing boxes, is deployed on a network/of
servers and sensor proxies, which we refer tgitess Bo- Figure 3: Optimizer Components

realis optimization consists of multiple collaboratingmio
toring and optimization components, as shown in Figure 3as we discuss in Sections 5.3.1 and 5.3.2.
These components continuously optimize the allocation of Dealing with QoS is more challenging. In our model,
query network fragments to processing sites. each tuple carries a VM. These metrics include informa-
Monitors. There are two types of monitors. First, a tion such as the processing latency or semantic importance
local monitor (LM)runs at each site and produces a collec-of the tuple. For each tuple, the score function maps the
tion of local statistics, which it forwards periodicallytioe  values in VM to a score that indicates the current predicted
end-point monitor (EM). LM maintains various box- and impact on QoS. For instance, the score function may give a
site-level statistics regarding utilization and queuietays  normalized weighted average of all VM values. The local
for various resources including CPU, disk, bandwidth, andoptimizer uses differences in raw score values to optimize
power (only relevant to sensor proxies). Secondead-  box scheduling and tuple processing as we discuss in Sec-
point monitor (EM)runs at every site that produces Bore- tion 5.3.1.
alis outputs. EM evaluates QoS for every output message To allow the global optimizer to determine the prob-
and keeps statistics on QoS for all outputs for the site. lem that affects QoS the most and take corrective ac-
Optimizers. There are three levels of collaborating op- tions, Borealis allows the DA to specify a vector of
timizers. Atthe lowest level, mcal optimizerunsatevery  weights: [ Li fetine, Qoverage, Throughput,
site and is responsible for scheduling messages to be pré-at ency| for multiple discrete segments along these
cessed as well as deciding where in the locally running difour dimensions, which indicates the relative importarice o
agram to shed load, if required. eighborhood optimizer each of these components to the end-point QoS. The most
also runs at every site and is primarily responsible for loadinteresting of these dimensions, lifetime, is the mechanis
balancing the resources at a site with those of its immediby which Borealis balances sensor network optimization
ate neighbors. At the highest level géobal optimizeris  goals (primarily power) with server network optimization
responsible for accepting information from the end-pointgoals. The lifetime attribute indicates how long the sensor
monitors and making global optimization decisions. network can last under its current load before it stops pro-
Control Flow. Monitoring components run contin- ducing data. The second dimension, coverage, indicates the
uously and trigger optimizer(s) when they detect prob-amount of important, high quality data that reaches the end-
lems (e.g., resource overload) or optimization opportuni-point. Coverage is impacted negatively by lost tuples, but
ties (e.g., neighbor with significantly lower load). The lo- the relative impact is lower if less important or low gqual-
cal monitor triggers the local optimizer or neighborhood ity messages are lost. We address these issues further in
optimizer while the end-point monitors trigger the global Section 5.3.3. Because each of these metrics is optionally
optimizer. Each optimizer tries to resolve the situation it a component of the VM, the end-point monitor can keep
self. If it can not achieve this within a pre-defined time pe- statistics on the components that are in VM. Together with
riod, monitors trigger the optimizer at the higher levelidh the vector of weights, these statistics allow the end-point
approach strives to handle problems locally when possiblenonitor to make a good prediction about the cause of the
because in general, local decisions are cheaper to make af@bS problem.
realize, and are less disruptive. Another implication &tth Sensor Proxies. We assume a model for sensor net-
transient problems are dealt with locally, whereas more perworks like [31] where each node in a sensor network per-
sistent problems potentially require global intervention  forms the same operation. Thus, the box movement op-
Problem Identification. A monitor detects specific re- timization question is not where to put a box in a sensor
source bottlenecks by tracking the utilization for each re-network, but whether to move a box into the sensor net-
source type. When bottlenecks occur, optimizers either rework at all. This allows one centralized node to make a
guest that a site sheds load, or, preferably, identify slacklecision for the entire sensor network. We call this cen-
resources to offload the overloaded resource. Similarly, @ralized node a proxy, which is located at the wired root of
monitor detects load balance opportunities by comparinghe sensor network at the interface with the Borealis server
resource utilization at neighboring sites. Optimizers usenetwork. There is one proxy for each sensor network that
this information to improve overall processing performanc produces stream data for Borealis. This proxy is charged



with reflecting optimization decisions from the server net-cating boxes to sites with slack, which connect directly to
work into appropriate tactics in its sensor network. Fur-a box already allocated to that site.

thermore, the proxy must collect relevant statistics (sagh
power utilization numbers and message loss rates) from th
sensor network that have an impact on Borealis QoS.

In the following sections, we first describe how Borealis
performs the initial allocation of query network fragments
to sites. We then present each optimizer in turn. We als®.3.1 Local Optimization
discuss how to scale the Borealis optimizer hierarchy taThe local optimizer applies a variety of “local” tactics whe
large numbers of sites and administrative domains. triggered by the local monitor. In case of overload, the lo-
5.2 Initial Diagram Distribution cal optimizer (temporarily) initiates load shedding. The
load shedder inserts drop boxes in the local query plan
to decrease resource utilization. The local optimizer also
explores conventional optimization techniques, inclgdin

5.3 Dynamic Optimization

gtarting from the initial allocation, the local, neighbodd,
and global optimizers continually improve the allocatidn o
boxes to sites based on observed run-time statistics.

The goal of the initial diagram distribution, performed by
the global optimizer, is to produce a “feasible” allocation

O I e s Prelmb Ay St ochanging the orcer of commiting operatos and Using a-
9 gram. P y ternate operator implementations.

is on the placement of read and write boxes with the Bo- . . A . .
éA more interesting local optimization opportunity exists

realis tables that they access. Because these boxes acCeSS  cheduling boxes. Unlike Aurora that could evaluate
stored state, they are significantly more expensive than re 9 :

ular processing boxes. Furthermore, in order to avoid po—u Osst"rggz itooduégutsoizgl?saggldgc;ﬂ;{gbtger:gntgc?gds_ Sg S
tentially costly remote table operations, it is desirabled- P ' P

locateBorealis tables with the boxes which read and write>°°"® function on each message by using the values in VM.

them as well as those boxes that operate on the resultin y comparing the average QoS-impact SCores between the
Mputs and the outputs of each box, Borealis can compute
streams. )
0 i ¢ cost here includ binati f the averag®oS Gradienfor each box, and then schedule
| Lur notion of cost here Includes a combination of Pery,q hoy with the highest QoS Gradient. Making decisions
site (I/0) access costs and networked access costs, ¢

wring lat 4 th hout eh reristi t road n a per message basis does not scale well; therefore Bo-
uring latency and throughput characteristics of reéads angq 55 horrows Aurora notion of train scheduling [15] of
writes to tables. Our objective is to minimize the total ac-p

. . X dpxes and tuples to cut down on scheduling overhead.
cess cost for each table while ensuring each table is place Unlike Aurora. which alwavs processed messages in or-
at a site with sufficient storage and I/O capacity. Initial di ’ ys p 9

o 2 er of arrival, Borealis has further box scheduling flexibil
agram distribution faces several challenges in its attempI

to place tables. Clearly, we must deal with arbitrary in- y. In Borealis, it is possible to delay messages i.e.; pro
: . : . cess them out of order) since we can use our revision mech-
terleavings of read and write boxes operating on arbitrary.

tables. Interleaved access to tables limits our abilityde ¢ anism to process them later as insertions. Interestingly, b

locate tables with all boxes that operate on their conten ause the amount of revision history is bounded, a message

because the boxes that use the content of one table read gnat is delayed beyond this bound will be dropped. Thus,

write the content of another. Co-locating multiple tablesprlority scheduling under load has an inherent load shed-

at one site may not be feasible. Furthermore the considqIIng behgwor. The above tactic Of_ processing the high-
est QoS-impact message from the input queue of the box

eration of diagram branches, and the associated synchro-. - ; . .
o : : : Wwith highest QoS gradient may generate substantial revi-
nization and consistency issues, constrains the set af vali_. ! : )
lacement schemes sion messages and may Ieac_i to _Ioad she_ddlng. Itis possible
P ' that this kind of load shedding is superior to the Aurora-

_ We propose a two-phase strategy in approaching our inigyy e 4rop-hased load shedding because a delayed message
tial placement problem. The first phase identifies a set of i pe processed if the overload subsides quickly. Hence,

‘l‘candlgat_lc?’r’].grpugs ofdboxes gnd tgblesbthat should be COE is more flexible than the Aurora scheme. There is, how-
ocated. This is based on a bounding box computation of o 5 ¢st to using revisions; hence we propose that out-

operations on each table. Our bounding boxes are initial%f-order processing be turned on or off by the DA. If it is

pombined based on overlaps, and subsequently ref_ined d imed off, conventional "drop-based” load shedding must
ing our search for sites to accommodate all operations an e performed [44]. Also, for queries with stateless oper-

tables within each bounding box. This search uses a heurigq g and when all revisions are in the form of insertions,

tic to assign the most demanding (in terms of 1/0 require-eyision processing behaves like regular Aurora procegssin

ments) bounding box, to the site with greatest capacity. We,, g\,cy cases, the system should use explicit drop boxes to
utilize a table replication mechanism to deal with scenarjigcarq tuples with low QoS-impact values

ios where no sites have sufficient capacity. This addition- . o
ally involves fragmenting any boxes operating on the table5-3-2  Neighborhood Optimization

The second phase completes the process by appropriatéline actions taken by the neighborhood optimizer in re-
assigning the remaining boxes. We do so by computingponse to a local resource bottleneck or an optimization
the CPU slack resulting from the first phase, and then disepportunity are similar — both scenarios involve balancing
tribute the remaining boxes. We propose iteratively allo-resource usage and optimize resource utilization between



the local and neighboring sites. the sensor network, low sensor sample rates, or load shed-
Other than balancing load with the neighboring sites, theding in the server network. In the former case, sensor prox-
neighborhood optimizer also tries to select the best baxes ties can move operators that incur high inter-node commu-
move. These are the boxes that improve resource utilizationication (e.g., a distributed join) out of the network. Iigh
most while imposing the minimum load migration over- solution is not sufficient, the optimizer notifies sites ie th
head. If network bandwidth is a limited resource in the sys-site list iteratively (in increasing order of distance frone
tem, then “edge” boxes (which are easily slide-able [18])data source) to decrease the amount of load shedding on the
are moved between upstream and downstream nodes. Thiglevant path of boxes.
solution is similar to the diffusion-based graph repaotiti Throughput problem. The optimizer attempts to locate
ing algorithm [38]. If network bandwidth is abundant and the throughput bottleneck by searching backwards from the
network transfer delays are negligible, then a correlation output, looking for queues (to operators or network links)
based box distribution algorithm [50] is used to minimize that are growing without bound. Once the optimizer finds
average load variation and maximize average load correlasych a queue (and a site), it examines local site statistics,
tion, which will accordingly result in small average end-to checking for inadequate resource slack. If the problem is
end latency. More specifically, we store the load statisticshe CPU, the optimizer identifies a nearby site with CPU
of each box/node as fixed-length time series. When deters|ack and initiates load movement by communicating with
mining which box to move, a node computes a score fokthe relevant neighborhood optimizers. Load migration then

each candidate box, which is defined as the correlation cagkes place as discussed in Section 5.3.2. If the problem
efficient between the load time series of that box and that ofnvolves 1/0 resources, then the global optimizer runs the

the sender node minus the correlation coefficient betweegaple allocation algorithm from Section 5.2 using current
the load time series of that box and that of the receivestatistics to correct the 1/0 imbalance. If the problem is
node. A greedy box selection policy chooses the box wittetwork bandwidth, a message is sent to the site at each end
the largest score to move first. of the network link whose queue is growing without bound.
When neighboring nodes do not collectively have suf-If either site can identify a lower bandwidth cut point, then
ficient resources to deal with their load, the overload will a corresponding box movement can be initiated.
likely persist unless input rates change or the global opti- |, a1l resource bottleneck scenarios, there may be no
mizer changes the box allocation. Meanwhile, it is at leasty,achanism to generate improvement. If so, the global op-
desirable to move load shedding from the bottleneck site tQimizer has no choice but to instruct one or more sites to
an upstream site, thereby eliminating extra load as early aghe |0ad. If the QoS function is monotonically increas-
possible. To achieve this, the neighborhood optimizer Ofing with the processing applied to a tuple, then load shed-
the bottleneck node triggers distributed load shedding ijing should be applied at a data source (i.e., at the sensor
aslfing.the upstream neighborhood optimizers to shed Ioacbroxy). QoS, however, is not monotonic if there is down-
which in turn contact their parent nodes and so on. stream processing that can provide semantically valuable
5.3.3 Global Optimization information about the message. In this case, the global op-

The global optimizer reacts to messages from the end-poirftmizer can look through the statistics to identify the box
monitors indicating a specific problem with a Borealis out- With minimum average QoS as the load shedding location
put or a bottleneck at some neighborhood. and contact the corresponding site.

The global optimizer knows the allocation of boxes to  Latency problem. If the problem is latency, a similar
sites and the statistics from the local monitors. From thisalgorithm is used as for throughput. The difference is that
information, it can construct a list of the intermediatesit latency is additive along the latency critical path so firgdin
through which messages are routed from the data sourceéd fixing inadequate CPU, /O, or network slack on any
to the output. The optimizer then takes appropriate actionsite on this path will improve latency. For this reason, ¢her
depending on the nature of the problem: is no need to perform improvements starting at the end-

Lifetime problem. If the problem is related to sen- point and working backwards. A backwards path traversal,

sor lifetime (i.e., power), the global optimizer informseth however, is still necessary to isolate the latency crifpath
corresponding sensor proxies. These proxies either initi{binary operators join and re-sample often constantly wait
ate operator movements between the sensor and the senféf inputs from one branch; improving the latency of the
networks (by moving data-reducing operators to the sensopther branch will have no observable effect at the output).
network and data-producing operators out of the sensor net- In the case that no information is available from the end
work), or reduce sensor sampling (and transmission) rategoint monitor concerning the source of the problem, then
This latter solution comes with a fundamental trade-offthe global optimizer has no choice but to try the above tac-
with coverage. Slower sample rates are essentially equivaics in an iterative fashion, hoping that one of them will
lent to load shedding at the inputs and have a similar impaaivork and cause improvement. Admittedly, it is entirely
on QoS. Depending on the upstream operators, decreasinp@ssible that improving one bottleneck will merely shifth
the sample rate can also affect throughput. problem to some other place. This "hysteresis effect” may

Coverage problem. Coverage problems are caused by be present in Borealis networks, and it is a challenging fu-
tuples getting dropped during wireless transmission msid ture problem to try to deal with such instabilities.



5.4 Scalability and Federated Operation it could either block or continue processing with the re-

Each one of the algorithms in the preceding sections is deMaining (partial) inputs. The former option greatly redsice
signed to operate at a different level of granularity in the@vailability, while the latter option leads to a number of
system, with the global optimizer running at the highest Wrong” results. We propose to give the user explicit con-
level. There is certainly a system size, however, for whichtrol of trade-offs between consistency and availabilitthe
the global optimizer will become a bottleneck. To scaleface of network failures [13, 24]. To provide high availabil
past that threshold, we apply the above algorithms recurlly, €ach SPE guarantees that input data is processed and
sively on groups of nodes, cegions results forwarded within a gse_zr-spemﬂed time threshold.of
whose size is below the scalability threshold. Each regiorfble. Atthe same time, to prevent downstream nodes from
will have a regional optimizer that will run the algorithms unnecessarily having to react to incorrect data, an SPE trie
of Section 5.3.1. Each region will also have a neighborhood® avoid or limit the number of tuples it produces during a
optimizer that will treat each region as a (virtual) node andfailure. When the failure heals, we propose that replica re-
run the algorithms of Section 5.3.2 across neighboring reProcess the previously missing information and correct the
gions. There will also be a global optimizer that will run the Previously wrong output tuples.
algorithms of Section 5.3.3 across regions, again treating To support the above model, we further enhance the
each region as an individual node. Regions can be furthestreaming data model introduce in Section 2.2. Results
grouped into larger regions. based on partial inputs are markedtastative with the

The above algorithms also assume that sites are mutumnderstanding that they may subsequently be modified; all
ally co-operating. To scale optimizers past administeativ other results are considersthble When a failure heals,
boundaries, we propose to leverage the mechanisms devadach SPE that saw tentative data reconciles its state and
oped in Medusa [12]. In Medusa, autonomous participantstabilizesits output byreplacingthe previously tentative
establish pair-wise contracts and handle each other'sexceoutput with stable data tuples forwarded to downstream
load in exchange for contracted payments. clients. We believe that traditional approaches to record

In Borealis, we plan to explore how participants canreconciliation [24] are ill-suited for streaming systerasd
take advantage of their pair-wise load management conexplore techniques to reconcile the state of an SPE based
tracts not only to move excess load but to actually opti-on checkpoint/redo, undo/redo, and the new concept of re-
mize QoS. We propose a two-tier approach, where intravision tuples.

and inter-participant optimizers work together. The inter  oyr approach is well-suited for applications such as en-
participant optimizer monitors local load and detects whenjyonment monitoring, where high availability and “real-

it becomes cost-effective to either use a partner's re®BUIC {ime” response is preferable to perfect answers. Some ini-
or accept a partner’s load. Using performance guarantegg results are available in [11].

defined in SLAs, the inter-participant optimizer models a
partner’s resources as a local server with a given load of Related Work
models the partner’s tasks as local tasks with given Qo
functions. With this information, the intra-participamite

mizer (.e. the global optimizer) can incorporate the extra

%ur work relates to various past efforts in data management
and distributed systems.

resources and tasks in its optimization. Query Processing. Borealis query processing relates
to adaptivity techniques of CONTROL [26] and Tele-
6 Fault Tolerance graph(CQ) [17] projects. Online aggregation approach

In Borealis, we explore how to leverage the new CP, time[27] of the CONTROL project, progressively improves the
travel, and revision tuple functionalities to efficientlyop  query answer as more tuples contribute to the result, in a
vide fault-tolerance in a distributed SPE. As in most pre-similar way to our insertion messages. Borealis can ad-
vious work on masking software failures, we use replica-ditionally delete and replace previously delivered result
tion [24], running multiple copies of the same query net-The Telegraph project proposed several operators for adap-
work on distinct processing nodes. tive query processing: the Juggle operator reorders input
To maximize availability, when a node detects a failuretuples based on their interesting content [35]; the Eddy op-
on one of its input streams, we propose that it first trieserator reorders operators that a tuple is processed through
to find an alternate upstream replica. For the node to conbased on change in performance [7]; and the JuggleEddy
tinue its processing from the new replica, however, all up-operator combines both functionalities [34]. In Borealis,
stream replicas must be consistent with each other. To enthe operator order for a query is fixed; however, tuples
sure replica consistency, we define a simple data-senglizi can be reordered. A priority scheduler decides which tu-
operator, calledbUnion that takes multiple streams as in- ples and which operators to prioritize in execution based on
put and produces one output stream with deterministicallyQoS values of the tuples. The QoS value can be a function
ordered tuples, ensuring that all operator replicas pcesof both content (e.g., tuple importance) and resource con-
the same input in the same order. sumption metrics (e.g., tuple latency). Our QoS gradient
If a downstream SPE is unable to find a suitable up-approach in box/train scheduling resembles the gradient-
stream data source for a previously available input streantyased payoff estimation approach of JuggleEddy [34].



Dynamic Revision of Query Results.Revision record lows users to add a time stamp tag to any pathname. If
processing is similar to updating a view in response to arthis tag is present, Elephant accesses the version of the file
update of underlying base relation. Our approach of propathat existed at the specified time, allowing users to travel
gating only revision records that reflect the changes resultinto the past. These approaches, however only support an
ing from a revision is similar in spirit to incremental view asymmetric version of time travel (i.e., back in time) and
maintenance [25], which confines the effect of an updatalo not consider data streams.
to that part of the view that changes. The key difference SPE Fault Tolerance. Until now, work on high avail-
between the two approaches is that the latter has no notiogility in stream processing systems has focused on fail-
of “historical correction”. an update to a base relation in- stop failures of processing nodes [28, 39]. Some techniques
validates the previous value of the data being updaseaf  use punctuations [45], heartbeats [42], or statically aefin
the time of the updatevhereas revision records invalidate slack [2] to tolerate bounded disorder and delays on input
previous values of dats of the time that data was first pro- streams. All current approaches, however, block or drop
cessed Borealis may therefore need to correct previouslytuples when disorder or delay exceed expected bounds.
processed output and thus must be able to reason aboyt . .
all previously generated output, and not just that gendrate Discussion and Future Plans
most recently. Additionally, unlike view maintenance, Bo- This paper has presented some of the challenges that must
realis treats revisions as first-class citizens that carrbe p be met by the next generation of stream processing engines.
cessed and generated by queries. This approach is simil§¥e have cast these research problems in the context of the
to that taken in Heraclitis [23] and in several rule-basedcurrent Borealis design in order to draw out the issues and
active database settings [47, 19, 41], where updates are P show how they might interact. Our discussion focused
evated to first-class (i.e., queryable) “deltas”. Similarkv  on advanced capabilities that facilitate dynamic resudt an
on “querying the log” (the log can be thought of as a spe-query modification, scalable, QoS-based resource alloca-
cialized stream of revision records) was discussed in [36]tion and optimization, as well as fault tolerance.
though unlike Heraclitis, this work permits the queryingbu  Thus, our vision includes a far more flexible stream pro-
not the generation of deltas. cessing model (revisions, time travel, and control lines) a
a distribution model that dynamically reconfigures as net-

Distributed Optimization.  Table and replica place- vyork conditions change. This is fundamentally different

ment p.rol.)I.ems have been StUd!Ed extensively with the 998 om distributed query optimization in a pull-based system
of minimizing storage, bandwidth and delay-centric A since for us gueries do not end. In addition, our distri-

cess costs, particularly in the context of the data allocas_ .. . : :
: . bution model tries to unify the server-based techniques of
tion problem [3, 49] and more recently content-delivery

o -~ most current SPE’s with the bandwidth and power-aware
networks [29, 33]. In addition to these concerns, the ini- rOCEsSINgG of Sensor networks. The new Stream brocess-
tial allocation algorithm in Borealis considers placement!O g . : P
of all operators, since stream operators must be placed ind capabilities that we m_troduce also allow us to explore
conjunction wit'h table operators. Our model relates tonew fault-tolerance technlques_that seamless_ly mask node
elements common in several o 'timization roblems esfallures and tolerate network failures and partitions by ex

P P '~ ploiting connection points, time travel, and revision &gl

ecially the allocation of boxes to nodes in a knapsack- - . o .
P y P We are currently building Borealis. As Borealis inherits

style manner. The problem of load distribution and oper- hofi i f ionality f A
ator placement has been studied in depth in traditional dis/"Uch Of 1tS corfe; str_ealm Erocessmg un]cc:tlr?nrxty rom g
tributed and parallel computing systems [40, 48, 30, 22]_rora, we can effectively borrow many of the Aurora mod-

In these systems, tasks are finite and are independent frotﬁes’ including the GUI, the XML representation for query

one another. Optimization typically involves offloading ﬂ;a‘?{famsf' pgrtlons gf thle Irun—tlme sg/stem,_ and much tOf
tasks from overloaded nodes to more lightly loaded ones. € logic Tor bOXes. simiiarly, we aré borrowing some net-
orking and distribution logic from Medusa. With this

In contrast, Borealis optimizes the placement of networksVo™® . . o
of operators that run continuously and interact with eactS@rting point, we hope to have a working prototype within
other. Our optimization goals are thus more similar to rout-2 Year. _Th's will allow us to experiment with many of the
ing packets through a network and optimizing the rate and:"]‘pab'“t'es that are outlined in this paper.

end-to-end latencies. Unlike proposals for optimal rout-9 ~ Acknowledgments
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on different segments in the query diagram. the project
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