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Abstract

TensorFlow is a powerful, programmable system for machine
learning. This paper aims to provide the basics of a conceptual
framework for understanding the behavior of TensorFlow models
during training and inference: it describes an operational semantics,
of the kind common in the literature on programming languages.
More broadly, the paper suggests that a programming-language
perspective is fruitful in designing and in explaining systems such
as TensorFlow.

CCS Concepts e Theory of computation — Operational se-
mantics; e Computing methodologies — Neural networks;
o Software and its engineering — Data flow architectures
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1. TensorFlow as a Programming Language

The TensorFlow system for machine learning [1, 2] largely owes its
flexibility and generality to its programmability. TensorFlow mod-
els are assembled from primitive operations by function compo-
sition and other constructs familiar from programming languages.
This approach supports a wide variety of machine learning applica-
tions, including training and inference with deep neural networks,
on heterogeneous distributed systems. Aspects of the implemen-
tation of TensorFlow, for example its rewriting optimizations, also
have roots in programming languages. It is therefore reasonable and
fruitful to think of TensorFlow in programming-language terms.
At its core, TensorFlow relies on dataflow graphs with muta-
ble state. This paper describes a semantics for these graphs. The
semantics is an operational semantics of the kind common in the
literature on programming languages. It is presented in English, for
the sake of readability, but it is as detailed as a logical specification;
indeed, it is largely a paraphrase of a logical formulation previously
written in TLA [14]. It belongs in a long line of work on the seman-
tics of dataflow systems (e.g., [12]). Mathematically, it is rather
simple and elementary. The literature on dataflow systems includes
much deeper and harder results, in particular connections between
operational semantics and denotational semantics (e.g., [10, 11]).
The main goal of the semantics is to provide a conceptual frame-
work for execution, as a starting point for thinking about the be-
havior of TensorFlow models. Thus, the semantics does not aim
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to account for implementation choices; it aims to say what out-
puts may be produced, not to say exactly how. A framework of
this kind can sometimes be valuable to users as they develop their
models. Indeed, some of our internal users have suggested that an
operational semantics would help them in their work. A seman-
tics can also provide guidance in the development of TensorFlow.
Ongoing work on state encapsulation, mentioned below, illustrates
this point. Finally, a semantics is essential in assessing the cor-
rectness of implementation decisions. The rewriting optimizations
mentioned above constitute one class of examples. In our past work
on timely dataflow [16], we found that having a semantics [3] was
crucial for the design of correct techniques for fault-tolerance [4];
a semantics could play an analogous role in future work on Tensor-
Flow.

We focus on central features of TensorFlow, and their default
behavior in TensorFlow 1.0, but omit many details. In some cases,
those details are straightforward. In others, they appear hard to
model cleanly and simply, represent sources of possible confusion
for users (see, for example, [9]), and may be best addressed through
design improvements. We also omit other programming-language
aspects of TensorFlow, such as the specifics of front-ends for defin-
ing graphs and the facilities for control flow.

The next section reviews the relevant aspects of TensorFlow.
Section 3, which is the core of this paper, defines the semantics.
Section 4 discusses further work, touching on other programming-
language aspects of TensorFlow.

2. TensorFlow Review

TensorFlow represents computations by dataflow graphs. Although
focused on machine-learning applications, TensorFlow is rather
agnostic on the exact purpose of the computations. In particular,
a computation may perform one or more steps of training for a
machine-learning model, or it may be the application of a trained
model. Thus, dataflow graphs support both training and inference.

A dataflow graph consists of nodes and edges, where each node
represents an instantiation of an operation, and values flow along
the edges. The operations are implemented by kernels that can be
run on particular types of devices (for instance, CPUs or GPUs).

The main values of interest are tensors: arrays of arbitrary di-
mensionality where the underlying element type is specified or in-
ferred at graph-construction time. Accordingly, many of the opera-
tions are mathematical functions such as matrix multiplication.

In addition, some of the operations may read or update state. In
TensorFlow, a variable is a special kind of operation that returns a
handle to a tensor. In this case, informally, we may say that the
tensor is held in the variable, and we may conflate the variable
operation and the resulting handle. Such a handle can be passed
as argument to operations that read or update the corresponding
tensor. For example, the tensor may contain the weights of a layer
in a neural network, which are updated during the training process.



Moreover, in addition to edges for communicating tensors, a
graph may include control edges that constrain the order of execu-
tion. This order can affect the observable semantics in the presence
of mutable state, and it can also affect performance.

A client typically constructs a graph using a front-end language
such as Python. Then the client can make a call to run the graph,
specifying which inputs to “feed” and which outputs to “fetch”.
TensorFlow propagates the input values, repeatedly applying the
operations prescribed by the graph, until no more nodes can fire.
The order in which nodes fire is constrained by data dependencies
and control edges, but is not necessarily unique. The execution ends
with values on the graph’s output edges. In these respects, Tensor-
Flow graphs are similar to expressions in programming languages.

Often, a graph is executed multiple times. Most tensors do not
survive past a single execution of the graph. However, mutable state
does persist across executions. In a typical application, a graph
represents a step of training for a machine-learning model, the
parameters of the model are stored in tensors held in variables, and
they are updated as part of running the graph.

3. A Core Computational Model

In this section we define the semantics described in Section 1. Some
parts of its presentation aim to be quite detailed, and paraphrase
logical formulas (originally written in TLA); accordingly, they may
be a little dry. We also give small, self-contained examples.

3.1 Programs

As explained above, TensorFlow graphs consist of nodes and edges,
where each node represents an instantiation of an operation, and
values flow along the edges. So, as a starting point for our model,
we first define the values, the operations, and the graphs of interest.
We refer to them with names such as “TF values” and “TF oper-
ations”, thus distinguishing them from similar concepts in the full
TensorFlow and elsewhere.

3.1.1 Definitions

TF values include tensors, as expected, but also auxiliary values.
Specifically, we assume:

e a set of values Tensors, to which we may refer as tensors;

e a set of variables Vars, which correspond to the handles dis-
cussed in Section 2;

¢ a constant GO that we use as a trigger; and

e a constant EMPTY that we use to indicate not-yet-produced or
already-consumed data.

These are all disjoint.
Correspondingly, we distinguish three kinds of edges:

e tensor edges, which are used for conveying elements of Tensors;

e variable edges, which are used for conveying elements of Vars;
and

e control edges, which are used only for GO signals.
Operations are of several kinds, too. A TF operation is one of:

e ffor f a function in Tensors® — Tensors’, for some non-negative
integers k and [;

e Var(x) for x in Vars;
e Read; and
o Assign-f for f a function in (Tensors x Tensors) — Tensors.

Next we describe the intended semantics of these operations, briefly
and informally; a more detailed semantics is below.

e When f is a function in Tensors® —Tensors’, the operation

f simply applies the function to the operation’s k inputs and
returns its { results.

e When X is a variable (an element of Vars), the operation Var(x)
simply outputs X.

¢ The operation Read outputs the current value of a variable; this
variable is an input to the operation.

e Finally, when fis a function in (Tensors x Tensors) — Tensors,
the operation Assign-f has as inputs a variable x and a tensor v;
it reads the current value of x, applies f to this value and to v,
and updates x to hold this result.’

As in this explanation, we generally ignore the possibility that
operations may fail to terminate or may produce errors, for sim-
plicity. Similarly, we require each operation to be deterministic.
TensorFlow is more general in these respects. We also omit control-
flow constructs, which we discuss briefly in Section 4.

Other operations may be added, and indeed some are easy
to define from the ones here. For example, an ordinary Write
operation is a special case of Assign-f where f is the function
Snd such that Snd(x,y) = y. In examples, we write Write as an
abbreviation for Assign-Snd.

A TF program consists of a directed acyclic graph G, plus a
mapping (a “labelling”) L from nodes of G to TF operations. The
labelling L must satisty the following arity constraints for the tensor
edges and variable edges:

k l

e If L(n) is a function f in Tensors® — Tensors’ then n has
k incoming tensor edges (one for each argument of f) and [
outgoing tensor edges (one for each result of f).

We assume that the edges are ordered, so that the order of the
arguments and the results of f is unambiguous.

If several nodes downstream need to consume one of the results,
the desired sharing can be implemented with explicit, additional
Copy nodes, where Copy is the obvious function of type Ten-
sors — (Tensors x Tensors). (Alternatively, the sharing could
rely on connecting multiple outgoing edges to a single output
“port”; the resulting definitions would be more complicated,
though not particularly difficult.)

If L(n) = Var(x) then n has one outgoing variable edge.

If L(n) = Read then n has one incoming variable edge and one
outgoing tensor edge.

If L(n) = Assign-f then n has one incoming variable edge and
one incoming tensor edge.

There are no other tensor or variable edges beyond those just
indicated, but there may be control edges. We allow some edges
to have no source or no destination, to model external inputs and
outputs; we may think of them as the edges for “feeding” and
“fetching”, in TensorFlow parlance. We call them input and output
edges. We require each node to have at least one incoming edge
(possibly simply a control edge), for triggering execution; this

' The corresponding operation in the TensorFlow API also returns x, but
this output is unimportant, so we omit it.

21n this and later footnotes, we indicate how to relax these restrictions.

As a first step in this direction, we may let Tensors include not only ordinary
tensors but also distinct elements that represent various errors that may be
detected in the course of computation, for example the result of reading a
variable that has not been properly initialized or the result of attempting to
add two tensors of incompatible shapes.

In the definitions of operations f and Assign-f, we could relax the re-
quirements on f. For example, in order to model non-determinism or non-
termination, we may allow f to be a relation or a partial function, respec-
tively.



Figure 1. An example program

requirement makes it easy to ensure that each node fires exactly
once (see Section 3.2).

3.1.2 Example Programs

The following is a first, easy example of a TF program:

o> >

Here, solid arrows represent tensor edges; dashed arrows rep-
resent variable edges; and dotted arrows represent control edges.
While two nodes bear the label Var(x), both refer to the same un-
derlying variable x. An input tensor edge provides a value for the
variable x, and an output tensor edge transmits its final value. Thus,
the graph consists of two subgraphs, one for setting x and the other
for reading it. A control edge connects the node labelled Write to
the node labelled Read, constraining the execution order.

A second, more complex example, in Figure 1, uses the Assign-
Add operation, and also some functions from tensors to tensors,
named Split and Project, whose details are unimportant. This ex-
ample enriches the previous one with two subgraphs that look like

replicas and that read and update the variable X, combining it with
an external input.

In these examples, the arrows from the Var(x) nodes to other
nodes indicate that these nodes consume the variable x (intuitively,
as a handle or LValue). On the other hand, the flow of information
from assignments (Write or Assign-Add) to the contents of X is not
represented by an arrow. In this respect, TensorFlow differs from
many traditional dataflow models. More generally, not all flows of
information are apparent from the arrows in the graph. Thus, in the
second example, one Assign-Add operation will “see” the value of
x written by the other, although there are no paths between the two
Assign-Add nodes.

3.2 Behaviors

Intuitively, a TF program starts with non-EMPTY input edges, con-
sumes the values on those edges, and repeatedly propagates them,
applying operations, until no more nodes can fire. In the course of
such an execution, each node fires exactly once, and the execution
ends with non-EMPTY output edges.> The order in which nodes
fire is not necessarily unique, as mentioned above. Furthermore,
the TF program executes in the context of an assignment of values
to variables; these values can be read during the execution and can
be updated repeatedly during the execution, under program con-
trol. In general, the resulting behavior may be non-deterministic.
It is sometimes delicate but important to understand which behav-
iors are possible, and how much determinism, if any, is guaran-
teed for a given program. Note, however, that determinism is not
always expected or desired. In particular, lock-free stochastic gra-

3 Once control-flow constructs and other advanced features are added, it is
no longer true that each node fires exactly once. We mention how to relax
this property in Section 4.



dient descent is a common source of intentional race conditions
(e.g., [2, 17]).

The following definitions explain this semantics precisely, but
without the complications of an actual implementation.

3.2.1 Definitions

The semantics maps each program to a set of behaviors, where each
behavior is a sequence of states. Intuitively, these are the behaviors
that the program may produce.

A state consists of:

® a mapping VarValue from Vars to Tensors (intuitively, giving
the values of all the variables), and

¢ a mapping InTransit from the edges of the TF graph to contents
of the appropriate kind: an element of Tensors or EMPTY for
tensor edges, an element of Var or EMPTY for variable edges,
and GO or EMPTY for control edges (intuitively, indicating
what each edge holds).

The initial state of each behavior must have these properties:

e for all input edges, InTransit(e) is not EMPTY,
e for all other edges e, InTransit(e) is EMPTY,

e for each variable x, VarValue(x) is in Tensors.*

Subsequently, each change of state in the behavior is caused by
the execution (i.e., the firing) of exactly one node in the graph. A
condition for whether a node n can cause a change from a state s to
a state s’ is that for all its incoming control edges d, InTransit(d) =
GO in s and InTransit(d) = EMPTY in s', and for all its outgoing
control edges e, InTransit(e) = GO in s’. Moreover, InTransit(d)
must be the same in s and in s for all edges d not incident on n,
and VarValue(x) must be the same in s and in s’ for all variables
X, except in the case where L(n) = Assign-f for some function f.
Additional conditions depend on n’s label:

e If L(n) = f for f a function in Tensors® — Tensors', then n’s
inputs must be some tensors vi, ..., Vg, and n consumes those
inputs (so the incoming edges are EMPTY afterwards), and
produces the result of applying f to those tensors on its outgoing

5
edges.
Formally, this means that if n has incoming tensor edges di, ...,
dj; and outgoing tensor edges e1, ..., €; then

1. for all d;, InTransit(d;) = v; for some tensor v; in s,
2. for all d;, InTransit(d;) = EMPTY in s’,

3. for all e;, InTransit(e;) is the jth result of applying f to the
values v; in s’.

If L(n) = Var(x), then n simply outputs the variable x.

Formally, this means that InTransit(e) = x in s’, where e is n’s
outgoing variable edge.

If L(n) = Read, then n’s input must be some variable X, and
it consumes this input (so the incoming edge is EMPTY after-
wards) and produces the current value of x as output.

4This definition may suggest that all variables are initialized. However,
the set Tensors may contain distinguished elements to represent errors,
including in particular an element that means “not properly initialized”.

5n order to account for partiality, non-determinism, and probabilities, this
definition and that for the case of Assign-f may be generalized. In particular,
the semantics ought to ensure that errors propagate, but that Assign-f nodes
do not have side effects when any of their inputs represent errors. The
propagation of errors implies that errors are terminal, in the sense that they
are not caught.

Formally, this means that, if d is n’s incoming variable edge and
e is its outgoing tensor edge, then

1. InTransit(d) = x for some x in s,
2. InTransit(d) = EMPTY in s/,
3. InTransit(e) = VarValue(x) in s’.

e If L(n) = Assign-f, then n’s inputs must be some variable x and
some tensor v, and it consumes these inputs (so the incoming
edges are EMPTY afterwards), and updates the value of x to be
the result of applying f to the current value of x and to v.

Formally, this means that, if d; is n’s incoming variable edge
and dy is its incoming tensor edge, then

1. InTransit(d;) = x for some x in s,

. InTransit(d;) = EMPTY in s’,

. InTransit(d2) = v for some tensor v in s,
. InTransit(d2) = EMPTY in ¢/,

. VarValue(x) = f(w,v) in s, where w = VarValue(x) in s, and

A L A W

. VarValue(y) is the same in s and in s’ for all other y.

3.2.2 [Example Behaviors

The following diagram illustrates a possible initial state of our first
example, with a tensor A as the initial value of x (as noted on the
side), and a tensor B in transit on the input tensor edge:®

i)
B x holds A
EMPTY
EMPTY
------- o
GO EMPTY EMPTY

(From now on, we omit the annotation EMPTY, in order to lighten
the figures.)

From this initial state, a few steps yield a final state where B
is produced as output on the output tensor edge, and no further
progress is possible:

x holds B

o> >

B

Several different sequences of steps lead to this final state. The
sequences differ on when the node Var(x) at the bottom fires, but

In particular, A may be a special element of Tensor that means “not
properly initialized”. In this case, writing B is the actual initialization.



x holds A

_ Assign-Add

Assign-Add

Figure 2. An example of an initial state

x holds B

“ Assign-Add

Assign-Add

Figure 3. An example of an intermediate state



x holds B

Figure 4. Another example of an intermediate state

yield the same final output B. On the other hand, if we had forgotten
the control edge between the two subgraphs, the non-determinism
would become visible, potentially: the final output could be A.’
The example program of Figure 1 can exhibit even more non-
determinism. A behavior may start with the initial state depicted in
Figure 2. After a few steps, the two Assign-Add nodes can fire in
either order, as shown in Figure 3. With one order, the final output
is Add(Add(B,D),E), where D and E are the tensors obtained by
splitting C and projecting the results of this split. With the other or-
der, the final output is Add(Add(B,E),D). The algebraic properties
of Add should guarantee that these two outputs are the same. How-
ever, if Assign-Add was replaced with a different operation, such
as Assign-Concat (where Concat is a function that concatenates its
inputs), the non-determinism could lead to different final outputs.
It is also instructive to consider what happens if we replace each
node Assign-Add with a little graph that comprises separate Read,
Add, and Write nodes. In this case, the non-determinism leads to
the possibility of interleavings where the two Add operations hap-
pen before either Write operation, yielding a state where two dif-
ferent values are in transit simultaneously towards the two Write
nodes, respectively, as shown in Figure 4. The second Write opera-
tion will overwrite the effect of the first, which will thus be lost.
This example illustrates an important difference between a node
Assign-Add and the combination of Read, Add, and Write nodes.
More generally, the semantics says that Assign-f nodes are atomic,
thus preventing certain race conditions. (Race conditions may also

71In fact, if the control edge is omitted from the original graph, TensorFlow
can “optimize away” the subgraph that sets x, and then the final output
is definitely A. TensorFlow decides what parts of a graph to execute by
working backwards from the values being “fetched”. The semantics of this
paper applies after the graph-pruning process.

be avoided by other means, in particular by the explicit use of mu-
texes, which can be implemented in terms of other primitives.) In
this respect, the semantics corresponds to reality, but only loosely.
TensorFlow does not offer strong guarantees with respect to atom-
icity; it prevents some race conditions between updates, but allows
others between reads and updates.

4. Further Work

The semantics defined in this paper illustrates that ideas and tech-
niques common in the programming-languages literature may be
relevant to TensorFlow, and probably to other machine-learning
systems, more broadly. (Conversely, machine learning appears in-
creasingly relevant to programming languages—but that should be
the subject of other papers.) We conclude by discussing a few other
programming-language aspects of TensorFlow.

While the definitions above cover what we consider the core of
TensorFlow, the full TensorFlow includes additional constructs, in
some cases based on programming languages. For example, Ten-
sorFlow supports a richer system of types and tensor shapes than
our core fragment; this is an area in which programming languages
are obviously pertinent, and should inform further design. In addi-
tion, TensorFlow supports control flow through constructs such as
conditionals and while loops, analogous but not identical to those
of Theano [5, 8]. These constructs give rise to cyclic graphs. In the
TensorFlow implementation, they are mapped to dataflow primi-
tives, as in tagged dataflow architectures [6, 7]. Our semantics can
be generalized to accommodate those primitives. In this generaliza-
tion, it is no longer true that each node fires exactly once. However,
each node fires at most once in each “execution context”, where an
“execution context” identifies an iteration of each (possibly nested)
loop that contains the node.



Several front-end languages can be employed for constructing
graphs, for setting up training loops, and more. In particular, “im-
perative mode” is an extension of TensorFlow that blurs the line
between graph construction and graph execution [13]. TensorFlow
Fold is a library that supports working with dynamic graphs; its
design draws on techniques from functional programming such as
parser combinators [15]. Further development of such languages
and facilities seems worthwhile.

An important advantage of the TensorFlow graph representation
is that the user offloads a large amount of well-defined computation
to the runtime in a single invocation. Therefore, the system has an
opportunity to optimize the code aggressively, and—since many
computations are invoked repeatedly over a long time period—the
system may profitably resort to expensive optimizations. The cur-
rent program transformations include dead code elimination, com-
mon subexpression eliminination, constant folding, and fusion of
consecutive operations. XLA, a recent domain-specific compiler
for linear algebra [18], can perform such target-independent trans-
formations and also maps programs in an intermediate representa-
tion to code for CPUs, GPUs, and other kinds of devices.

As the examples of Section 3.2.2 indicate, the use of variables
is an area in which the TensorFlow design may benefit from refine-
ment. In particular, we may reconsider the support for synchroniza-
tion for computations that share state. We may also desire stronger
encapsulation for state, with fewer possibilities of unintended shar-
ing, thus avoiding errors and enabling more optimizations. Some
current work goes in this direction, and is reflected in experimental
features released in TensorFlow 1.0. Formal specifications (writ-
ten with the same operational approach as the one of this paper,
but much more detailed) played a role at the start of that work; we
may revisit them in the future and use them as the basis for formal
reasoning.
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