Imperial College Q‘:) LS DS

London e-Scale Distributed Systems Grou

Designing Hybrid Data Processing
Systems for Heterogeneous Servers

Peter Pietzuch

Large-Scale Distributed Systems (LSDS) Group
Imperial College London

http://Isds.doc.ic.ac.uk
<prp@imperial.ac.uk>

University of Cambridge — Cambridge, United Kingdom — November 2017

Data is the New Oil

Many new sources of data become available ~aru
— Most data is produced continuously R——
J DXL0D L0000 Y@l south Korea's unfinished revolution

Biology, but without the cells

MAY 6TH-12TH 2017

_ | The world's most
- < & valuable resource
Internet services, Social feeds loT .
web sites devices @ Cameras
=
RFID
e ﬂ tags
Mobile
devices Scientific Data
repositories

instruments

Data and the new ruies J '
of competition

Data powers plethora of new and personalised services...

Peter Pietzuch - Imperial College London

Data-Intensive Systems

Data analytics over web click streams

— How to maximise user experience with
relevant content?

— How to analyse “click paths” to trace most
common user routes?

Machine learning models for
online prediction

— E.g. serving adverts on search engines

blﬂg Cheap flights Jo)

29,200,000 RESULTS Narrow by language ~ Narrow by region v

Cheap Flights Ads
www.Cheapflights.co.uk

Save Up to 78% on Flights Now- Try Cheapflights today.

Cheap Flights from £20
Skyscanner.net/CheapFlights
Find Cheap Flights & Book Today. Prices from only £20

Cheap Flights from £29

Peter Pietzuch - Imperial College London

Unique Visitors

Visits

Volume of Available Data

Solution: AdPredictor

Uniquely Identified Visitors

— Bayesian learning algorithm
ranks adverts according to

click probabilities

update

o
y E {-1,1}

Throughout and Result Freshness Matter

Data-intensive J

system
High-throughput Low-latency
processing results
Facebook Insights: Aggregates 9 GB/s < 10 sec latency
Feedzai: 40K credit card transactions/s < 25 ms latency
Google Zeitgeist: 40K user queries/s < 1 ms latency

NovaSparks: 150M trade options/s < 1 ms latency

Peter Pietzuch - Imperial College London 4

Design Space for Data-Intensive Systems

Tension between performance

TBs and algorithmic complexity
wpd
=
g Hard for
= all algorithms
©
© GBs
© Hard for
a machine
learning
MBs algorithms
Easy for
most
algorithms

10s 1s 100ms 10ms Tms
Result latency

Peter Pietzuch - Imperial College London

Algorithmic Complexity Increases

T1 T1(a, b, ¢) . . | [55 E%?
T2 T2(c, d, e) -.- &.-} e e e Dum Parallelize ﬁ
Aggregate

T3 T3(g, i, h)
goplcd— Cé)ntegt- Cpoarﬂgﬁx Stream Online machine
0ase 0ase tohi queries learning, data
filtering filtering matching mining

Publish/Subscribe Complex Event = Stream

Processing (CEP) processing

Peter Pietzuch - Imperial College London

Scale Out Model in Data Centres

Peter Pietzuch - Imperial College London 7

Task Parallelism vs. Data Parallelism

Input data

selnnl- AictinAat \A ~iA
F selnnl- AictinAat \A ~iA
r selnnl- AictinAat \A ~iA

rFr select highway, segment, direction, AVG(speed)
wi from Vehicles[range 5 seconds slide 1 second]
wi group by highway, segment, direction
wi having avg < 40

Task parallelism:
Multiple data processing jobs

Peter Pietzuch - Imperial College London

Servers in
data centre

Results

select highway, segment, direction, AVG(speed)
from Vehicles[range 5 seconds slide 1 second]
group by highway, segment, direction
having avg < 40

Data parallelism:
Single data processing job

Distributed Dataflow Systems

ldea:
Execute data-parallel tasks
on cluster nodes

parallelism

degree 2 _
Tasks organised as dataflow graph

parallelism
degree 3

Almost all big data systems do this:

Apache Hadoop, Apache Spark,
A Apache Storm, Apache Flink,
Google TensorFlow, ...

Peter Pietzuch - Imperial College London

Nobody Ever Got Fired For Using Hadoop/Spark

2012 study of MapReduce workloads (A. Réwét’gﬁ’ D.ANa[;ayaTan, :.t[é%n;?g,
— Microsoft: median job size < 14 GB - ohea, A. Douglas, Ho)

— Yahoo: median job size < 12.5 GB
— Facebook: 90% of jobs < 100 GB

Many data-intensive jobs easily fit into memory

One server cheaper/more efficient than compute cluster

Peter Pietzuch - Imperial College London

10

Parallelism of Heterogeneous Servers

Servers have many parallel CPU cores
Heterogeneous servers with GPUs common

(N Gorelii7

PCle Bus
Command Queue
SMX; ... SMXy —I
(= > (T T T T 1
10sof | 2|1 2| g2 = BECCICEESIZERSIIIES
Sleall 3o fEiiEiEE | 1000s of
CPU cores B E ¢ & EE GPU cores
HE HE [| | HE
_ C, GCg C, GCs 1 1 1 1
HE HE [| | HE /
L3 L3
- - - L2 Cache
DRAM DMA DRAM
——

New types of compute accelerators: Xeon Phi, Google's TPUs, FPGAs, ...

Peter Pietzuch - Imperial College London

Servers Are Becoming Increasingly Heterogeneous

7| NVIDIA [e
10" ¢ Intel 48-Core | G Transistors
o operon Piglotipe Kepler GPURIRR—x rousance)
10° + Intel . E * Parallel
Pentl Xeof” Performance
10° 3 Sequential
. i el _+ Performance
10" ¢ pEC Apha [T
i 21264 |- ;
103 I - x4 « Frequency
- MIPS R2K x » (MHz)
o | 2 Typical Power
10 ¢ (Watts)
1 f ~—~—__Number of
10 3 Cores
10°
’:‘I/l . ‘homogeneous | heterogeneous
1975 1980 1 985 1 990 1 995 2000 2005 201 0 2015
Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond

Slide courtesy of Torsten Hoefler (Systems Group, ETH Zirich)

*- How can Data-Intensive Systems Exploit Heterogeneous Hardware?

Peter Pietzuch - Imperial College London

Roadmap

SABER: Hybrid stream processing engine for heterogeneous servers
[SIGMOD’16]

(1) How to parallelise computation on modern hardware?

(2) How to utilise heterogeneous servers?

(3) Experimental performance results

Peter Pietzuch - Imperial College London

13

Analytics with Window-based Stream Queries

Real-time analytics over data streams
Windows define finite data amount for processing

highway highway highway highway highway highway highway highway highway highway
segment segment segment segment segment segment segment segment segment segment
direction | direction | direction | direction | direction | direction | direction | direction | direction | direction
speed speed speed speed speed speed speed speed speed speed

window

)

now

Time-based window with size T at current time t
[t-T1:1] Vehicles[Range T seconds]

Count-based window with size n:
last n tuples Vehicles[Rows n]

Peter Pietzuch - Imperial College London

Defining Stream Query Semantics

Windows convert data streams to dynamic relations (database table)

Window specification

Streams Relations

Any relational
query

(select, project,

v join, group by, etc)

Stream operators:
Istream, Dstream, Rstream

Peter Pietzuch - Imperial College London

15

SQL Stream Queries

SQL provides well-defined declarative semantics for queries
— Based on relational algebra (select, project, join, ...)

Example: Identify slow moving traffic on highway
— Input stream: Vehicles(highway, segment, direction, speed)
— Find highway segments with average speed below 40 km/h

/—I Output
select highway, segment,

direction, AVG(speed) as avg
Input data I\ from Vehicles[range 5 sec slide 1 sec]
group by highway, segment, direction

having avg < 40
\—'(Operators

Peter Pietzuch - Imperial College London

16

(1) How to Parallelise Computation?

Perform query evaluation across sliding windows in parallel
— Exploit data parallelism across stream

6 5 4 3 2 1 /—@Size: 4 sec

'EEE EEE EEE EEE NN EEE EEE slide: 1 sec
EE EEE N EEE 1
11 n

Peter Pietzuch - Imperial College London

How to use GPUs with Stream Queries?

Naive strategy parallelises computation along window boundaries

6 5 4 3 2 1 /—@size: 4 sec

T T T T slide: 1 sec
HEE BEEE ©ER
[| ..=

Task T,

Combine partial results

Task T,

* Window-based parallelism results in redundant computation

Peter Pietzuch - Imperial College London

18

How to use GPUs with Stream Queries?

Parallel processing of non-overlapping window data?

6 5 4 3 2 1 /—@size: 4 sec

slide: 1 sec

\Eg '@ Combine partial results

- Slide-based parallelism limits degree of parallelism

Peter Pietzuch - Imperial College London

19

Apache Spark: Small Slides 2> Low Throughput

select AVG(S.1) from S [rows 1024 slide x|

o -
1.8
5 @ 167
2 g 14
2512
EL
= = 08 -
0.6
0.4
0.2
O T T 1 1 T T T]
0 1 2 3 4 5 6 7 8 9

Window slide (10° tuples)

Spark relates window slide to micro-batch size used for parallelisation

< Avoid coupling system parameters with query definition

Peter Pietzuch - Imperial College London

20

SABER: Parallel Window Processing

|dea: Parallelise using task size that is best for hardware

’ v ’ /—@ 5 tuples/task
/—@ size: 7 tuples
i slide: 2 tuples
Wo
W3
Wy

Task contains one or more window fragments

Peter Pietzuch - Imperial College London

21

SABER: Window Fragment Processing

Process window fragments in parallel
Reassemble partial results to obtain overall result

Worker A: T,
W
E ", *} l Wy
Ws result
I | "
[tmpty ﬁmpty result
[
Wi ——
Wo
Ws Slot 2 Slot 1
I Output result
B Result stage circular buffer

Worker B: T,

Partial result reassembly must also be done in parallel

Peter Pietzuch - Imperial College London

API for Operator Implementation

T2 T1 ®) 5 tuples/task
Fragment function f; olo]s]7]e| [s]a]s]2]1]
size: 7 tuples
— Processes window fragments W, /@ slide: 2 tuples
Wo
RololoIon
Assembly function f,
_ _ W, results w; results
— Merges partial window results
f, f,
output

Batch function f

— Composes fragment functions within task
— Allows incremental processing

Peter Pietzuch - Imperial College London

23

SABER: Performance of Window-based Queries

select AVG(S.1) from S [rows 1024 slide x|

8 1 - 0.2
»w 6 - R A it L——— r—i 0.15
-~ —
. S
0} / 3
= .
o 4 - 0.1 QC>>’
S o
> @®
o _
IE 2 - - 0.05

O T T T T l O

64 256 1024 4096 16384

Window slide (tuples)

* Performance of window-based queries remains predictable

Peter Pietzuch - Imperial College London

24

How to Pick the Task Size?

Problem: Small data transfers over PCle bus costly
— Example: select * from S where p1 [rows 1 slide 1]

8 _
“O=CPU-only processing Limited by dispatcher

@ 6 i
% T+GPU-only processing and thread contention
3 4 F/D._.D_D Limited by data
< movement
3
= 2
|_

O T T T T]

0.0625 0.25 1 4 16 04 256 1024 4096

Task Size (KB)

Peter Pietzuch - Imperial College London 25

Roadmap

SABER: Hybrid stream processing engine for heterogeneous servers
[SIGMOD’16]

(1) How to parallelise computation on modern hardware?
*- Avoid coupling system parameters with processing semantics

(2) How to utilise heterogeneous servers?

Peter Pietzuch - Imperial College London

26

(2) How to Utilise Heterogeneous Servers?

Hard to decide acceleration potential of heterogeneous processors
— Depends on operator semantics, window definition,

data distribution, ... ﬁ,. _
4 cores — =
GPU is faster (® CPU is faster
@ ° 0-3 ® CPU execution
ah)
% 4 0.2 GPU execution
D)
Q
e
2 2 0.1
o
= L
0 0
Aggregation Group-by B-join

< Don’t leave decision about heterogeneous processors to users

Peter Pietzuch - Imperial College London 27

SABER: Hybrid Execution Model

|dea: Execute tasks on all heterogeneous processors (CPUs, GPUs, ...)

Task queue —CPU worker
Tiol| Toll Ta || T2 || To || Ts || Ta || T || To || Ty |[=—
_____GPU worker
Qn Qu Qg Qn Q@ Qg Q@ Q Q) Qg
0 3 6 9 12
T T T T T T T T T T T T -
CPU Ts T, Tio
GPU | T. T, T, T T LT To

Fully utilise all hardware parallelism available in dedicated servers

Peter Pietzuch - Imperial College London

28

Static Task Scheduling using Cost Model?

Profile tasks to obtain cost model
Assign tasks to processor with shortest execution time

Task
CPU GPU ask quete ——CPU workers
Tio| To [T | T2 [Te | Ts ([Tq | T5 | To | T4 ([
Qs 3 ms 2ms ——GPU worker
QB 3 ms 1ms QA QA QB QA QB QB QB QB QA QB
0 3 6 12
T T T T T T T T T T >
Static: Q, on CPU and Qg on GPU
CPU Ty Tz Tg Tho
GPU T, T; T, Ts Ts Tg

<o Static scheduling under-utilises processors

Peter Pietzuch - Imperial College London

29

First-Come First-Serve Task Scheduling?

Assign tasks to processors first-come, first-serve
— CPU/GPU execute both Q, and Qg tasks

Task
CPU GPU ask queue —CPU workers
T1 0 T9 T8 T7 T6 T5 T4 T3 T2 T1
Q, 3 ms 2 ms ——GPU worker
QB 3 ms 1 ms QA QA QB QA QB QB QB QB QA QB
0 3 6 12
T T T T T T T T >
First-Come First-Served
CPU Ty Ty Tg T1o
GPU L Ty T T T, Ty

*- FCFS ignores effectiveness of processors for given task

Peter Pietzuch - Imperial College London

30

Heterogeneous Lookahead Scheduling (HLS)

|dea: Scheduler assigns tasks to idle processors dynamically
— Skips tasks that could be executed faster by another processor

Task queue

CPU workers

CPU GPU

Tio To Te||T T Ts Ta|| Ta || T2 || T
Q, 3 ms 2ms GPU worker
QB 3 ms 1ms QA QA QB QA QB QB QB QB QA QB

HLS
CPU T3 T, Tio

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

GPU | T, I IR 1. @ T,

Bikig i gRip SrGe S idlentd: thbye 3 ms of work for GPU

*- HLS achieves aggregate throughput of all heterogeneous processors

Peter Pietzuch - Imperial College London 31

SABER Hybrid Stream Processing Engine

\@ Java \@ C & OpenCL
15K Loc 4K Loc

a N

GPU
S)
. N J ﬁ J
Ol _ ® _] ®
Dispatching stage Scheduling & execution stage Result stage
Dispatch Dequeue tasks Merge & forward partial
fixed-size tasks based on HLS window results

Peter Pietzuch - Imperial College London

32

Roadmap

SABER: Hybrid stream processing engine for heterogeneous servers
[SIGMOD’16]

(1) How to parallelise computation on modern hardware?
*- Avoid coupling system parameters with processing semantics

(2) How to utilise heterogeneous servers?
*- Hybrid execution utilises all heterogeneous processors

(3) Experimental performance results

Peter Pietzuch - Imperial College London

33

Experimental Evaluation

», D

Peter Pietzuch - Imperial College London

PCle 3.0 x16
Intel Xeon NVIDIA Quadro
2.6 GHz K5200
16 64 GB 2,304 8 GB
cores RAM cores RAM
Ubuntu Linux 14.04 NVIDIA driver 346.47

Google Cluster Data

144M jobs events from Google infrastructure

SmartGrid Measurements
974M plug measurements from houses

Linear Road Benchmark
11M car positions and speed on highway

34

What is SABER’s Performance?

Throughput (10° tuples/s)

*- SABER exploits both CPUs and GPUs effectively for different queries

Peter Pietzuch - Imperial College London

50
40
30
20
10

select

l

group- byavg

group-by,,, group-by,

agg ravg group- byavg

select

group-bYn

A

SG SG2 LRB3

LRB4

- CM2

Cluster Mgmt.

Y

Smart Grid

Y

LRB

35

Is Hybrid Throughput Additive?

GPU is faster ® CPU is faster

—~ 6

2

~

C

= 4

)

Q

2

= 2

o

= I
0

Aggregation Group-by

0.3

0.2

0.1

Not additive due to queue

contention
B SABER (CPU only)
SABER (GPU only)
I B SABER
6-join

* Aggregate throughput of CPU + GPU always highest

Peter Pietzuch - Imperial College London

36

What is the Trade-Off between CPUs and GPUs?

Hybrid processing model benefits from GPU's ability to process complex
predicates fast

-O-SABER (CPU only) “FSABER (GPU only) -4-SABER

8 0.4
@
Mn 6 0.3 ¢
)
3 4 0.2 ¢
i
= Dispatch
O
£ 2 | bound 0.1 L
I_
0 0
1 4 16 64 1 4 16 04
selection predicates # join predicates
[rows 1024, slide 1024] [rows 1024, slide 1024]

Peter Pietzuch - Imperial College London

37

Does SABER Adapt to Workload Changes?

HLS periodically uses idle, non-preferred processor to run
tasks to update query task throughput matrix

2 02

=

8 01

)

U) O T T T T T T
% g0 10 20 30 40 50 60
© >

% 5 - —SABER —SABER (GPU contribution)

s 2

E O T T T T T T

Time (seconds)

*- Higher selectivity > more predicates evaluated > GPU preferred

Peter Pietzuch - Imperial College London

38

Summary

Heterogeneous servers have huge impact on data-intensive systems
— Shift from scale out to scale up model
— Need new general-purpose system designs for heterogeneous servers

SABER: Hybrid Stream Processing Engine for CPUs & GPUs

(1) Parallelise computation to fit hardware capabilities
*- Decouple hardware/system parameters from processing semantics

(2) Fully utilise all heterogeneous processors independently of workload
<*- Hybrid processing model to achieve aggregate CPU/GPU throughput

Peter Pietzuch - Imperial College London 39

Acknowledgement:
LSDS Group at Imperial College London

We're Hiring!

Post-docs, PhDs Peter Pietzuch
http://Isds.doc.ic.ac.uk
Thank you! <prp@imperial.ac.uk>

GomsTons Any Questions?

Peter Pietzuch - Imperial College London 40

