Large-Scale Data Processing and Optimisation (LSDPO)

Session 1: Introduction

Eiko Yoneki
Systems Research Group
University of Cambridge Computer Laboratory

My Trajectory
My Research Interests

- Spanning over Distributed Systems, Networking and Database
- Current Focus: Large-Scale Data Processing and Optimisation of Computer Systems
- MPhil project Suggestions
 http://www.cl.cam.ac.uk/~ey204/teaching/Projects/2017_2018/

My Group: Data-Centric Systems

Optimisation of Complex Data Processing in Computer Systems
- Auto-tuning to deal with complex parameter space using machine-learning
 - Structured Bayesian Optimisation, Reinforcement Learning
 - Build a solid auto-tuning platform in a complex and large parameter space
- e.g. Tuning Cluster task scheduling, ML framework, JVM garbage collector, NN model, Compiler, DB indexing...

Digital Epidemiology
- Real world mobility data collection in Africa/South America
- e.g. TB - sensing CO₂ and proximity of people → building complex networks
- Analyse network structure to understand infectious disease spread
 - Multiple modes of spread in time

Large-scale Graph Processing
- Fast, flexible, and programmable graph processing
- Cost effective but efficient storage
 - Move to SSDs from RAM
- Reduce latency
 - Runtime prefetching
 - Dynamic CPU/GPU scheduling
R244 Course Objectives

- Understand key concepts of scalable data processing
- Understand how to build distributed systems in data driven approach
- Understand a large and complex parameter space in computer system's optimisation and applicability of Machine Learning approach
- Research skills
 - Establish basic research domain knowledge in large data processing
 - Obtain your view of research area for thinking forward

Topic Areas

Session 1: Introduction
Session 2: Data flow programming: Map/Reduce to TensorFlow
Session 3: Large-scale graph data processing
Session 4: Hands-on Tutorial: Map/Reduce and Deep Neural Network
Session 5: Stream Data Processing + Guest lecture
Session 6: Machine Learning for Optimisation of Computer Systems
Session 7: Task scheduling, Performance, and Resource Optimisation
Session 8: Project Study Presentation
Course Structure

- Reading Club (not Lecture Class!)
 - ~4 or 5 Paper review presentations and discussion per session (~=20 minutes presentation + discussion)
 - Each of you will present about 1-2 reviews during the course
 - Revised (if necessary) presentation slides needs to be emailed on the following day

- Review_Log: minimum 1 per session
 - Email me by noon on Monday
 - Prepare questions

- Active participation to review discussion!

Review_Log

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name and (crsid):</td>
</tr>
<tr>
<td>Paper Title and Authors</td>
</tr>
</tbody>
</table>

1. Paper Summary (<100 words)
 Describe a brief summary (extract essentials).

2. Punch-line of the Paper (<250 words):
 What is the significant contribution?
 What is the difference from the existing work?

3. Any major criticism to the authors (<250 words)?
 Any criticism and suggestions to the authors?
Course Work: Reports 1&2

- **Review report** on full length of paper (1800 words)
 - Describe the contribution of paper in depth with criticism
 - Crystallise the significant novelty in contrast to the other related work
 - Suggestion for future work

- **Survey report** on sub-topic in data centric networking (<2000 words)
 - Pick up to 5 papers as core papers in your survey scope
 - Read them and expand your reading through related work
 - Comprehend your view and finish as your survey paper

Study of Open Source Project

- Open Source project normally comes with new proposal of system/networking architecture
- Understand the prototype of proposed architecture, algorithms, and systems through running an actual prototype
- Any additional work
 - Writing applications
 - Extending prototype to another platform
 - Benchmarking using online large dataset
- Present/explain how prototype runs
- Some projects are rather large and may require extensive environment and time; make sure you are able to complete this assignment
Course Work: Reports 3

- **Report on project study** and exploration of a prototype (<2500 words)
 - Project selection by **November 1, 2017**
 - Title and brief description (100 words) by email
 - Project presentation on **November 28, 2017**
 - Final report on the project study by **January 16, 2018** (by December 20 is preferable)

Candidates of Open Source Project

- List is not exhausted and discuss with me if you find more interesting one for you
- Expectation of workload on open source project study is about intensive 3 full days work except writing up report
- One approach: pick one in the session topic, which you are interested in along your survey report
Important Dates

- November 1 (Wednesday)
 - Project selection

- November 10 (Friday)
 - Review report

- November 24 (Friday)
 - Survey report

- January 16, 2018 (Tuesday) – December 20 (Wednesday) is preferable
 - Open source project study report

Assessment

- The final grade for the course will be provided as a letter grade or percentage and the assessment will consist of two parts:
 - 20%: for a reading club (presentation, participation, tutorial session exercise and *review_log*)
 - 80%: for the three reports
 - 20%: Intensive review report
 - 25%: Survey report
 - 35%: Project study
Welcome to R244

- Now tell about yourself
 - Your name and where you studied before ACS (or Part III)
 - What is your research interests (topics)
 - Why are you interested in R244

How to Read a Paper?
How to Read a Paper?

- Scope of LSDPO is wide
 - ...includes distributed systems, OS, networking, programming language, database...

- Type of papers
 - Building a real system
 - Proposing algorithm/logic on architecture design
 - Optimising computer systems
 - New idea

Critical Thinking

- Reading a research paper is not like reading a text book
- But the most important one is that the paper is not necessary the truth
 - there is no right and wrong, just good and bad
 - There are inherently subjective qualities...but you can’t get away with just your opinion: must argue
- Critical thinking is the skill of marrying subjective and objective judgment of a piece of work
First Let’s Argue for...

- What is the problem?
- What is important?

- Why isn’t it solved in previous work?
 - Why graph specific parallel processing? MapReduce is not good enough?

- What is the approach?
 - Graph specific MapReduce

- Why is this novel/innovative?
 - Iterative operation for graph parallel

And Now against...

- Problem is overstated (or oversold)
- Problem does not exist
- Approach is broken
 - It does not work for all the algorithms...
- Solution is insufficient
 - Only works when data is in memory...
- Evaluation is unfair/biased
 - Use HPC for experiment
So Which is RIGHT Answer?

- There isn’t one!
 - Most of arguments are mostly correct...

- Your judge on what is valuable on topic

- In this course, we’ll be reviewing a selection of ~20 papers (4-5 per week)
 - All of these papers were peer-reviewed and published
 - However you can pick your opinion on papers!

Reviewing Tips & Tricks

- Identify a core/major idea of the topic
- Read related work and/or background section and read key other papers on the topic
- Capture the author’s claim of contribution in introduction section and judge if it is delivered
- Understand the methodology that demonstrates paper’s approach
- Capture what authors evaluate and judge if that is a good way to evaluate the proposed idea
- For theory/algorithm paper, capture what it produces as a result (rather than how)
Key in Review Comments

- What do YOU think?
 - Where you finally get to explain your opinion!
 - You should aim to give a judgement on the work
 - Your judgement should be backed by your argument

- Questions for the authors

How to Review a Paper Aid...

- Simon Peyton-Jones: How to write a great paper and give a great talk about it, Microsoft Research Cambridge.

- David A. Patterson: How to Have a Bad Career in Research/Academia, 2001.

See course web page for the paper links.
Structure of Presentation

1. Background/context
 - What motivated the authors?
 - What else was going on in the research community?
 - How have things changed since?

2. What is problem to be tackled?
 - What is the problem they tried to solve?
 - What are the key ideas?
 - What did the authors actually do?
 - What were the results?

3. Your opinion of the paper
 - What you agree and what you disagree?
 - What is the strength and weakness of their approach?
 - What are the key takeaway?
 - What was the impact (possible impact)?

Preparing...

- Not too much basics: remember, others would have read the paper
 - Brief overview
 - Do not make exact repeat of the paper

- Aim: generate discussion – spit your straight opinion about the paper to stir the discussion
 - Explore the arguments they make and the conclusions they draw. What is your opinion on it?
 - When you argue, state clearly the point of argument
Presenting...

- Practice beforehand to ensure length of your presentation

- Getting nervous is normal!
 - We are in the same boat and we help each other to understand the paper
 - Presentation is a tool to provide a discussion forum

- Try not to get defensive or angry at questions
 - It is not your paper!

Listening Presentation...

- You need to get involved

- Ask questions from your review – bring your review_log copy

- Always be respectful of the speaker

S. Hand’10
How to Write Reviews (Report 1)

- **Paper Summary**
 - Provide a brief summary of the paper
 - At this stage you should try to be objective

- **Problem**
 - What is the problem? Why is it important? Why is previous work insufficient?

- **Solution or Approach**
 - What is their approach?
 - How does it solve the problem?
 - How is the solution unique and/or innovative?
 - What are the details?

- **Evaluation is unfair/biased**
 - How do they evaluate their solution?
 - What questions do they answer?
 - What are the strength/weakness of the system and evaluation itself?

How to write Survey paper (Report 2)

- Demonstrate a summary of recent research results in a novel way that integrates and adds understanding to work in the research area

- Must expose relevant details associated, but it is important to keep a consistent level of details and to avoid simply listing the different works

- For example:
 - Define the scope of your survey
 - Classify and organize the trend
 - Critical evaluation of approaches (pros/cons)
 - Add your analysis or explanation (e.g. table, figure)
 - Add reference and pointer to further in-depth information
Summary

- R244 course web page:
 http://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2017_2018
 Email: eiko.yoneki@cl.cam.ac.uk

- Slides of presentation, forms, other information will be on the web