
1

Challenges for Large-scale Data Processing

Eiko Yoneki

University of Cambridge Computer Laboratory

2010s: Big Data

 Why Big Data now?

 Increase of Storage Capacity
 Increase of Processing Capacity
 Availability of Data

 Hardware and software technologies
can manage ocean of data

up to 2003 5 exabytes
 2012 2.7 zettabytes (500 x more)
 2015 ~8 zettabytes (3 x more than 2012)

2

2

Massive Data: Scale-Up vs Scale-Out
 Popular solution for massive data processing
 scale and build distribution, combine theoretically unlimited
number of machines in single distributed storage

 Scale-up: add resources to single node (many cores) in system
(e.g. HPC)

 Scale-out: add more nodes to system (e.g. Amazon EC2)

3

Challenges
 Distribute and shard parts over machines

 Still fast traversal and read to keep related data together
 Scale out instead scale up
 Parallelisable data distribution and processing is key

 Avoid naïve hashing for sharding
 Do not depend on the number of node
 But difficult add/remove nodes
 Trade off – data locality, consistency, availability, read/write/search speed,

latency etc.

 Analytics requires both real time and post fact analytics –
and incremental operation
 Stream processing 4

3

Technologies

5

 Distributed infrastructure
 Cloud (e.g. Infrastructure as a service, Amazon EC2, Google App Engine,

Elastic, Azure)

cf. Many core (parallel computing)

 Storage
 Distributed storage (e.g. Amazon S3, Hadoop Distributed File System

(HDFS), Google File System (GFS))

 Data model/indexing
 High-performance schema-free database (e.g. NoSQL DB - Redis,

BigTable, Hbase, Neo4J)

 Programming model
 Distributed processing (e.g. MapReduce)

Data Processing Stack

Resource Management Layer

Storage Layer

Data Processing Layer

Resource Management Tools
Mesos, YARN, Borg, Kubernetes, EC2, OpenStack…

Distributed
File Systems

GFS, HDFS, Amazon S3, Flat FS..

Operational Store/NoSQL DB
Big Table, Hbase, Dynamo,
Cassandra, Redis, Mongo,

Spanner…

Logging System/Distributed
Messaging Systems

Kafka, Flume…

Execution Engine
MapReduce, Spark, Spark, Dryad, Flumejava…

Streaming
Processing

Storm, SEEP, Naiad,
Spark Streaming, Flink,

Milwheel, Google
Dataflow...

Graph Processing
Pregel, Giraph,

GraphLab, PowerGraph,
(Dato), GraphX,

X-Stream...

Query Language
Pig, Hive, SparkSQL,

DryadLINQ…

Machine Learning
Tensorflow, Caffe, torch,

MLlib…

Programming

6

4

NoSQL (Schema Free) Database

 NoSQL database
 Operate on distributed infrastructure
 Based on key-value pairs (no predefined schema)
 Fast and flexible

 Pros: Scalable and fast
 Cons: Fewer consistency/concurrency guarantees and

weaker queries support

 Implementations
 MongoDB, CouchDB, Cassandra, Redis, BigTable, Hibase …

7

MapReduce Programming

 Target problem needs to be parallelisable
 Split into a set of smaller code (map)
 Next small piece of code executed in parallel
 Results from map operation get synthesised into a result of

original problem (reduce)

8

5

Data Flow Programming

 Non standard programming models
 Data (flow) parallel programming
 e.g. MapReduce, Dryad/LINQ, NAIAD, Spark

MapReduce:
Hadoop

More flexible dataflow model

Two-Stage fixed dataflow

DAG (Directed Acyclic Graph)
based: Dryad/Spark/Tez

9

Typical Operation with Big Data
 Scalable clustering for parallel execution
 Smart sampling of data

 Find similar items efficient multidimensional
indexing

 Incremental updating of models support
streaming

 Distributed linear algebra dealing with large
sparse matrices

 Plus usual data mining, machine learning and
statistics
 Supervised (e.g. classification, regression)
 Non-supervised (e.g. clustering..)

6

Do we need new types of algorithms?
 Cannot always store all data
 Online/streaming algorithms
 Have we seen x before?
 Rolling average of previous K items

 Incremental updating

 Memory vs. disk becomes critical
 Algorithms with limited passes

 N2 is impossible and fast data processing
 Approximate algorithms, sampling

 Iterative operation (e.g. machine learning)

 Data has different relations to other data
 Algorithms for high-dimensional data (efficient

multidimensional indexing)

Brain Networks:
100B neurons(700T
links) requires 100s
GB memory

Emerging Massive-Scale Graph Data

Protein Interactions
[genomebiology.com]

Gene expression
data

Bipartite graph of
phrases in
documents Airline Graphs

Social media data

Web 1.4B
pages(6.6B
links)

12

7

Graph Computation Challenges

 Data driven computation: dictated by graph’s structure and
parallelism based on partitioning is difficult

 Poor locality: graph can represent relationships between irregular
entries and access patterns tend to have little locality

 High data access to computation ratio: graph algorithms are often
based on exploring graph structure leading to a large access rate to
computation ratio

1. Graph algorithms (BFS, Shortest path)
2. Query on connectivity (Triangle, Pattern)
3. Structure (Community, Centrality)
4. ML & Optimisation (Regression, SGD)

13

Data-Parallel vs. Graph-Parallel
 Data-Parallel for all? Graph-Parallel is hard!
 Data-Parallel (sort/search - randomly split data to feed

MapReduce)
 Not every graph algorithm is parallelisable (interdependent

computation)
 Not much data access locality
 High data access to computation ratio

14

8

BSP Example
 Finding the largest value in a connected graph

Message
Local Computation

Communication

Local Computation

Communication

…

15

Graph-Parallel

 Graph-Parallel (Graph Specific Data Parallel)

 Vertex-based iterative computation model
 Use of iterative Bulk Synchronous Parallel Model

Pregel (Google), Giraph (Apache), Graphlab,
GraphChi (CMU - Dato)

 Optimisation over data parallel
GraphX/Spark (U.C. Berkeley)

 Data-flow programming – more general framework
NAIAD (MSR)

16

9

Are Large Clusters and Many cores Efficient?
 Brute force approach really efficiently works?
 Increase of number of cores (including use of GPU)
 Increase of nodes in clusters

17

Do we really need large clusters?
 Laptops are sufficient?

from Frank McSherry HotOS 2015

Fixed-point iteration:
All vertices active in
each iteration
(50% computation, 50%
communication)

Traversal: Search
proceeds in a frontier
(90% computation, 10%
communication)

18

10

Data Processing Stack

Resource Management Layer

Storage Layer

Data Processing Layer

Resource Management Tools
Mesos, YARN, Borg, Kubernetes, EC2, OpenStack…

Distributed
File Systems

GFS, HDFS, Amazon S3, Flat FS..

Operational Store/NoSQL DB
Big Table, Hbase, Dynamo,
Cassandra, Redis, Mongo,

Spanner…

Logging System/Distributed
Messaging Systems

Kafka, Flume…

Execution Engine
MapReduce, Spark, Spark, Dryad, Flumejava…

Streaming
Processing

Storm, SEEP, Naiad,
Spark Streaming, Flink,

Milwheel, Google
Dataflow...

Graph Processing
Pregel, Giraph,

GraphLab, PowerGraph,
(Dato), GraphX,

X-Stream...

Query Language
Pig, Hive, SparkSQL,

DryadLINQ…

Machine Learning
Tensorflow, Caffe, torch,

MLlib…

Programming

19

Parallel Processing Stack Algorithmic Parameters

20

11

Topic Areas

Session 1: Introduction

Session 2: Data flow programming: Map/Reduce to TensorFlow

Session 3: Large-scale graph data processing

Session 4: Hands-on Tutorial: Map/Reduce and Deep Neural Network

Session 5: Stream Data Processing + Guest lecture

Session 6: Machine Learning for Optimisation of Computer Systems

Session 7: Task scheduling, Performance, and Resource Optimisation

Session 8: Project Study Presentation

21

Summary

 R244 course web page:

www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2017_2018

 Enjoy the course!

22

