
Text Sentiment Analysis
with rNN on the IMDB

Dataset
PyTorch and TensorFlow  
Comparative Evaluation

Stefanos Laskaridis 
sl829@cam.ac.uk

R244: Large-Scale Data Processing and Optimisation

mailto:sl829@cam.ac.uk

Recurrent Neural Networks

TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

unweighted connection

Legend

weighted connection

connection with time-lag

mutliplication

+ sum over all inputs

branching point

gate activation function
(always sigmoid)

+

+

+

+

forget gate

input gate

block input

cell
+

output gate

peepholes

LSTM block

g

h

...
input

...

...

...

...

...

...
...

...

recurrent

...

input

recurrent

input

recurrent

input

recurrent

output
recurrent

+

g

SRN
unit

...
input

...
recurrent

...
...output

recurrent

g input activation function
(usually tanh)

h
output activation function
(usually tanh)

block output

Figure 1. Detailed schematic of the Simple Recurrent Network (SRN) unit (left) and a Long Short-Term Memory block (right) as used in the hidden layers of
a recurrent neural network.

A. Forward Pass

Let xt be the input vector at time t, N be the number of
LSTM blocks and M the number of inputs. Then we get the
following weights for an LSTM layer:

• Input weights: W
z

, W
i

, W
f

, W
o

2 RN⇥M

• Recurrent weights: R
z

, R
i

, R
f

, R
o

2 RN⇥N

• Peephole weights: p
i

, p
f

, p
o

2 RN

• Bias weights: b
z

, b
i

, b
f

, b
o

2 RN

Then the vector formulas for a vanilla LSTM layer forward
pass can be written as:

z̄

t = W

z

x

t + R

z

y

t�1 + b

z

z

t = g(z̄t) block input
ī

t = W

i

x

t + R

i

y

t�1 + p

i

� c

t�1 + b

i

i

t = �(̄it) input gate
f̄

t = W

f

x

t + R

f

y

t�1 + p

f

� c

t�1 + b

f

f

t = �(f̄ t) forget gate
c

t = z

t � i

t + c

t�1 � f

t cell
ō

t = W

o

x

t + R

o

y

t�1 + p

o

� c

t + b

o

o

t = �(ōt) output gate
y

t = h(ct) � o

t block output

Where �, g and h are point-wise non-linear activation functions.
The logistic sigmoid (�(x) = 1

1+e

�x

) is used as gate activation
function and the hyperbolic tangent (g(x) = h(x) = tanh(x))
is usually used as the block input and output activation function.
Point-wise multiplication of two vectors is denoted by �.

B. Backpropagation Through Time

The deltas inside the LSTM block are then calculated as:

�y

t = �t + R

T

z

�z

t+1 + R

T

i

�i

t+1 + R

T

f

�f

t+1 + R

T

o

�o

t+1

�ō

t = �y

t � h(ct) � �

0(ōt)

�c

t = �y

t � o

t � h

0(ct) + p

o

� �ō

t + p

i

� �ī

t+1

+ p

f

� �f̄

t+1 + �c

t+1 � f

t+1

�f̄

t = �c

t � c

t�1 � �

0(f̄ t)

�ī

t = �c

t � z

t � �

0(̄it)

�z̄

t = �c

t � i

t � g

0(z̄t)

Here �t is the vector of deltas passed down from the layer
above. If E is the loss function it formally corresponds to @E

@yt

,
but not including the recurrent dependencies. The deltas for
the inputs are only needed if there is a layer below that needs
training, and can be computed as follows:

�x

t = W

T

z

�z̄

t + W

T

i

�ī

t + W

T

f

�f̄

t + W

T

o

�ō

t

Finally, the gradients for the weights are calculated as
follows, where ? can be any of {z̄, ī, f̄ , ō}, and h?1, ?2i denotes
the outer product of two vectors:

�W

?

=
TX

t=0

h�?t,xti �p

i

=
T�1X

t=0

c

t � �ī

t+1

�R

?

=
T�1X

t=0

h�?t+1
,y

ti �p

f

=
T�1X

t=0

c

t � �f̄

t+1

�b

?

=
TX

t=0

�?

t

�p

o

=
TX

t=0

c

t � �ō

t

2Images taken from [5] and [6]

Sentiment Analysis
• Make out the general sentiment

of a sentence.

• Based word vectors, ngrams,
word embeddings, etc.

• Binary or Multiclass classification
in different sentiments.

TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

unweighted connection

Legend

weighted connection

connection with time-lag

mutliplication

+ sum over all inputs

branching point

gate activation function
(always sigmoid)

+

+

+

+

forget gate

input gate

block input

cell
+

output gate

peepholes

LSTM block

g

h

...
input

...

...

...

...

...

...
...

...

recurrent

...

input

recurrent

input

recurrent

input

recurrent

output
recurrent

+

g

SRN
unit

...
input

...
recurrent

...
...output

recurrent

g input activation function
(usually tanh)

h
output activation function
(usually tanh)

block output

Figure 1. Detailed schematic of the Simple Recurrent Network (SRN) unit (left) and a Long Short-Term Memory block (right) as used in the hidden layers of
a recurrent neural network.

A. Forward Pass

Let xt be the input vector at time t, N be the number of
LSTM blocks and M the number of inputs. Then we get the
following weights for an LSTM layer:

• Input weights: W
z

, W
i

, W
f

, W
o

2 RN⇥M

• Recurrent weights: R
z

, R
i

, R
f

, R
o

2 RN⇥N

• Peephole weights: p
i

, p
f

, p
o

2 RN

• Bias weights: b
z

, b
i

, b
f

, b
o

2 RN

Then the vector formulas for a vanilla LSTM layer forward
pass can be written as:

z̄

t = W

z

x

t + R

z

y

t�1 + b

z

z

t = g(z̄t) block input
ī

t = W

i

x

t + R

i

y

t�1 + p

i

� c

t�1 + b

i

i

t = �(̄it) input gate
f̄

t = W

f

x

t + R

f

y

t�1 + p

f

� c

t�1 + b

f

f

t = �(f̄ t) forget gate
c

t = z

t � i

t + c

t�1 � f

t cell
ō

t = W

o

x

t + R

o

y

t�1 + p

o

� c

t + b

o

o

t = �(ōt) output gate
y

t = h(ct) � o

t block output

Where �, g and h are point-wise non-linear activation functions.
The logistic sigmoid (�(x) = 1

1+e

�x

) is used as gate activation
function and the hyperbolic tangent (g(x) = h(x) = tanh(x))
is usually used as the block input and output activation function.
Point-wise multiplication of two vectors is denoted by �.

B. Backpropagation Through Time

The deltas inside the LSTM block are then calculated as:

�y

t = �t + R

T

z

�z

t+1 + R

T

i

�i

t+1 + R

T

f

�f

t+1 + R

T

o

�o

t+1

�ō

t = �y

t � h(ct) � �

0(ōt)

�c

t = �y

t � o

t � h

0(ct) + p

o

� �ō

t + p

i

� �ī

t+1

+ p

f

� �f̄

t+1 + �c

t+1 � f

t+1

�f̄

t = �c

t � c

t�1 � �

0(f̄ t)

�ī

t = �c

t � z

t � �

0(̄it)

�z̄

t = �c

t � i

t � g

0(z̄t)

Here �t is the vector of deltas passed down from the layer
above. If E is the loss function it formally corresponds to @E

@yt

,
but not including the recurrent dependencies. The deltas for
the inputs are only needed if there is a layer below that needs
training, and can be computed as follows:

�x

t = W

T

z

�z̄

t + W

T

i

�ī

t + W

T

f

�f̄

t + W

T

o

�ō

t

Finally, the gradients for the weights are calculated as
follows, where ? can be any of {z̄, ī, f̄ , ō}, and h?1, ?2i denotes
the outer product of two vectors:

�W

?

=
TX

t=0

h�?t,xti �p

i

=
T�1X

t=0

c

t � �ī

t+1

�R

?

=
T�1X

t=0

h�?t+1
,y

ti �p

f

=
T�1X

t=0

c

t � �f̄

t+1

�b

?

=
TX

t=0

�?

t

�p

o

=
TX

t=0

c

t � �ō

t

TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

unweighted connection

Legend

weighted connection

connection with time-lag

mutliplication

+ sum over all inputs

branching point

gate activation function
(always sigmoid)

+

+

+

+

forget gate

input gate

block input

cell
+

output gate

peepholes

LSTM block

g

h

...
input

...

...

...

...

...

...
...

...

recurrent

...

input

recurrent

input

recurrent

input

recurrent

output
recurrent

+

g

SRN
unit

...
input

...
recurrent

...
...output

recurrent

g input activation function
(usually tanh)

h
output activation function
(usually tanh)

block output

Figure 1. Detailed schematic of the Simple Recurrent Network (SRN) unit (left) and a Long Short-Term Memory block (right) as used in the hidden layers of
a recurrent neural network.

A. Forward Pass

Let xt be the input vector at time t, N be the number of
LSTM blocks and M the number of inputs. Then we get the
following weights for an LSTM layer:

• Input weights: W
z

, W
i

, W
f

, W
o

2 RN⇥M

• Recurrent weights: R
z

, R
i

, R
f

, R
o

2 RN⇥N

• Peephole weights: p
i

, p
f

, p
o

2 RN

• Bias weights: b
z

, b
i

, b
f

, b
o

2 RN

Then the vector formulas for a vanilla LSTM layer forward
pass can be written as:

z̄

t = W

z

x

t + R

z

y

t�1 + b

z

z

t = g(z̄t) block input
ī

t = W

i

x

t + R

i

y

t�1 + p

i

� c

t�1 + b

i

i

t = �(̄it) input gate
f̄

t = W

f

x

t + R

f

y

t�1 + p

f

� c

t�1 + b

f

f

t = �(f̄ t) forget gate
c

t = z

t � i

t + c

t�1 � f

t cell
ō

t = W

o

x

t + R

o

y

t�1 + p

o

� c

t + b

o

o

t = �(ōt) output gate
y

t = h(ct) � o

t block output

Where �, g and h are point-wise non-linear activation functions.
The logistic sigmoid (�(x) = 1

1+e

�x

) is used as gate activation
function and the hyperbolic tangent (g(x) = h(x) = tanh(x))
is usually used as the block input and output activation function.
Point-wise multiplication of two vectors is denoted by �.

B. Backpropagation Through Time

The deltas inside the LSTM block are then calculated as:

�y

t = �t + R

T

z

�z

t+1 + R

T

i

�i

t+1 + R

T

f

�f

t+1 + R

T

o

�o

t+1

�ō

t = �y

t � h(ct) � �

0(ōt)

�c

t = �y

t � o

t � h

0(ct) + p

o

� �ō

t + p

i

� �ī

t+1

+ p

f

� �f̄

t+1 + �c

t+1 � f

t+1

�f̄

t = �c

t � c

t�1 � �

0(f̄ t)

�ī

t = �c

t � z

t � �

0(̄it)

�z̄

t = �c

t � i

t � g

0(z̄t)

Here �t is the vector of deltas passed down from the layer
above. If E is the loss function it formally corresponds to @E

@yt

,
but not including the recurrent dependencies. The deltas for
the inputs are only needed if there is a layer below that needs
training, and can be computed as follows:

�x

t = W

T

z

�z̄

t + W

T

i

�ī

t + W

T

f

�f̄

t + W

T

o

�ō

t

Finally, the gradients for the weights are calculated as
follows, where ? can be any of {z̄, ī, f̄ , ō}, and h?1, ?2i denotes
the outer product of two vectors:

�W

?

=
TX

t=0

h�?t,xti �p

i

=
T�1X

t=0

c

t � �ī

t+1

�R

?

=
T�1X

t=0

h�?t+1
,y

ti �p

f

=
T�1X

t=0

c

t � �f̄

t+1

�b

?

=
TX

t=0

�?

t

�p

o

=
TX

t=0

c

t � �ō

t

TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

unweighted connection

Legend

weighted connection

connection with time-lag

mutliplication

+ sum over all inputs

branching point

gate activation function
(always sigmoid)

+

+

+

+

forget gate

input gate

block input

cell
+

output gate

peepholes

LSTM block

g

h

...
input

...

...

...

...

...

...
...

...

recurrent

...

input

recurrent

input

recurrent

input

recurrent

output
recurrent

+

g

SRN
unit

...
input

...
recurrent

...
...output

recurrent

g input activation function
(usually tanh)

h
output activation function
(usually tanh)

block output

Figure 1. Detailed schematic of the Simple Recurrent Network (SRN) unit (left) and a Long Short-Term Memory block (right) as used in the hidden layers of
a recurrent neural network.

A. Forward Pass

Let xt be the input vector at time t, N be the number of
LSTM blocks and M the number of inputs. Then we get the
following weights for an LSTM layer:

• Input weights: W
z

, W
i

, W
f

, W
o

2 RN⇥M

• Recurrent weights: R
z

, R
i

, R
f

, R
o

2 RN⇥N

• Peephole weights: p
i

, p
f

, p
o

2 RN

• Bias weights: b
z

, b
i

, b
f

, b
o

2 RN

Then the vector formulas for a vanilla LSTM layer forward
pass can be written as:

z̄

t = W

z

x

t + R

z

y

t�1 + b

z

z

t = g(z̄t) block input
ī

t = W

i

x

t + R

i

y

t�1 + p

i

� c

t�1 + b

i

i

t = �(̄it) input gate
f̄

t = W

f

x

t + R

f

y

t�1 + p

f

� c

t�1 + b

f

f

t = �(f̄ t) forget gate
c

t = z

t � i

t + c

t�1 � f

t cell
ō

t = W

o

x

t + R

o

y

t�1 + p

o

� c

t + b

o

o

t = �(ōt) output gate
y

t = h(ct) � o

t block output

Where �, g and h are point-wise non-linear activation functions.
The logistic sigmoid (�(x) = 1

1+e

�x

) is used as gate activation
function and the hyperbolic tangent (g(x) = h(x) = tanh(x))
is usually used as the block input and output activation function.
Point-wise multiplication of two vectors is denoted by �.

B. Backpropagation Through Time

The deltas inside the LSTM block are then calculated as:

�y

t = �t + R

T

z

�z

t+1 + R

T

i

�i

t+1 + R

T

f

�f

t+1 + R

T

o

�o

t+1

�ō

t = �y

t � h(ct) � �

0(ōt)

�c

t = �y

t � o

t � h

0(ct) + p

o

� �ō

t + p

i

� �ī

t+1

+ p

f

� �f̄

t+1 + �c

t+1 � f

t+1

�f̄

t = �c

t � c

t�1 � �

0(f̄ t)

�ī

t = �c

t � z

t � �

0(̄it)

�z̄

t = �c

t � i

t � g

0(z̄t)

Here �t is the vector of deltas passed down from the layer
above. If E is the loss function it formally corresponds to @E

@yt

,
but not including the recurrent dependencies. The deltas for
the inputs are only needed if there is a layer below that needs
training, and can be computed as follows:

�x

t = W

T

z

�z̄

t + W

T

i

�ī

t + W

T

f

�f̄

t + W

T

o

�ō

t

Finally, the gradients for the weights are calculated as
follows, where ? can be any of {z̄, ī, f̄ , ō}, and h?1, ?2i denotes
the outer product of two vectors:

�W

?

=
TX

t=0

h�?t,xti �p

i

=
T�1X

t=0

c

t � �ī

t+1

�R

?

=
T�1X

t=0

h�?t+1
,y

ti �p

f

=
T�1X

t=0

c

t � �f̄

t+1

�b

?

=
TX

t=0

�?

t

�p

o

=
TX

t=0

c

t � �ō

t

TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

unweighted connection

Legend

weighted connection

connection with time-lag

mutliplication

+ sum over all inputs

branching point

gate activation function
(always sigmoid)

+

+

+

+

forget gate

input gate

block input

cell
+

output gate

peepholes

LSTM block

g

h

...
input

...

...

...

...

...

...
...

...

recurrent

...

input

recurrent

input

recurrent

input

recurrent

output
recurrent

+

g

SRN
unit

...
input

...
recurrent

...
...output

recurrent

g input activation function
(usually tanh)

h
output activation function
(usually tanh)

block output

Figure 1. Detailed schematic of the Simple Recurrent Network (SRN) unit (left) and a Long Short-Term Memory block (right) as used in the hidden layers of
a recurrent neural network.

A. Forward Pass

Let xt be the input vector at time t, N be the number of
LSTM blocks and M the number of inputs. Then we get the
following weights for an LSTM layer:

• Input weights: W
z

, W
i

, W
f

, W
o

2 RN⇥M

• Recurrent weights: R
z

, R
i

, R
f

, R
o

2 RN⇥N

• Peephole weights: p
i

, p
f

, p
o

2 RN

• Bias weights: b
z

, b
i

, b
f

, b
o

2 RN

Then the vector formulas for a vanilla LSTM layer forward
pass can be written as:

z̄

t = W

z

x

t + R

z

y

t�1 + b

z

z

t = g(z̄t) block input
ī

t = W

i

x

t + R

i

y

t�1 + p

i

� c

t�1 + b

i

i

t = �(̄it) input gate
f̄

t = W

f

x

t + R

f

y

t�1 + p

f

� c

t�1 + b

f

f

t = �(f̄ t) forget gate
c

t = z

t � i

t + c

t�1 � f

t cell
ō

t = W

o

x

t + R

o

y

t�1 + p

o

� c

t + b

o

o

t = �(ōt) output gate
y

t = h(ct) � o

t block output

Where �, g and h are point-wise non-linear activation functions.
The logistic sigmoid (�(x) = 1

1+e

�x

) is used as gate activation
function and the hyperbolic tangent (g(x) = h(x) = tanh(x))
is usually used as the block input and output activation function.
Point-wise multiplication of two vectors is denoted by �.

B. Backpropagation Through Time

The deltas inside the LSTM block are then calculated as:

�y

t = �t + R

T

z

�z

t+1 + R

T

i

�i

t+1 + R

T

f

�f

t+1 + R

T

o

�o

t+1

�ō

t = �y

t � h(ct) � �

0(ōt)

�c

t = �y

t � o

t � h

0(ct) + p

o

� �ō

t + p

i

� �ī

t+1

+ p

f

� �f̄

t+1 + �c

t+1 � f

t+1

�f̄

t = �c

t � c

t�1 � �

0(f̄ t)

�ī

t = �c

t � z

t � �

0(̄it)

�z̄

t = �c

t � i

t � g

0(z̄t)

Here �t is the vector of deltas passed down from the layer
above. If E is the loss function it formally corresponds to @E

@yt

,
but not including the recurrent dependencies. The deltas for
the inputs are only needed if there is a layer below that needs
training, and can be computed as follows:

�x

t = W

T

z

�z̄

t + W

T

i

�ī

t + W

T

f

�f̄

t + W

T

o

�ō

t

Finally, the gradients for the weights are calculated as
follows, where ? can be any of {z̄, ī, f̄ , ō}, and h?1, ?2i denotes
the outer product of two vectors:

�W

?

=
TX

t=0

h�?t,xti �p

i

=
T�1X

t=0

c

t � �ī

t+1

�R

?

=
T�1X

t=0

h�?t+1
,y

ti �p

f

=
T�1X

t=0

c

t � �f̄

t+1

�b

?

=
TX

t=0

�?

t

�p

o

=
TX

t=0

c

t � �ō

t

TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

unweighted connection

Legend

weighted connection

connection with time-lag

mutliplication

+ sum over all inputs

branching point

gate activation function
(always sigmoid)

+

+

+

+

forget gate

input gate

block input

cell
+

output gate

peepholes

LSTM block

g

h

...
input

...

...

...

...

...

...
...

...

recurrent

...

input

recurrent

input

recurrent

input

recurrent

output
recurrent

+

g

SRN
unit

...
input

...
recurrent

...
...output

recurrent

g input activation function
(usually tanh)

h
output activation function
(usually tanh)

block output

Figure 1. Detailed schematic of the Simple Recurrent Network (SRN) unit (left) and a Long Short-Term Memory block (right) as used in the hidden layers of
a recurrent neural network.

A. Forward Pass

Let xt be the input vector at time t, N be the number of
LSTM blocks and M the number of inputs. Then we get the
following weights for an LSTM layer:

• Input weights: W
z

, W
i

, W
f

, W
o

2 RN⇥M

• Recurrent weights: R
z

, R
i

, R
f

, R
o

2 RN⇥N

• Peephole weights: p
i

, p
f

, p
o

2 RN

• Bias weights: b
z

, b
i

, b
f

, b
o

2 RN

Then the vector formulas for a vanilla LSTM layer forward
pass can be written as:

z̄

t = W

z

x

t + R

z

y

t�1 + b

z

z

t = g(z̄t) block input
ī

t = W

i

x

t + R

i

y

t�1 + p

i

� c

t�1 + b

i

i

t = �(̄it) input gate
f̄

t = W

f

x

t + R

f

y

t�1 + p

f

� c

t�1 + b

f

f

t = �(f̄ t) forget gate
c

t = z

t � i

t + c

t�1 � f

t cell
ō

t = W

o

x

t + R

o

y

t�1 + p

o

� c

t + b

o

o

t = �(ōt) output gate
y

t = h(ct) � o

t block output

Where �, g and h are point-wise non-linear activation functions.
The logistic sigmoid (�(x) = 1

1+e

�x

) is used as gate activation
function and the hyperbolic tangent (g(x) = h(x) = tanh(x))
is usually used as the block input and output activation function.
Point-wise multiplication of two vectors is denoted by �.

B. Backpropagation Through Time

The deltas inside the LSTM block are then calculated as:

�y

t = �t + R

T

z

�z

t+1 + R

T

i

�i

t+1 + R

T

f

�f

t+1 + R

T

o

�o

t+1

�ō

t = �y

t � h(ct) � �

0(ōt)

�c

t = �y

t � o

t � h

0(ct) + p

o

� �ō

t + p

i

� �ī

t+1

+ p

f

� �f̄

t+1 + �c

t+1 � f

t+1

�f̄

t = �c

t � c

t�1 � �

0(f̄ t)

�ī

t = �c

t � z

t � �

0(̄it)

�z̄

t = �c

t � i

t � g

0(z̄t)

Here �t is the vector of deltas passed down from the layer
above. If E is the loss function it formally corresponds to @E

@yt

,
but not including the recurrent dependencies. The deltas for
the inputs are only needed if there is a layer below that needs
training, and can be computed as follows:

�x

t = W

T

z

�z̄

t + W

T

i

�ī

t + W

T

f

�f̄

t + W

T

o

�ō

t

Finally, the gradients for the weights are calculated as
follows, where ? can be any of {z̄, ī, f̄ , ō}, and h?1, ?2i denotes
the outer product of two vectors:

�W

?

=
TX

t=0

h�?t,xti �p

i

=
T�1X

t=0

c

t � �ī

t+1

�R

?

=
T�1X

t=0

h�?t+1
,y

ti �p

f

=
T�1X

t=0

c

t � �f̄

t+1

�b

?

=
TX

t=0

�?

t

�p

o

=
TX

t=0

c

t � �ō

t

TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

unweighted connection

Legend

weighted connection

connection with time-lag

mutliplication

+ sum over all inputs

branching point

gate activation function
(always sigmoid)

+

+

+

+

forget gate

input gate

block input

cell
+

output gate

peepholes

LSTM block

g

h

...
input

...

...

...

...

...

...
...

...

recurrent

...

input

recurrent

input

recurrent

input

recurrent

output
recurrent

+

g

SRN
unit

...
input

...
recurrent

...
...output

recurrent

g input activation function
(usually tanh)

h
output activation function
(usually tanh)

block output

Figure 1. Detailed schematic of the Simple Recurrent Network (SRN) unit (left) and a Long Short-Term Memory block (right) as used in the hidden layers of
a recurrent neural network.

A. Forward Pass

Let xt be the input vector at time t, N be the number of
LSTM blocks and M the number of inputs. Then we get the
following weights for an LSTM layer:

• Input weights: W
z

, W
i

, W
f

, W
o

2 RN⇥M

• Recurrent weights: R
z

, R
i

, R
f

, R
o

2 RN⇥N

• Peephole weights: p
i

, p
f

, p
o

2 RN

• Bias weights: b
z

, b
i

, b
f

, b
o

2 RN

Then the vector formulas for a vanilla LSTM layer forward
pass can be written as:

z̄

t = W

z

x

t + R

z

y

t�1 + b

z

z

t = g(z̄t) block input
ī

t = W

i

x

t + R

i

y

t�1 + p

i

� c

t�1 + b

i

i

t = �(̄it) input gate
f̄

t = W

f

x

t + R

f

y

t�1 + p

f

� c

t�1 + b

f

f

t = �(f̄ t) forget gate
c

t = z

t � i

t + c

t�1 � f

t cell
ō

t = W

o

x

t + R

o

y

t�1 + p

o

� c

t + b

o

o

t = �(ōt) output gate
y

t = h(ct) � o

t block output

Where �, g and h are point-wise non-linear activation functions.
The logistic sigmoid (�(x) = 1

1+e

�x

) is used as gate activation
function and the hyperbolic tangent (g(x) = h(x) = tanh(x))
is usually used as the block input and output activation function.
Point-wise multiplication of two vectors is denoted by �.

B. Backpropagation Through Time

The deltas inside the LSTM block are then calculated as:

�y

t = �t + R

T

z

�z

t+1 + R

T

i

�i

t+1 + R

T

f

�f

t+1 + R

T

o

�o

t+1

�ō

t = �y

t � h(ct) � �

0(ōt)

�c

t = �y

t � o

t � h

0(ct) + p

o

� �ō

t + p

i

� �ī

t+1

+ p

f

� �f̄

t+1 + �c

t+1 � f

t+1

�f̄

t = �c

t � c

t�1 � �

0(f̄ t)

�ī

t = �c

t � z

t � �

0(̄it)

�z̄

t = �c

t � i

t � g

0(z̄t)

Here �t is the vector of deltas passed down from the layer
above. If E is the loss function it formally corresponds to @E

@yt

,
but not including the recurrent dependencies. The deltas for
the inputs are only needed if there is a layer below that needs
training, and can be computed as follows:

�x

t = W

T

z

�z̄

t + W

T

i

�ī

t + W

T

f

�f̄

t + W

T

o

�ō

t

Finally, the gradients for the weights are calculated as
follows, where ? can be any of {z̄, ī, f̄ , ō}, and h?1, ?2i denotes
the outer product of two vectors:

�W

?

=
TX

t=0

h�?t,xti �p

i

=
T�1X

t=0

c

t � �ī

t+1

�R

?

=
T�1X

t=0

h�?t+1
,y

ti �p

f

=
T�1X

t=0

c

t � �f̄

t+1

�b

?

=
TX

t=0

�?

t

�p

o

=
TX

t=0

c

t � �ō

t

The IMDB dataset

3
Embedding

PyTorch vs. TensorFlow

• Python implementation of Torch
(Lua)

• Imperative programming model

• Great integration with Python

• Beta version

• CPU, GPU

• Facebook, CMU, Stanford, NYU,
ParisTech, ENS, …

• Multiple frontends: C++, Python,
Java, Go

• Declarative API

• Imperative API through Eager [3]

• Data Flow graphs, with partial graph
execution

• CPU, GPU, TPU, Mobile (TensorFlow
Lite)

• Google, AirBnb, Uber, SAP, ebay, Intel

4Images taken from [1] and [2]

Significance
• Research:

• Prominent Question: Have you tried using DNN?

• Programming paradigm is shifting

• Induction, data-centric approach

• TensorFlow and PyTorch are among the primary tools used
by the industry and academia

• RNNs are great for data with temporal relations (e.g. text,
speech)

5

Exploration
• Evaluate how the top 2 Deep Learning Frameworks perform in

CPU-only computations

• Lack of available Nvidia GPU :(

• and a Google TPU :(

• Maybe test on Public Cloud - Amazon Spot Instances?

• Can you do “Deep” learning on CPUs?

• Explore the limits on a “commodity” laptop

• How far can “fast-prototyping” go?

6

Working Plan

• So far:

• Tools installations and
playground setup

• Dataset exploration

• API familiarisation

Today Christmas Deadline
16/0128/11

• Deliverables:

• Different RNN depths and
architectures comparative
benchmarks

• Accuracy benchmarks

• Computability benchmarks

• Results interpretation
7

Thank you
Q&A

Stefanos Laskaridis 
sl829@cam.ac.uk

8

mailto:sl829@cam.ac.uk

References
1.PyTorch 

http://pytorch.org/

2.TensorFlow 
https://www.tensorflow.org

3.TensorFlow Eager 
https://research.googleblog.com/2017/10/eager-execution-imperative-define-by.html

4.IMDB Dataset 
http://ai.stanford.edu/~amaas/papers/wvSent_acl2011.pdf 
http://ai.stanford.edu/~amaas/data/sentiment/  
https://s3.amazonaws.com/text-datasets/imdb.npz

5.http://colah.github.io/posts/2015-08-Understanding-LSTMs/

6.http://karpathy.github.io/2015/05/21/rnn-effectiveness/

9

http://pytorch.org/
https://www.tensorflow.org
https://research.googleblog.com/2017/10/eager-execution-imperative-define-by.html
http://ai.stanford.edu/~amaas/papers/wvSent_acl2011.pdf
http://ai.stanford.edu/~amaas/data/sentiment/
https://s3.amazonaws.com/text-datasets/imdb.npz
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

