On the Expressive Power of Deep Neural Networks

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, Jascha Sohl Dickstein
Deep Neural Networks

- Recent successes in using Deep neural networks for image classification, reinforcement learning etc.

\[f(\text{cat}) = \text{cat} \]
But why do they work?

- Lack of theoretical understanding of the functions a Deep Neural network is able to compute
- Some work into shallow networks
 - Universal approximation results (Hornik et al., 1989; Cybenko, 1989)
 - Expressivity comparisons to boolean circuits (Maass et al., 1994)
- Some work into deep networks
 - Establishing lower bounds on expressivity
 - E.g. Pascanu et al., 2013; Montufar et al., 2014
 - But previous approaches use hand-coded constructions of specific network weights
 - Functions studies are unlike those learned by networks trained in real life
- Lacking:
 - Good understanding of “typical” case
 - Understanding of upper bounds
 - Do existing constructions approach the upper bound of expressive power of neural networks?
Contributions

- Measures of expressivity to capture expressive power of architecture
- Activation Patterns
 - Tight upper bounds on the number of possible activation patterns
- Trajectory length
 - Exponential growth in trajectory length as function of depth of network
 - Small adjustments in parameters lower in the network can result in large changes later
 - Trajectory Regularization
 - Batch normalization works to reduce trajectory length
 - Why not directly regularize on trajectory length?
Expressivity

- Given architecture A, associated function $F_A(x; W)$
- Goal:
 - How does this function change as A changes for values of W encountered in training, across inputs x
- Difficulty:
 - High dimensional input, quantifying F over input space is intractable
- Alternative:
 - Study one dimensional trajectories through input space
Trajectory

Definition: Given two points, $x_0, x_1 \in \mathbb{R}^m$, we say $x(t)$ is a trajectory (between x_0 and x_1) if $x(t)$ is a curve parametrized by a scalar $t \in [0, 1]$, with $x(0) = x_0$ and $x(1) = x_1$.

Some trajectories:

- Line $x(t) = tx_1 + (1 - t)x_0$
- Circular arc $x(t) = \cos(\pi t/2)x_0 + \sin(\pi t/2)x_1$
- May be more complicated, and possibly not expressible in closed form
Measures of Expressivity: Neuron Transitions

- Given network with piecewise linear activations (e.g. ReLU, hard tanh), the function it computes is also piecewise linear
- Measure expressive power by counting number of linear pieces
- Change in linear region caused by a neuron transition
 - transitions between inputs $x, x + \delta$ if activation switches linear region between x and $x + \delta$.
 - E.G. ReLU from off to on or vice versa
 - Hard tanh from -1 to linear middle region to saturation at 1
- For a trajectory $x(t)$, can define $\mathcal{T}(F_A(x(t); W))$ as the number of transitions undergone by output neurons as we sweep the input along $x(t)$
Measures of Expressivity: Activation Pattern

Activation pattern $\mathcal{AP}(F_A(x; W))$

- A String of length number of neurons from set
 - $\{0, 1\}$ for ReLUs
 - $\{-1, 0, 1\}$ for hard tanh
- Encodes the linear region of the activation function of every neuron, for an input x and weights W

Can also define $\mathcal{A}(F_A(x(t); W))$ the number of distinct activation patterns as we sweep x along $x(t)$

- Measures how much more expressive A is over a simple linear mapping
Upper Bound for Number of Activation Patterns

Theorem 1. (Tight) Upper Bound for Number of Activation Patterns

Let $A_{(n,k)}$ denote a fully connected network with n hidden layers of width k, and inputs in \mathbb{R}^m. Then the number of activation patterns $A(F_{A_{n,k}}(\mathbb{R}^m; W))$ is upper bounded by $O(k^{mn})$ for ReLU activations, and $O((2k)^{mn})$ for hard tanh.
Trajectory transformation exponential with depth

- Trajectory increasing with the depth of a network

 Definition: Given a trajectory, $x(t)$, we define its length, $l(x(t))$, to be the standard arc length:

 $$l(x(t)) = \int_t \left\| \frac{dx(t)}{dt} \right\| dt$$

- Image of the trajectory in layer d of the network

- Proved that For a fully connected work with

 - n hidden layers each of width k
 - Weights $\sim N(0, \sigma w^2/k)$
 - Biases $\sim N(0, \sigma b^2)$

 $$\mathbb{E} \left[l(z^{(d)}(t)) \right] \geq O \left(\frac{\sigma_w \sqrt{k}}{\sqrt{\sigma_w^2 + \sigma_b^2 + k\sqrt{\sigma_w^2 + \sigma_b^2}}} \right)^d l(x(t))$$

 for hard tanh
Number of transitions is linear in trajectory length
Early layers most susceptible to noise

A perturbation at a layer grows exponentially in the remaining depth after that layer.
Early layers most important in training
Trajectory Regularization

- Higher trajectory, higher expressive ability
- But also more unstable
- Regularization seems to be controlling trajectory length

Wrong axis labels →
Trajectory Regularization

- add to the loss $\lambda(\text{current length}/\text{orig length})$

- Replaced each batch norm layer of the CIFAR10 conv net with a trajectory regularization layer
Contributions

- Measures of expressivity to capture expressive power of architecture
- Activation Patterns
 - Tight upper bounds on the number of possible activation patterns
- Trajectory length
 - Exponential growth in trajectory length as function of depth of network
 - small adjustments in parameters lower in the network can result in large changes later
 - Trajectory Regularization
 - Batch normalization works to reduce trajectory length
 - Why not directly regularize on trajectory length?
Conclusions

- This paper equips us with more formal tools for analyzing the expressive power of networks
- Better understanding of importance of early layers: how and why
- Trajectory regularization is an effective technique, grounded in notion of expressivity
- Further work needed investigating trajectory regularization
- Trajectory has possible implications for understanding adversarial examples