Device Placement Optimization with
Reinforcement Learning

Azalia Mirhoseini et al. (Google, ICML '17)
Presented by: Stella Lau

21 November 2017

Motivation

Neural networks are large = heterogeneous environment
Which operations go on which CPUs/GPUs?

Motivation

Neural networks are large = heterogeneous environment
Which operations go on which CPUs/GPUs?

Expert manually specifies device placement?

e It's manual. ..

Use reinforcement learning

Contributions

A reinforcement learning approach for device placement
optimization in TensorFlow graphs.

e Manually assigning variables and operations in a distributed
TensorFlow environment is annoying

® https://github.com/tensorflow/tensorflow/issues/2126

e Reward signal: execution time

https://github.com/tensorflow/tensorflow/issues/2126

Auto device placement for distributed runtime #2126

windreamer opened this issue on Apr 27, 2016 - 27 comments

o™

windreamer commented on Apr 27, 2016

In a distributed TF setting, we need to place variables and ops to different devices. This is annoying to
manually assign each variable and op, especially when we have GPU resources in our environment

TF offer a context named tf.train.replica device setter which place variables to ps devices in round-
robin manner, and this is helpful but not enough. @mrry can you shed some light on the auto distributed
devices placement problem?

windreamer commented on Apr 27, 2016

@bhack this is the best | can do for now, pls feel free to correct me and provide some more thoughts. thx.

bhack commented on Apr 27, 2016 - edited ~

Thank you @windreamer. | also find this topic quite crucial for the "user experience” when we have
distributed devices. Generally on cluster we could have really unbalanced GPU/CPU scalar resources ratio
and there are different considerations to do for data parallel and model parallel approaches. So it is really
interesting to have some feedbacks. /cc @ rano @lenlen

Device placement optimization

TensorFlow graph G:
M operations {o1,...,0um}, list of D devices

Placement P: assign each operation o; to a device p; € D
r(P): execution time of placement

Device placement optimization: find P such that r(P) is
minimized

Architecture overview

Softmax

Attention

Hidden
state

Embedding |'“"

Sequence-to-sequence model with LSTM and a content-based
attention mechanism

1. Encoder RNN:
» input = op; embedded in (type, output shape, adj)

2. Decoder RNN: attentional LSTM with fixed number of time
steps equal to number of operations

» Decoder outputs device for operation at same encoder step

» Each device has own tunable embedding, fed to next step

Challenges overview

1. Training with noisy policy gradients
2. Thousands of operations in TensorFlow graphs

3. Long training time

Challenge I: Training with noisy policy gradients

1. Noisy r(P) especially at start (bad placements)

2. Placements converge = indistinguishable training signals

Challenge I: Training with noisy policy gradients

Problem

1. Noisy r(P) especially at start (bad placements)

2. Placements converge = indistinguishable training signals

Solution

e Empirical finding: use R(P) = /r(P

e Stochastic policy 7(P|G; 6): minimize J(0) = Epr(p|g:0)[R(P)|F]
e Train with policy gradients: reduce variance with baseline

o VoJ(0) = L K (R(P;) — B) - Vglog p(Pi|G; 6)

e Some placements fail to execute = specify failing signal

e Some placements randomly fail: bad at end = after 5000 steps,
update parameters only if placement executes

Challenge Il: Thousands of operations in TensorFlow

graphs
Model ‘ #operations #groups
RNNLM 8943 188
NMT 22097 280
Inception-V3 | 31180 83

Co-location groups: manually force several operations to be on the
same device
Heuristics:

1. Default TensorFlow co-location groups: co-locate each
operation’s outputs with its gradients

2. If output of opx is consumed only by opy, co-locate X and Y
(recursive procedure, especially useful for initialization)

3. Model-specific rules: e.g. with RNN models, treat each
LSTM cell as a group

Challenge IlI: Long training time

Use asynchronous distributed training to speed up training

Parameter Server

— [T

Controller 1 Controller 2 Cen Controller K

Challenge IlI: Long training time

Use asynchronous distributed training to speed up training
e K workers per controller, K is number of placement samples

e Phase |: workers receive signal to wait for placements,
controller receives signal to sample K placements

Phase Il: Worker executes placement, measures run time.
Executed for 10 steps, average run time except first

20 controller, with 4-8 workers = 12-27 hours training
e More workers = more accurate estimates, more idle workers

Each controller has own baseline

Benchmarks: three models

1. RNNLM: Recurrent Neural Network Language Model
» grid structure; very parallelisable

2. NMT: Neural Machine Translation
» LSTM layer, softmax layer, attention layer

3. Inception-V3: imagine recognition and visual feature
extraction;

» multiple blocks; branches of convolutional and pooling layers;
more restricted parallelisation

Pre-processed with co-location groups

Single step run times

Tasks | Single-CPU Single-GPU | #GPUs Scotch MinCut Expert | RL-based ~ Speedup
RNNLM 6.89 1.57 2 13.43 11.94 3.81 1.57 0.0%
(batch 64) * 4 11.52 1044 4.46 1.57 0.0%
NMT 2 14.19 11.54 499 4.04 23.5%
(batch 64) ‘ 1072 oom | 4 1123 1178 473 | 3.92 20.6%
Inception-V3 2621 4.60 2 2524 2288 1122 | 4.60 0.0%
(batch 32) . 4 2341 24.52 10.65 | 3.85 19.0%

e RNNLM: fit entire graph into one GPU to reduce inter-device
communication latencies

e NMT: non-trivial placement. Use 4 GPUs, put less
computationally expensive operations on CPU

Inception-V3: use 4 GPUs; baselines assign all operations to a
single GPU

Other contributions

e Reduced training time to reach the same level of accuracy

e Analysis of reinforcement learning based placements versus

expert placements

» NMT: RL approach balances workload better

» Inception-V3: less balanced because less room for parallelism

Neural MT Training Curves with ICPU, 4GPUs

— RlL-based Placement

—— Human Expert (One layer per device) []

operation runtime (s)

=
in

50

300

5 0 RL-based placement

in

=

0.0
GPUO GPU1 GPU2 GPU3

Expert-designed placement

GPUO GPUl GPU2 GPU3

[encoder_lstm(grad)
3 decoder_lstm(grad)

B attention(grad)
Bl softmax(grad)

Related work

e Neural networks and reinforcement learning for combinatorial
optimization

» Novelty: large-scale applications with noisy rewards
e Reinforcement learning to optimize system performance
e Graph partitioning

» Graph partitioning algorithms are only heuristics: cost models
need to be constructed (hard to estimate, not accurate)

» Scotch optimizer: balance tasks among set of connected
nodes, reducing communication costs

Summary and comments

A reinforcement learning approach to device placement
optimization in TensorFlow

Questions?
e Only execution time is used as a metric. What about memory?

e Device placement optimization is still time consuming (20
hours with 80 GPUs?)

e Limited detail on training procedure and architecture

e Limited discussion on directions for future work

