
Device Placement Optimization with
Reinforcement Learning

Azalia Mirhoseini et al. (Google, ICML ’17)

Presented by: Stella Lau

21 November 2017



Motivation

Problem

Neural networks are large ⇒ heterogeneous environment
Which operations go on which CPUs/GPUs?

Solution

Expert manually specifies device placement?

• It’s manual. . .

Use reinforcement learning



Motivation

Problem

Neural networks are large ⇒ heterogeneous environment
Which operations go on which CPUs/GPUs?

Solution

Expert manually specifies device placement?

• It’s manual. . .

Use reinforcement learning



Contributions

A reinforcement learning approach for device placement
optimization in TensorFlow graphs.

• Manually assigning variables and operations in a distributed
TensorFlow environment is annoying

• https://github.com/tensorflow/tensorflow/issues/2126

• Reward signal: execution time

https://github.com/tensorflow/tensorflow/issues/2126




Device placement optimization

• TensorFlow graph G:
M operations {o1, . . . , oM}, list of D devices

• Placement P: assign each operation oi to a device pi ∈ D

• r(P): execution time of placement

• Device placement optimization: find P such that r(P) is
minimized



Architecture overview

Sequence-to-sequence model with LSTM and a content-based
attention mechanism

1. Encoder RNN:

I input = opi embedded in (type, output shape, adj)

2. Decoder RNN: attentional LSTM with fixed number of time
steps equal to number of operations

I Decoder outputs device for operation at same encoder step

I Each device has own tunable embedding, fed to next step



Challenges overview

1. Training with noisy policy gradients

2. Thousands of operations in TensorFlow graphs

3. Long training time



Challenge I: Training with noisy policy gradients

Problem

1. Noisy r(P) especially at start (bad placements)

2. Placements converge ⇒ indistinguishable training signals

Solution

• Empirical finding: use R(P) =
√

r(P

• Stochastic policy π(P|G; θ): minimize J(θ) = EP∼π(P|G;θ)[R(P)|G]

• Train with policy gradients: reduce variance with baseline

• ∇θJ(θ) ≈ 1
K

∑K
i=1(R(Pi )− B) · ∇θ log p(Pi |G; θ)

• Some placements fail to execute ⇒ specify failing signal

• Some placements randomly fail: bad at end ⇒ after 5000 steps,
update parameters only if placement executes



Challenge I: Training with noisy policy gradients

Problem

1. Noisy r(P) especially at start (bad placements)

2. Placements converge ⇒ indistinguishable training signals

Solution

• Empirical finding: use R(P) =
√

r(P

• Stochastic policy π(P|G; θ): minimize J(θ) = EP∼π(P|G;θ)[R(P)|G]

• Train with policy gradients: reduce variance with baseline

• ∇θJ(θ) ≈ 1
K

∑K
i=1(R(Pi )− B) · ∇θ log p(Pi |G; θ)

• Some placements fail to execute ⇒ specify failing signal

• Some placements randomly fail: bad at end ⇒ after 5000 steps,
update parameters only if placement executes



Challenge II: Thousands of operations in TensorFlow
graphs

Model #operations #groups

RNNLM 8943 188
NMT 22097 280
Inception-V3 31180 83

Co-location groups: manually force several operations to be on the
same device
Heuristics:

1. Default TensorFlow co-location groups: co-locate each
operation’s outputs with its gradients

2. If output of opX is consumed only by opY , co-locate X and Y
(recursive procedure, especially useful for initialization)

3. Model-specific rules: e.g. with RNN models, treat each
LSTM cell as a group



Challenge III: Long training time

Use asynchronous distributed training to speed up training



Challenge III: Long training time

Use asynchronous distributed training to speed up training

• K workers per controller, K is number of placement samples

• Phase I: workers receive signal to wait for placements,
controller receives signal to sample K placements

• Phase II: Worker executes placement, measures run time.
Executed for 10 steps, average run time except first

• 20 controller, with 4-8 workers ⇒ 12-27 hours training

• More workers = more accurate estimates, more idle workers

• Each controller has own baseline



Benchmarks: three models

1. RNNLM: Recurrent Neural Network Language Model

I grid structure; very parallelisable

2. NMT: Neural Machine Translation

I LSTM layer, softmax layer, attention layer

3. Inception-V3: imagine recognition and visual feature
extraction;

I multiple blocks; branches of convolutional and pooling layers;
more restricted parallelisation

Pre-processed with co-location groups



Single step run times

• RNNLM: fit entire graph into one GPU to reduce inter-device
communication latencies

• NMT: non-trivial placement. Use 4 GPUs, put less
computationally expensive operations on CPU

• Inception-V3: use 4 GPUs; baselines assign all operations to a
single GPU



Other contributions

• Reduced training time to reach the same level of accuracy

• Analysis of reinforcement learning based placements versus
expert placements

I NMT: RL approach balances workload better

I Inception-V3: less balanced because less room for parallelism



Related work

• Neural networks and reinforcement learning for combinatorial
optimization

I Novelty: large-scale applications with noisy rewards

• Reinforcement learning to optimize system performance

• Graph partitioning

I Graph partitioning algorithms are only heuristics: cost models
need to be constructed (hard to estimate, not accurate)

I Scotch optimizer: balance tasks among set of connected
nodes, reducing communication costs



Summary and comments

A reinforcement learning approach to device placement
optimization in TensorFlow

Questions?

• Only execution time is used as a metric. What about memory?

• Device placement optimization is still time consuming (20
hours with 80 GPUs?)

• Limited detail on training procedure and architecture

• Limited discussion on directions for future work


